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Abstract

In this article, a robust steering control for the last phase of the rolling
process in a hot strip mill is proposed. This phase, called tail end phase,
may be modelled as a linear switched system. The switchings make the
system unstable and the task of the tail end steering control consists in
guaranteeing the safety of the industrial plant. The system involves a two
time scales dynamics. Hence, the singular perturbation method is used in
order to design the control law. The controller has to take into account the
physical variations of the rolled products and an uncertainty in the switching
time. Results concerning the ArcelorMittal hot strip mill of Eisenhüttenstadt
are presented.

Key words: Robust Steering Control, Polytopic Uncertainties, Switched
Systems, Singular Perturbations, Linear Matrix Inequalities.

1. Introduction

In the steel production framework, the steering control denotes the strate-
gies to guide a metal strip in a finishing mill, which is constituted by n stands.
Each stand contains one set of rolls, in order to crush the strip. In the hot
rolling process, the thickness of a strip is reduced from several tens of mil-
limeters to fewer millimeters. The task consists in obtaining a strip with
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constant thickness, guaranteeing the product quality and the system safety.
This goal is reached by maintaining the strip in a straight line and close to
the mill axis, avoiding sudden lateral movements of the rolled product. The
lateral displacement of the strip is called strip off-centre.

In last few years, several steering control methods have been developed.
In general, the strip off-centre of each stand is considered the differential
force image of the same stand. Then, different approaches have been pro-
posed in order to compute the stand tilting: PID controllers [4], [9], [11], [18],
[25], optimal regulators [24], state-feedback poles assignment [21], coefficient
diagram methods (CDM) [17], sliding mode techniques [20] and model pre-
dictive control (MPC) [2]. Nevertheless, the law linking the differential force
and the strip off-centre is strongly non-linear. Moreover, each stand is linked
to the others by the strip traction. These constraints are taken into account
in [3], where a LQ controller is designed for a nominal framework, and in [16],
where a H2 robust control is proposed. These last two approaches treat only
the first phase of the rolling process, called n-stands phase. In this phase,
the strip is connected to all the stands and the main control task consists in
guaranteeing a good quality of the rolled product.

The purpose of this article is the design of a robust steering control for
the last phase of the rolling process, the tail end phase. In this phase, the
strip leaves the stands one after the other. Each time the strip leaves a stand,
the system dynamics changes. A system with this behaviour can be defined
as a switched system [12]. The loss of traction due to the switchings makes
the system unstable. It is in this phase that a crash can occur, damaging
the rolls. Hence, the aim of the tail end steering control consists in guar-
anteeing the system stability and the safety of the rolling process. A mill
treats products with very different characteristics. Then, the variation of the
physical parameters has to be taken into account in the control design. Also
an uncertainty in the switching signal is considered. Moreover, the system
involves a two time scales dynamics. In this case, standard control methods
can lead to ill-conditioning controllers. To avoid numerical problems, singu-
lar perturbation methods can be used: the system dynamics is decomposed
into fast and slow manifolds and a different controller is designed for each of
them [10]. LMI techniques are used in order to design the control law [1].

To the best of our knowledge, this is the first article which proposes a
tail end steering control taking into account the physical relations linking
the stands, the effects of the switchings on the system dynamics and the fact
that the system treats products with different characteristics.
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The article is organised as follows. In section 2, the physical description of
the system is given. In section 3, a model of the tail end phase as an uncertain
linear switched system in the singular perturbation form is proposed. In
section 4 the control design is presented. In section 5, results concerning the
ArcelorMittal hot strip mill of Eisenhüttenstadt (Germany) are presented.

The following notations are used: for a matrix X, X ′ denotes its transpose
and Tr(X) its trace. X ≻ 0 (X � 0) indicates that X is positive (no negative)
definite. X is said to be Hurwitz if all its eigenvalues have negative real parts.
Furthermore, X is said to be Schur if all its eigenvalues have modulus smaller
than one. ϕ{X} denotes the spectrum of X and the symbol (⋆)′ denotes a
symmetric block. In indicates the identity matrix ∈ R

n×n.

2. Hot strip mill physical description

A hot strip mill (HSM) is constituted by n stands. Each stand contains
one set of rolls (composed of two work rolls and two support rolls) and the
strip in the inter-stand on the front. In the ArcelorMittal HSMs n = {5, 6, 7}.
Since a HSM treats products with different characteristics, an uncertainty has
to be considered for the physical parameters. A polytopic approach will be
used in order to describe these uncertainties. ν ∈ Γ = {1, ...,Nv} denotes
the vertices of the resulting convex hull. Nv is the number of uncertain
parameters.

For each stand j ∈ Υ = {1, ..., n}, the main physical parameters are the
strip width wj,ν, the strip thickness hj,ν , the back strip tension T am

j,ν , the front
strip tension T av

j,ν , the screw interaxis length lvj,ν , the interstand length l0j,ν ,
the work rolls length bj , the work rolls speed sj,ν and the Young’s module
Ej,ν. Also the following constants are necessary to completely define a strip:

c
fh
j,ν, c

fTam

j,ν , c
fTav

j,ν , c
gh
j,ν, c

gTam

j,ν , c
gTav

j,ν , Kh
j,ν , K

f
j,ν, K l

j,ν , Pj,ν and gj,ν.The main
asymmetries are the strip off-centre Zj, the strip thickness profile (wedge)
∆hj , the stand tilting ∆Sj , the differential stand stretch ∆Kj , the differential
rolling force ∆Pj , the upstream differential of strip tension ∆T am

j and the
downstream differential of strip tension ∆T av

j .
As long as the strip remains connected to the coilbox, which is the device

used to coil the strips into the finishing train, the HSM model does not
change (Fig. 1). Otherwise, in the last phase of the rolling process, the tail
end phase, the strip leaves the stands, one after the other. Each time the
strip leaves a stand the system dynamics changes. Then, the HSM can be
defined as a switched system. The first subsystem (the strip has not yet left
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coilbox stand 1 stand j stand n

Figure 1: HSM lateral view

the first stand) is called n-stands subsystem. The subsystem active after
the ith switching, which occurs when the strip leaves the ith stand, is called
(n − i)-stands subsystem. The following main equations, which are relevant
for j > i, govern the system:

– The differential rolling force equation:

∆Pj = c
fh
j−1,ν∆hj−1 + c

fh
j,ν∆hj + c

fTam

j,ν ∆T am
j + c

fTav

j,ν ∆T av
j ; (1)

– The exit stand wedge equation:

∆hj =
(

wj,ν

(lvj,ν)2Kh
j,ν

+
6wj,ν

b2j,νK
f
j,ν

)

(

∆Pj + 2Pj,ν

)

Zj+

∆Pj

K l
j,ν

+
wj,ν

lvj,ν
∆Sj −

wj,ν

lvj,ν(K
h
j,ν)

2
Pj,ν∆Kj ;

(2)

– The angle αj between the strip and the mill axis equation:

α̇j =
sj,ν

wj,ν

(

c
gh
j,ν

1+gj,ν
+ 1

hj,ν

)

∆hj +
sj,ν

wj,ν

(

c
gh
j−1,ν

1+gj,ν
− 1

hj−1,ν

)

∆hj−1+

sj,ν

wj,ν

c
gTav

j,ν

(1 + gj,ν)
∆T av

j +
sj,ν

wj,ν

c
gTam

j,ν

(1 + gj,ν)
∆T am

j ;

(3)

– The strip off-centre equation:

Żj = sj,ν αj ; (4)

Moreover, for j > i + 1 we have:
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– The upstream differential of strip tension equation:

∆T am
j =3

(

wj,νEj,ν

(l0j,ν)2
+

T am
j,ν

wj,ν

)

(

Zj − Zj−1

)

+

wj,νEj,ν

l0j,ν

(

2αj − αj−1

)

+ 3
l0j,νT

am
j,ν

wj,ν

αj ;
(5)

– The coupling between two successive stands equation:

∆T av
j−1 = −∆T am

j ; (6)

For the last two equations, there exists an exception. When the n-stands
subsystem is on, the equations (5) and (6) are verified ∀ j ∈ Υ. In this
case, the upstream differential of strip tension in the first stand ∆T am

1 can
take two different values. It corresponds to the downstream tension of the
coilbox ∆T am

1 = −∆T av
0 when the strip is connected to the coilbox (most

of the time), and to zero after the strip leaves the coilbox. This last phase
with ∆T am

1 = 0 and ∆T am
2 6= 0 (the strip left the coilbox but not yet the

first stand) has not been considered in the switching system model because
is very short and its dynamics is similar to the case ∆T am

1 = −∆T av
0 and

∆T am
2 6= 0. When the strip leaves the first stand the system switches to

the (n − 1)-stands subsystem and the equations (5) and (6) are relevant for
j > i + 1.

According to the previous physical equations, the system is described by
the non-linear continuous-time differential uncertain switched system

{

ż = Φσ(t)(z, u, ν)

y = Cσ(t)z
(7)

where
z =

[

α1, . . . , αn, Z1, . . . , Zn

]′
∈ R

2n (8)

is the state, u ∈ R
r is the control signal (the stand tilting ∆S), y ∈ R

m is
the output signal, {Φρ : ρ ∈ Σ} is a family of nonlinear functions, σ(t) : N →
Σ = {1, ...,Ns} is the switching signal, which is assumed to be unknown a
priori, and Ns represents the number of subsystems. Φσ(t) and Cσ(t) can be
written in the polytopic form

Φσ(t)(z, u, ν) =
Ns
∑

ρ=1

ξρ(t)φ̂
ρ =

Ns
∑

ρ=1

Nv
∑

ν=1

ξρ(t)λρ,ν(t)φ
ρ,ν, (9)
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Cσ(t) =
Ns
∑

ρ=1

ξρ(t)C̄
ρ, (10)

with ξρ(t) : N → {0, 1},
Ns
∑

ρ=1

ξρ(t) = 1, λρ,ν(t) ≥ 0,
Nv
∑

ρ=1

λρ,ν(t) = 1, ∀ (ρ, ν) ∈

Σ × Γ.

3. Problem formulation

Only small deviations around the ideal operating point (z = 0) are as-
sumed. Hence, for designing the control law, the following linearized model
can be considered:

{

ż = Mσ(t)z + N σ(t)u

y = Cσ(t)z
(11)

where

Mσ(t) =
Ns
∑

ρ=1

ξρ(t)M̂
ρ =

Ns
∑

ρ=1

Nv
∑

ν=1

ξρ(t)λρ,ν(t)M̄
ρ,ν , (12)

N σ(t) =

Ns
∑

ρ=1

ξρ(t)N̂
ρ =

Ns
∑

ρ=1

Nv
∑

ν=1

ξρ(t)λρ,ν(t)N̄
ρ,ν . (13)

The pairs (M̄ρ,ν , N̄ρ,ν) and (C̄ρ, M̄ρ,ν) are assumed to be controlable and
observable ∀ (ρ, ν) ∈ Σ × Γ, respectively.

In the HSM system, a two time scale dynamics has to be considered.
Thus, standard control methods can yield to ill-conditioning controllers. The
singular perturbation method can be used to avoid numerical problems. This
method consists in decomposing the system dynamics into fast and slow man-
ifolds and in designing a different controller for each of them [10]. Consider
a vertex (ρ, ν) of the polytopic system (11):

{

ż = M̄ρ,νz + N̄ρ,νu

y = C̄ρz.
(14)

In order to write the subsystem (14) in the singular perturbation form, the
components of the state vector z which belongs to the fast and the slow
dynamics must be divided into two different state vectors x1 and x2. In the
n-stands subsystem, the slow dynamics is given by the n strip off-centre.
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In the tail end subsystems, the slow dynamics is given by the strips off-
centre of the operating stands and the angle corresponding to the first active
stand. Hence, the components and the dimension of x1 and x2 are different
∀ ρ ∈ Σ. Nevertheless, there exists a set of permutation matrices Eρ, with
det(Eρ) = ±1 and EρEρ−1 = In, such that the change of basis

xρ = Eρz (15)

yields a system state in the form:

xρ =

[

x
ρ
1

x
ρ
2

]

, (16)

with x
ρ
1 ∈ R

n
ρ
1 and x

ρ
2 ∈ R

n
ρ
2 , ∀ ρ ∈ Σ. Hence, the subsystem (14) can be

written in the standard singular perturbation form:










εẋ
ρ
1 = M

ρ,ν
11 x

ρ
1 + M

ρ,ν
12 x

ρ
2 + N

ρ,ν
1 u

ẋ
ρ
2 = M

ρ,ν
21 x

ρ
1 + M

ρ,ν
22 x

ρ
2 + N

ρ,ν
2 u

y = C
ρ
1x

ρ
1 + C

ρ
2x

ρ
2,

(17)

where M
ρ,ν
11 is assumed to be Hurwitz and ε > 0 is a scalar parameter ≪ 1.

According to the practical implementation, the controller must be de-
signed in the discrete-time, with a sample time of Ts = 0.05 sec. Then, the
discrete-time form of (17) is used [8]:











x
ρ
1(k + 1) = A

ρ,ν
11 x

ρ
1(k) + A

ρ,ν
12 x

ρ
2(k) + B

ρ,ν
1 u(k)

x
ρ
2(k + 1) = εA

ρ,ν
21 x

ρ
1(k) + (In2

+ εA
ρ,ν
22 )xρ

2(k) + B
ρ,ν
2 u(k)

y(k) = C
ρ
1x

ρ
1(k) + C

ρ
2x

ρ
2(k).

(18)

Let

Aρ,ν(ε) =

[

A
ρ,ν
11 A

ρ,ν
12

εA
ρ,ν
21 (In

ρ
2
+ εA

ρ,ν
22 )

]

,

Bρ,ν(ε) =

[

B
ρ,ν
1

εB
ρ,ν
2

]

,

Cρ =
[

C
ρ
1 C

ρ
2

]

.

(19)

The slow subsystem is defined as:
{

xρ
s(k + 1) = (In

ρ
2
+ εAρ,ν

s )xρ
s(k) + εBρ,ν

s us(k)

ys(k) = Cρ,ν
s xρ

s(k) + Dρ,ν
s us(k)

(20)
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Table 1: Eigenvalues Comparison

ϕ{Aρ} ϕ{Aρ
s}

1.0198 1.0197

0.9860 0.9861

0.9144 0.9154

0.8922 0.8933

0.8120 0.8167

0.0301

0.0028 + 0.0217i

0.0028 - 0.0217i

with
Aρ,ν

s = A
ρ,ν
22 + A

ρ,ν
21 (In

ρ
1
− A

ρ,ν
11 )

−1
A

ρ,ν
12

Bρ,ν
s = B

ρ,ν
2 + A

ρ,ν
21 (In

ρ
1
− A

ρ,ν
11 )−1

B
ρ,ν
1

Cρ,ν
s = C

ρ
2 + C

ρ
1 (In

ρ
1
− A

ρ,ν
11 )

−1
A

ρ,ν
12

Dρ,ν
s = C

ρ
1 (In

ρ
1
− A

ρ,ν
11 )−1

B
ρ,ν
1

(21)

and (In
ρ
1
− A

ρ,ν
11 ) non-singular; the fast subsystem is defined as:

{

x
ρ
f (k + 1) = A

ρ,ν
11 x

ρ
f(k) + B

ρ,ν
1 uf(k)

yf(k) = C
ρ
1x

ρ
f (k).

(22)

In Table 1, the eigenvalues ϕ{Aρ} of the original system (18) and the
eigenvalues ϕ{Aρ

s} of the slow subsystem (20) are given for the 4-stands sub-
system of a product from the Eisenhüttenstadt HSM database characterised
by wn = 1203 mm and hn = 3.03 mm. Notice that the time-scale separa-
tion justifies the use of the only slow dynamics for control design purposes.
Moreover, the system is unstable (the first eigenvalue is greater than 1).

In the n-stands subsystem, the strip is connected to all the stands, and
it is subject to a strong perturbation due to the coilbox vibrations. Hence,
the main control task consists in guaranteeing a good quality of the rolled
product, minimising the external perturbation. This phase takes the 90% −
95% of the whole rolling process duration and the system reaches the steady
state before the switchings occur.
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In the tail end phase, traction is lost every time the strip leaves a stand.
This increases the difficulties to guide the strip, which becomes free to move
in all directions. Then, the priority of the control system is the safety of
the system. Moreover, the tail end phase is very short and the switchings
are very fast. Hence, dwell time conditions are not verified [19], [27]. This
means that the stability of all subsystems is not a sufficient condition to
guarantee the stability of the whole system. It is also necessary to verify
that the switchings do not destabilise the system [12].

In the next section, a control law guaranteeing the asymptotic stability
of the tail end phase is presented. To our knowledge, all the conditions to
design a control law stabilising a switched system need a state vector with
constant components and dimension. Nevertheless, in the HSM system, the
components and dimension of the state vector change at each switching time.
A possible solution consists in designing a robust control law stabilising each
subsystem ρ of (18) separately, ∀ ν ∈ Γ. The stability of the switched system
will be verified a posteriori. In fact, the switching time depends on the rolled
strip and must be estimated on-line. Then, the switched system stability
condition has also to take into account an uncertainty in the switching time.

Since the LQ control has yielded good results for the n-stands subsystem,
this approach is maintained also to the tail end phase. In [23], an alternative
LMI solution for the LQ optimal control design is proposed. This approach
has been extended to singularly perturbed systems in [5] and in [15] (for
continuous and discrete-time systems, respectively). The advantage associ-
ated with the LMI formulation is the existence of several solvers that also
provide solutions also in the case of high dimension problems. Moreover, the
LMI-based controller can be directly extended to the uncertain systems, if
A

ρ,ν
11 is Schur ∀ (ρ, ν) ∈ Σ × Γ.

4. Control design

The first step consists in designing a robust control law which stabilises
each subsystem ρ of the tail end phase. Hence, for the moment, the effect
of the switchings is not taken into account. The ρ index is omitted and the
obtained stability results will be applied to each subsystem ρ separately. In
the HSM system, due to actuators rate limits, only the slow subsystem can
be controlled. Since Aν

11 is Schur, a reduced state-feedback gain controlling
only the slow manifold stabilises the whole closed-loop system.
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Let choose the weighting matrix R such that R = R′ = G′G ≻ 0. The
following theorem designs a sub-optimal reduced controller stabilising the
system (18) ∀ ν ∈ Γ. An upper bound of the performance degradation is
given in [22].

Theorem 1. [15] If Aν
11 is Schur and there exist matrices Xs = X ′

s ≻ 0,
Ws = W ′

s ≻ 0 and Ss of appropriate dimension such that the LMI optimisa-
tion problem

min
Xs,Ss,Ws

Tr
(

Xs

)

(23)

under




Xs Cν
s Ws + Dν

sSs GSs

(⋆)′ Ws 0
(⋆)′ (⋆)′ Ws



 � 0 (24)

and
Aν

sWs + WsA
ν
s
′ + Bν

s Ss + S ′
sB

ν
s
′ ≺ 0 (25)

has a solution, then the reduced state-feedback control law

u(k) = K

[

x1(k)
x2(k)

]

, (26)

with K = [0 SsW
−1
s ], guarantees the asymptotical stability of the closed-loop

system (18), ∀ ν ∈ Γ.

The second step consists in verifying the stability of the switched sys-
tem, ∀ (ρ, ν) ∈ Σ × Γ. An uncertainty in the switching time must also be
considered. Applying Theorem 1 to each subsystem ρ, we obtain Ns robust
controller gains Kρ such that the closed-loop state matrix

Tρ,ν = Aρ,ν + Bρ,νKρ (27)

is Schur ∀ (ρ, ν) ∈ Σ×Γ, where Aρ,ν and Bρ,ν are defined in (19). The change
of basis

z = Eρ−1xρ (28)

can be applied for obtaining the same state vector z, ∀ ρ ∈ Σ. Using matrices
(27) ∀ (ρ, ν) ∈ Σ × Γ, we obtain the closed-loop switched system in the
polytopic form:

z(k + 1) = Tσ(k)z(k) (29)

10



where {Tρ : ρ ∈ Σ} is a family of matrices, σ(k) : N → Σ is the switching
signal, which is assumed to be unknown a priori, and

Tσ(k) =

Ns
∑

ρ=1

ξρ(k)T̂ρ =

Ns
∑

ρ=1

Nv
∑

ν=1

ξρ(k)λρ,ν(k)T̄ρ,ν (30)

with T̄ρ,ν = Eρ−1Tρ,νE
ρ, ξρ(k) : N → {0, 1},

Ns
∑

ρ=1

ξρ(k) = 1 and λρ,ν(k) ≥ 0,

Nv
∑

ρ=1

λρ,ν(k) = 1, ∀ (ρ, ν) ∈ Σ × Γ.

The following theorem gives a condition to verify the asymptotic stability
of an autonomous switched system in the form

z(k + 1) = Aσ(k)z(k) (31)

using the concept of dwell time ∆ ∈ N. Consider two successive switching
times lq and lq+1 satisfying lq+1 − lq = ∆q ≥ ∆ ≥ 1, ∀ q ∈ N. Moreover,
consider that for k ∈ [lq, lq+1) the system is in the subsystem corresponding
to σ(k) = ρ ∈ Σ and that when a switching occurs, for k = lq+1, the system
jumps to the subsystem corresponding to σ(k) = ρ+ ∈ Σ.

Theorem 2. [6] If there exist Ns matrices Pρ = Pρ
′ ≻ 0 of appropriate

dimensions such that the LMIs

A
′

ρPρAρ − Pρ ≺ 0, ∀ ρ ∈ Σ, (32)

A∆′

ρ Pρ+
A∆

ρ − Pρ ≺ 0, ∀ (ρ, ρ+ 6= ρ) ∈ Σ × Σ (33)

are verified, then the system (31) is asymptotically stable for ∆q ≥ ∆ ≥ 1.

Theorem 2 does not require a Lyapunov function uniformly decreasing
at each switching time, under the assumption of ∆ ≥ 1. This fact reduces
the conservatism. In the HSM system case, only n− 1 switchings can occur.
Then, it is not necessary to verify the LMI (33) ∀ (ρ, ρ+ 6= ρ) ∈ Σ × Σ.
Moreover, the minimum dwell time ∆ρ is known ∀ ρ ∈ Σ. Nevertheless, in
order to prove the stability of system (29), a condition taking into account the
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uncertain parameters ∀ ν ∈ Γ and an uncertainty τρ ∈ Ωρ = {−Nτρ , ...,Nτρ}
in the switching time is needed.

Consider three successive switching times lq−1, lq and lq+1. For k ∈
[lq−1, lq) the system is in the subsystem corresponding to (ρ−, ν−, τρ−) ∈
Σ × Γ × Ωρ− , for k ∈ [lq, lq+1) the system is in the subsystem corresponding
to (ρ, ν, τρ) ∈ Σ× Γ×Ωρ and, for k = lq+1, the system jumps to the subsys-
tem corresponding to (ρ+, ν+, τρ+) ∈ Σ × Γ × Ωρ+ . lq−1, lq and lq+1 satisfy
lq−lq−1 = ∆

ρ−
q−1 ≥ ∆ρ− ≥ 1, lq+1−lq = ∆ρ

q ≥ ∆ρ ≥ 1, ∀ q ∈ N, where ∆ρ is the
dwell time of the subsystem ρ. We assume Nτρ +Nτρ+ < ∆ρ. Hence, the sub-

K

klq−1 lq lq+1

τρ > 0
τρ+ < 0

Kρ

Kρ−

Kρ+

Figure 2: Controller switchings

system ρ is controlled by the wrong gain Kρ− for a time t ∈ (kTs, (k + τρ)Ts)
if τρ > 0, with T̄ρ−,ν = Eρ−1(Aρ,ν + Bρ,νKρ−)Eρ. Furthermore, the subsys-
tem ρ is controlled by the wrong gain Kρ+ for a time t ∈ (kTs, (k − τρ+)Ts)
if τρ+ < 0, with T̄ρ+,ν = Eρ−1(Aρ,ν + Bρ,νKρ+)Eρ (Fig. 2).

Let the transition matrix Qπ,∆ρ
q
, which represents the system evolution

for k ∈ [lq, lq+1). Its value depends on the sign of τρ and τρ+ :



















if τρ ≤ 0, τρ+ ≥ 0 : Qπ,∆ρ
q

= (T̄ρ,ν)
∆ρ

q ,

if τρ > 0, τρ+ ≥ 0 : Qπ,∆ρ
q

= (T̄ρ,ν)
∆ρ

q−τρ

(T̄ρ−,ν)
τρ

,

if τρ ≤ 0, τρ+ < 0 : Qπ,∆ρ
q

= (T̄ρ+,ν)
−τρ+ (T̄ρ,ν)

∆ρ
q+τρ+

,

if τρ > 0, τρ+ < 0 : Qπ,∆ρ
q

=(T̄ρ+,ν)
−τρ+

(T̄ρ,ν)
∆ρ

q−τρ+τρ+

(T̄ρ−,ν)
τρ

,

(34)
with π = ρ, ρ− 6= ρ, ρ+ 6= ρ, ν, ν+, τρ, τρ+ ∈ Π = Σ×Σ×Σ×Γ×Γ×Ωρ ×Ωρ+ .
The following theorem gives a generalisation of Theorem 2 for uncertain
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switched systems with an uncertainty in the switching time.

Theorem 3. Consider the uncertain switched system (29) and an uncer-
tainty in the control signal switching τρ ∈ Ωρ. If there exist Ns×Nv matrices
Pρ,ν = Pρ,ν

′ ≻ 0 of appropriate dimensions such that the LMIs

T̄ ′
ρ,νPρ,νT̄ρ,ν − Pρ,ν ≺ 0, ∀ (ρ, ν) ∈ Σ × Γ, (35)

Q′
π,∆ρPρ+,ν+

Qπ,∆ρ − Pρ,ν ≺ 0, ∀ π ∈ Π (36)

are verified, then the switched system (29) is asymptotically stable for ∆ρ
q ≥

∆ρ ≥ 1, ∀ (ρ, ν, τρ) ∈ Σ × Γ × Ωρ.

Proof 1. Let the parameter dependent Lyapunov function

V (k) = z(k)′
Ns
∑

ρ=1

Nv
∑

ν=1

ξρ(k)λρ,ν(k)Pρ,νz(k) (37)

where Pρ,ν = P ′
ρ,ν ≻ 0. The system (29) is asymptotically stable if the differ-

ence of the Lyapunov function L(k) = V (k+1)−V (k) satisfies the inequality

L(k) = z(k)′(T (k)′P+(k)T (k) − P(k))z(k) ≺ 0 (38)

where

P(k) =

Ns
∑

ρ=1

Nv
∑

ν=1

ξρ(k)λρ,ν(k)Pρ,ν , (39)

P+(k) =

Ns
∑

ρ=1

Nv
∑

ν=1

ξρ(k + 1)λρ,ν(k + 1)Pρ,ν =

Ns
∑

ρ+=1

Nv
∑

ν+=1

ξρ+
(k)λρ+,ν+

(k)Pρ+,ν+

(40)
∀ (ρ, ν) ∈ Σ × Γ and ∀ (ρ+, ν+) ∈ Σ × Γ [7]. From (35), ∀ k ∈ [lq, lq+1) the
Lyapunov function v(z(k)) = z(k)′Pρ,νz(k) satisfies

v(z(k + 1)) < v(z(k)). (41)

Hence, there exist scalars α ∈ (0, 1) and β > 0 such that

‖z(k)‖2
2 ≤ βαk−lqv(z(lq)), (42)

13



k ∈ [lq, lq+1). Moreover, from (34), when τρ > 0 and τρ+ < 0, we have
Qπ,∆ρ

q
= (T̄ρ+,ν)

−τρ+
(T̄ρ,ν)

∆ρ
q−τρ+τρ+

(T̄ρ−,ν)
τρ

. Hence, using (36) we obtain:

v(z(lq+1)) = z(lq+1)
′Pρ+,ν+

z(lq+1)

= z(lq)
′(T̄−τρ+

ρ+,ν T̄∆ρ
q−τρ+τρ+

ρ,ν T̄ τρ

ρ−,ν)
′Pρ+,ν+

T̄−τρ+

ρ+,ν T̄∆ρ
q−τρ+τρ+

ρ,ν T̄ τρ

ρ−,νz(lq)

< z(lq)
′(T̄−τρ

ρ−,νT̄
∆ρ

q−∆ρ

ρ,ν T̄ τρ

ρ−,ν)
′Pρ,νT̄

−τρ

ρ−,νT̄
∆ρ

q−∆ρ

ρ,ν T̄ τρ

ρ−,νz(lq)

≤ z(lq)
′(T̄ τρ−τρ

ρ−,ν )′Pρ,νT̄
τρ−τρ

ρ−,ν z(lq)

= z(lq)
′Pρ,νz(lq) = v(z(lq)).

(43)
The non-strict inequality holds because ∆ρ

q −∆ρ ≥ 0 and T̄ρ,ν is Schur. Then

(T̄∆ρ
q−∆ρ

ρ,ν )′T̄−τρ′

ρ−,ν Pρ,νT̄
−τρ

ρ−,νT̄
∆ρ

q−∆ρ

ρ,ν � T̄−τρ′

ρ−,ν Pρ,νT̄
−τρ

ρ−,ν , (44)

∀ (ρ, ν) ∈ Σ × Γ. The relation v(z(lq+1)) < v(z(lq)) is verified also for the
other cases of (34). In order to see it, it is sufficient to substitue the right
value of Qπ,∆ρ

q
in (43). Hence, given the initial condition of (29) z(0) = z0,

there exists µ ∈ (0, 1) such that

v(z(lq)) ≤ µqv(z0), ∀ q ∈ N. (45)

Finally, (42) and (45) imply that the system (29) is asymptotically stable.

Remark 1. In order to verify the LMIs (35)-(36) of Theorem 3, NsNv +
Ns(Ns −1)2N 2

v (Nτρ +1)2 possible combinations have to be considered, in the
general case. Nevertheless, in the HSM system case, only n−1 switchings can
occur. Moreover, since uncertain parameters are constant for each product,
switchings are possible only between subsystems with the same ν. Then, only
NsNv + (n − 1)Nv(Nτρ + 1)2 LMIs have to be verified.

5. Numerical results

In this section, a robust discrete-time controller is designed in order to
stabilise the tail end phase of the Eisenhüttenstadt HSM (n = 5). In order
to obtain the physical characteristics of the products corresponding to the
vertices, compute the state matrices and the controller gains of each family,
the Matlab toolbox RSCT has been used [14]. The software also allows to
verify the stability of the switched system. The LMI problems of Theorem 1
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and 3 are solved using the free LMI solver SeDuMi [26] and the free Matlab
toolbox YALMIP, which provides a simple interface for the most popular
LMI solvers [13].

The robust controller gain Kρ guaranteeing the stability of each subsys-
tem ρ ∈ Σ can be designed using Theorem 1. Weighting matrices are:

R4 = R4
0













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0.1













, R3 = R3
0









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0.1









, R2 = R2
0





1 0 0
0 1 0
0 0 0.1



 .

(46)
R4

0, R3
0 and R2

0 have been set in order to prevent the saturation of the control
signal. Notice that the value corresponding to the last stand is smaller than
the others. The main reason of this choice is that the strip is very thin in the
last stand. Then, even a little correction of the stand tilting can be dangerous
for the system stability. The idea consists in controlling only the first n − 1
stands. This means that the last subsystem, the 1-stands subsystem, is in
open-loop. This strategy works well because the Z value is very little when
the last switching occurs, because of the controller action in the previous
subsystems. Moreover, the law of matter conservation (hj−1sj−1 = hjsj) has
to be respected. Hence, the strip is very fast in the last stands. This means
that the dwell time is very short. Thus, the strip off-centre cannot increase
too much.

Given the controller gains and the dwell time ∆ρ, Theorem 3 provides a
sufficient condition for the stability of the switched system ∀ τρ ∈ Ωρ. We
found a solution for N ρ

τ ≤ 4, ∀ ρ ∈ Σ. Since Ts = 50 msec, the stability of
the system is guaranteed for a maximum uncertainty of ± 200msec in the
switching time. From practical experience, this constraint can be respected.

The following simulations have been done using the nonlinear HSM model
given in [3]. Let a product with w = 903 cm and hn = 4.33 cm.

In Fig. 3, the Z evolution in output to each stand is shown. No delay in
the control signal has been considered. The value of Zj goes to zero when the
strip leaves the jth stand. The solid line represents the Z evolution when the
system is controlled by the robust controller gain computed using Theorem
1. The dashed line shows the Z evolution when the system is controlled by a
LQ controller gain designed using average state matrices. This method has
been proposed in [3] for the n-stands subsystem. The dotted line corresponds
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to the Z evolution when the system works in open-loop.
We can see that the robust controller is able to keep the Z value near

to zero during all the rolling process. Otherwise, the average LQ controller
limits the Z value for the first four stands but induces an oscillatory behaviour
on the strip. Then, when the strip leaves stand 4, the Z value increases
very quickly. This situation can be very dangerous for the system. In the
open loop case, the Z value begins to increase when the strip leaves the
first stand (Ns = 1613). Notice that in stand 4 and 5 a saturation occurs.
This means that the strip is crashing against the side guides because of the
elevated Z. The result is a decrease of the product quality and, in the worst
case, the damage of the rolls. In Fig. 4, an uncertainty in the switching
signal is introduced. In the Eisenhüttenstadt case, the switching time can
be estimated online, with an error that has the same sign ∀ ρ ∈ Σ. Here, the
case τρ ≥ 0 is presented. This means that the controller switches to the ρ-
stands subsystem τρ times after the strip left the stand. Three different cases
are showed: (τ = τ 4 = τ 3 = τ 2 = 4) (solid line), (τ = τ 4 = τ 3 = τ 2 = 8)
(dashed line), (τ = τ 4 = τ 3 = τ 2 = 12) (dotted line). Although theoretically
the system is stable only for τ ≤ 4, notice that until τ = 8 the Z value is
kept near to zero. Nevertheless, when τ = 12 the controller performances
decrease and the strip almost crashes against the side-guides. In this case,
the Z value increases in the opposite side of the open-loop case.

In Fig. 5, we consider the same delay using the average LQ controller.
We can see that this kind of controller does not accept uncertainties on the
switching time. The system is unstable and the strip crashes against the side
guides in each case.

6. Conclusion

In this article, a discrete-time robust control has been proposed for the
tail end phase of the HSM system, which has been modelled as an uncertain
switched system in the singular perturbation form. Also uncertainties in the
switching time have been considered.

Simulation results concerning the Eisenhüttenstadt ArcelorMittal HSM
showed that the strip off-centre can be reduced, improving the reliability
of the industrial process. The proposed approach can be adapted to other
plants.
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Figure 3: Strip off-centre evolution: comparison
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Figure 4: Strip off-centre evolution with delay in the robust controller switchings
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Figure 5: Strip off-centre evolution with delay in the average LQ controller switchings
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