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In this paper, we investigate the local existence and the finite-time blow-up of solutions of semilinear parabolic system with nonlocal in time nonlinearity. In addition, we also give the blow-up rate and necessary conditions for local and global existence.

Introduction

This article is concerned to study the following semilinear parabolic system with nonlocal in time nonlinearity

           u t -∆u = 1 Γ(1 -γ) t 0 (t -s) -γ |v| p-1 v(s) ds x ∈ R N , t > 0, v t -∆v = 1 Γ(1 -δ) t 0 (t -s) -δ |u| q-1 u(s) ds x ∈ R N , t > 0, (1.1) 
supplemented with the initial conditions

u(x, 0) = u 0 (x), v(x, 0) = v 0 (x), x ∈ R N , (1.2) 
where u 0 , v 0 ∈ C 0 (R N ), γ, δ ∈ (0, 1) and p, q > 1.

Here -∆ stands the Laplacian operator with D(-∆) = H 2 (R N ), where H 2 (R N ) is the standard Sobolev space, Γ is the Euler gamma function. The space C 0 (R N ) denotes the set of all continuous functions decay to zero at infinity.

Our analysis is based on the observation that the nonlinear differential system (1.1) can be written in the form:

     u t -∆u = J α 0|t |v| p-1 v x ∈ R N , t > 0, v t -∆v = J β 0|t |u| q-1 u x ∈ R N , t > 0, (1.3) 
where α := 1 -γ ∈ (0, 1), β := 1 -δ ∈ (0, 1), and J θ 0|t , is the Riemann-Liouville fractional integral defined in (2.8) for all θ ∈ (0, 1).

In the case of a single equation, Cazenave, Deicktsein and Weissler [START_REF] Cazenave | An equation whose Fujita critical exponent is not given by scaling[END_REF] addressed the local, global existence and blow-up questions while in the recent work of Fino and Kirane [START_REF] Fino | On certain time-and space-fractional evolution equations[END_REF] we can fond the blow-up rate and a necessary condition for the local and the global existence. The equation is

   u t -∆u = 1 Γ(1 -γ) t 0 (t -s) -γ |u| p-1 u(s) ds x ∈ R N , t > 0, u(x, 0) = u 0 (x) x ∈ R N , (1.4) 
where u 0 ∈ C 0 (R N ), γ ∈ (0, 1), p > 1 and u ∈ C([0, T ], C 0 (R N )) for all 0 < T < ∞. The principal results are as follows:

In the paper [START_REF] Cazenave | An equation whose Fujita critical exponent is not given by scaling[END_REF], it was shown that (i) If p ≤ p * := max{1/γ ; 1 + 2(2 -γ)/(N -2 + 2γ) + } and u 0 ≥ 0, u 0 ≡ 0, then u blows up in finite time.

(ii) If p > p * and u 0 ∈ L qsc (R N ) (where q sc = N (p -1)/(4 -2γ)) with u 0 L qsc sufficiently small, then u exists globally.

It was shown later in [START_REF] Fino | On certain time-and space-fractional evolution equations[END_REF] that in the case p ≤ 1 + 2(2 -γ)/(N -2 + 2γ) + or p < (1/γ) and u 0 ≥ 0, u 0 ≡ 0 that there exist two positive constants c, C > 0 such that c(T * -t)

-2-γ p-1 ≤ sup x∈R N u(x, t) ≤ C(T * -t) -2-γ p-1
for all t ∈ (0, T * ),

where T * denotes the maximal time of local existence.

In this paper, we generalize the work of [START_REF] Cazenave | An equation whose Fujita critical exponent is not given by scaling[END_REF] and [START_REF] Fino | On certain time-and space-fractional evolution equations[END_REF] to 2 × 2 systems. The main results of this article are: If u 0 , v 0 ∈ C 0 (R N ) ∩ L 2 (R N ) are such that u 0 , v 0 ≥ 0 and u 0 , v 0 ≡ 0, and if

N 2 ≤ max (2 -δ)p + (1 -γ)pq + 1 pq -1 ;
(2 -γ)q + (1 -δ)pq + 1 pq -1 or p < 1 δ and q < 1 γ then any solution (u, v) to (1.1) -(1.2) blows-up in a finite time.

To understand the behavior of (u, v) near blowing-up time, the first step usually consists in deriving a bound for the blow-up rate. So in the case of the blowing-up, in a finite time T max := T * , of solutions we have

   c 1 (T * -t) -α 1 ≤ sup R N u(., t) ≤ C 1 (T * -t) -α 1 , t ∈ (0, T * ) c 2 (T * -t) -α 2 ≤ sup R N v(., t) ≤ C 2 (T * -t) -α 2 , t ∈ (0, T * ),
where

α 1 := (2 -γ) + (2 -δ)p pq -1 and α 2 := (2 -δ) + (2 -γ)q pq -1 .
The organization of this paper is as follows. In section 2, some preliminaries are set. In Section 3, a local existence theorem of solutions for the parabolic system (1.1) -(1.2) is proved. Section 4 contains a blow-up result of solutions for (1.1) -(1.2). Section 5 is dedicated to the blow-up rate of solutions. Finally, we give a necessary conditions for local and global existence in section 6.

Preliminaries

In this section, we present some definitions and results concerning the laplacian, fractional integrals and fractional derivatives needed to prove the main results.

First, if we take the heat equation

u t -∆u = 0, x ∈ R N , t > 0, (2.1) 
then, the fundamental solution G t of Eq. (2.1) is given by

G t (x) := G(t, x) = 1 (4πt) N/2 e -|x| 2 4t . (2.2)
It is well-known that this function satisfies

G t ∈ L ∞ (R N ) ∩ L 1 (R N ), G t (x) ≥ 0, R N G t (x) dx = 1, (2.3) 
for all x ∈ R N and t > 0. Hence, using the Young inequality for convolution, we have

G t * v r ≤ v r , (2.4) 
for any v ∈ L r (R N ) and any 1 ≤ r ≤ ∞, t > 0.

The semigroup on L 2 (R N ) generated by the laplacian ∆ is e t∆ v := G t * v for all v ∈ L 2 (R N ), t > 0 where u * v stands for the convolution of u and v. Moreover, as (-∆) is a self-adjoint operator with D(-∆) = H 2 (R N ), we have

R N u(x)(-∆)v(x) dx = R N v(x)(-∆)u(x) dx, (2.5) 
for all u, v ∈ H 2 (R N ).

Next, if AC[0, T ] is the space of all functions which are absolutely continuous on [0, T ] with 0 < T < ∞, then, for f ∈ AC[0, T ], the left-handed and right-handed Riemann-Liouville fractional derivatives D α 0|t f (t) and D α t|T f (t) of order α ∈ (0, 1) are defined by (see [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF])

D α 0|t f (t) := DJ 1-α 0|t f (t), (2.6) 
D α t|T f (t) := - 1 Γ(1 -α) D T t (s -t) -α f (s) ds, (2.7) 
for all t ∈ [0, T ], where D := d/(dt) is the usual derivative, and

J α 0|t f (t) := 1 Γ(α) t 0 (t -s) α-1 f (s) ds (2.8)
is the Riemann-Liouville fractional integral defined in [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF]. Now, for every f, g ∈ C([0, T ]), such that D α 0|t f (t), D α t|T g(t) exist and are continuous, for all t ∈ [0, T ], 0 < α < 1, we have the formula of integration by parts (see (2.64) p. 46 in [START_REF] Kilbas | Fractional integrals and derivatives, Theory and Applications[END_REF])

T 0 D α 0|t f (s)g(s) ds = T 0 f (s) D α t|T g (s) ds. (2.9) 
Note also that, for all f ∈ AC 2 [0, T ], we have (see 2.2.30 in [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF])

-D.D α t|T f = D 1+α t|T f, (2.10) 
where

AC 2 [0, T ] := {f : [0, T ] → R and Df ∈ AC[0, T ].}
Moreover, for all 1 ≤ q ≤ ∞, the following equalities (see [Lemma 2.4 p.74] [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF])

D α 0|t J α 0|t = Id L q (0,T ) (2.11)
hold almost everywhere on [0, T ]. Later on, we will use the following results.

• If w 1 (t) = (1 -t/T ) σ + , t ≥ 0, T > 0, σ 1 
, where (.) + is the positive part, then

D α t|T w 1 (t) = (1 -α + σ)Γ(σ + 1) Γ(2 -α + σ) T -α 1 - t T σ-α + , (2.12 
)

D α+1 t|T w 1 (t) = (1 -α + σ)(σ -α)Γ(σ + 1) Γ(2 -α + σ) T -α-1 1 - t T σ-α-1 + , (2.13) 
for all α ∈ (0, 1); so

D α t|T w 1 (T ) = 0 ; D α t|T w 1 (0) = C T -α , (2.14) 
where C = (1 -α + σ)Γ(σ + 1)/Γ(2 -α + σ); indeed, using the Euler change of variable y = (s -t)/(T -t), we get

D α t|T w 1 (t) := - 1 Γ(1 -α) D T t (s -t) -α 1 - s T σ ds = - T -σ Γ(1 -α) D (T -t) 1-α+σ 1 0 (y) -α (1 -y) σ ds = + (1 -α + σ)B(1 -α; σ + 1) Γ(1 -α) T -σ (T -t) σ-α ,
where B(.; .) stands for the beta function. Then, (2.12) follows using the relation

B(1 -α; σ + 1) = Γ(1 -α)Γ(σ + 1) Γ(2 -α + σ) .
Moreover, (2.13) follows from (2.10) applied to (2.12).

• If w 2 (t) = 1 -t 2 /T 2 + , T > 0, 1, then, with an easily computation and using the change of variable y = (s -t)/(T -t), we have

D α t|T w 2 (t) = T -α Γ(1 -α) k=0 C 1 ( , k, α) 1 - t T +k-α , (2.15) 
D 1+α t|T w 2 (t) = T -α-1 Γ(1 -α) k=0 C 2 ( , k, α) 1 - t T +k-α-1 , (2.16) 
for all -T ≤ t ≤ T, α ∈ (0, 1), where

     C 1 ( , k, α) := c k (1 -α + + k)2 -k (-1) k Γ(k+ +1)Γ(1-α) Γ(k+ +2-α) , C 2 ( , k, α) := ( + k -α)C 1 ( , k, α), c k := ! ( -k)!k! ; so D α t|T w 2 (T ) = 0 ; D α t|T w 2 (-T ) = C 3 ( , k, α) T -α , (2.17) 
where

C 3 ( , k, α) := 2 2 -α Γ(1 -α) k=0 c k (1 -α + + k)2 -k (-1) k Γ(k + + 1)Γ(1 -α) Γ(k + + 2 -α) .

Local existence

In this section, we derive the existence of a local mild solution for the system (1.1) -(1.2).

First, we give the definition of the mild solution.

Definition 1 (Mild solution) Let u 0 , v 0 ∈ L ∞ (R N ) and T > 0. We say that (u, v) ∈ L ∞ ([0, T ], L ∞ (R N ) × L ∞ (R N )) is a mild solution of (1.1) -(1.2) if            u(t) = e t∆ u 0 + t 0 e (t-s)∆ J α 0|s (|v| p-1 v) ds, t ∈ [0, T ], v(t) = e t∆ v 0 + t 0 e (t-s)∆ J β 0|s (|u| q-1 u) ds, t ∈ [0, T ]. (3.1) 
Theorem 1 (Local existence of a mild solution) Given u 0 , v 0 ∈ C 0 (R N ) and p, q > 1, there exist a maximal time T max > 0 and a unique mild solution

(u, v) ∈ C([0, T max ), C 0 (R N ) × C 0 (R N )) to the system (1.1) -(1.2). In addition, if u 0 , v 0 ≥ 0, u 0 , v 0 ≡ 0, then u(t), v(t) > 0 for all 0 < t < T max . Moreover, if u 0 , v 0 ∈ L r (R N ) for 1 ≤ r < ∞, then u, v ∈ C([0, T max ), L r (R N )).
Proof For arbitrary T > 0, we define the Banach space

E T = (u, v) ∈ L ∞ ((0, T ), C 0 (R N ) × C 0 (R N )); |||(u, v)||| ≤ 2 ( u 0 ∞ + v 0 ∞ ) , (3.2) 
where . ∞ := . L ∞ (R N ) and |||.||| is the norm of E T defined by:

|||(u, v)||| := u 1 + v 1 := u L ∞ ((0,T )×R N ) + v L ∞ ((0,T )×R N ) .
Next, for every (u, v) ∈ E T , we define Ψ(u, v) := (Ψ 1 (u, v), Ψ 2 (u, v)) , where

Ψ 1 (u, v) := e t∆ u 0 + t 0 e (t-s)∆ J α 0|s (|v| p-1 v) ds, t ∈ (0, T )
and

Ψ 2 (u, v) := e t∆ v 0 + t 0 e (t-s)∆ J β 0|s (|u| q-1 u) ds, t ∈ (0, T ).
We will prove the local existence by the Banach fixed point theorem.

• Ψ : E T → E T : Let (u, v) ∈ E T , using (2.4), we obtain |||Ψ(u, v)||| ≤ u 0 ∞ + C 1 t 0 s 0 (s -σ) -γ v(σ) p ∞ dσ ds L ∞ (0,T ) + v 0 ∞ + C 2 t 0 s 0 (s -σ) -δ u(σ) q ∞ dσ ds L ∞ (0,T ) = u 0 ∞ + C 1 t 0 t σ (s -σ) -γ v(σ) p ∞ ds dσ L ∞ (0,T ) + v 0 ∞ + C 2 t 0 t σ (s -σ) -δ u(σ) q ∞ ds dσ L ∞ (0,T ) ,
where

C 1 := 1 Γ(1 -γ) , C 2 := 1 Γ(1 -δ) .
So, using the fact that (u, v) ∈ E T , we get

|||Ψ(u, v)||| ≤ u 0 ∞ + C 3 T 2-γ v p 1 + v 0 ∞ + C 4 T 2-δ u q 1 ≤ ( u 0 ∞ + v 0 ∞ ) + max C 3 T 2-γ v p-1 1 ; C 4 T 2-δ u q-1 1 ( v 1 + u 1 ) ≤ ( u 0 ∞ + v 0 ∞ ) + 2T (u 0 , v 0 )( u 0 ∞ + v 0 ∞ ),
where

C 3 := C 1 (1 -γ)(2 -γ) , C 4 := C 2 (1 -δ)(2 -δ)
and

T (u 0 , v 0 ) := max C 3 T 2-γ 2 p-1 ( u 0 ∞ + v 0 ∞ ) p-1 ; C 4 T 2-δ 2 q-1 ( u 0 ∞ + v 0 ∞ ) q-1 . Now, if we choose T such that 2T (u 0 , v 0 ) ≤ 1, (3.3) 
we conclude that

Ψ(u, v) 1 ≤ 2( u 0 ∞ + v 0 ∞ ), and then Ψ(u, v) ∈ E T .
• Ψ is a Contraction map: For (u, v), ( u, v) ∈ E T , we have

|||Ψ(u, v) -Ψ( u, v)||| ≤ C 1 t 0 s 0 (s -σ) -γ |v| p-1 v(σ) -| v| p-1 v(σ) ∞ dσ ds L ∞ (0,T ) + C 2 t 0 s 0 (s -σ) -δ |u| q-1 u(σ) -| u| q-1 u(σ) ∞ dσ ds L ∞ (0,T ) = C 1 t 0 t σ (s -σ) -γ |v| p-1 v(σ) -| v| p-1 v(σ) ∞ ds dσ L ∞ (0,T ) + C 2 t 0 t σ (s -σ) -δ |u| q-1 u(σ) -| u| q-1 u(σ) ∞ ds dσ L ∞ (0,T ) .
Now, by the same computation as above, we conclude

|||Ψ(u, v) -Ψ( u, v)||| ≤ C 3 T 2-γ |v| p-1 v -| v| p-1 v 1 + C 4 T 2-δ |u| q-1 u -| u| q-1 u 1 ≤ C(p)C 3 T 2-γ max{ v p-1 1 , v p-1 1 } v -v 1 + C(q)C 4 T 2-δ max{ u q-1 1 , u q-1 1 } u -u 1 ≤ C(p, q)T (u 0 , v 0 )|||(u, v) -( u, v)||| ≤ 1 2 |||(u, v) -( u, v)|||,
thanks to the standard estimate:

||u| p-1 u -|v| p-1 v| ≤ C(p)|u -v|(|u| p-1 -|v| p-1
) for every u, v and all p > 1,

and the choice of T :

max{C(p, q), 1}T (u 0 , v 0 ) ≤ 1 2 . (3.4)
Then, by the Banach fixed point theorem, the system (1.1) -(1.2) admits a unique mild solution (u, v) ∈ E T .

Note that, for later use, it is sufficient to take the space

(u, v) ∈ L ∞ ((0, T ), C 0 (R N ) × C 0 (R N )); u 1 ≤ 2 u 0 ∞ and v 1 ≤ 2 v 0 ∞
instead of E T and to choose T > 0 small enough so that

       C(p)2 p C 3 T 2-γ v 0 p ∞ ≤ 1 2 η u 0 ∞ , C(q)2 q C 4 T 2-δ u 0 q ∞ ≤ 1 2 η v 0 ∞ , (3.5) 
where η > 0 is a positive constant large enough such that

max Γ(1 -δ) C(q)2 pq+η(q+1)+q-p , Γ(1 -γ) C(p)2 pq+η(p+1)+p-q ≤ 1 2
.

Thus, the conditions (3.5) imply that

   2 pq+ηq+η+q (C(p)C 3 ) q C(q)C 4 T (2-δ)+(2-γ)q v 0 pq-1 ∞ ≤ 1, 2 pq+ηp+η+p (C(q)C 4 ) p C(p)C 3 T (2-γ)+(2-δ)p u 0 pq-1 ∞ ≤ 1.
(3.6)

Now, using the uniqueness, we conclude the existence of a solution on a maximal interval [0, T max ) where

T max := sup {T > 0 : (u, v) is a solution to (1.1) -(1.2) in E T } ≤ ∞.
Moreover, a simple calculation allows us to prove that

(u, v) ∈ C([0, T max ), C 0 (R N ) × C 0 (R N )).
• Positivity of solutions: If u 0 , v 0 ≥ 0, then we can construct a nonnegative solution on some interval [0, T ] by applying the fixed-point argument in the set

E + T = {(u, v) ∈ E T ; u, v ≥ 0}.
In particular, it follows from (3.1) that u(t) ≥ e t∆ u 0 > 0 and v(t) ≥ e t∆ v 0 > 0 on (0, T ]. It is not difficult, by uniqueness and contradiction's principle, to deduce that (u, v) stays positive on (0, T max ).

• Regularity of solutions: If u 0 , v 0 ∈ L r (R N ), for 1 ≤ r < ∞, then by repeating the fixed point argument in the space

E T,r := {(u, v) ∈ L ∞ ((0, T ), (C 0 (R N ) ∩ L r (R N )) × (C 0 (R N ) ∩ L r (R N ))) : |||(u, v)||| ≤ 2( u 0 L ∞ + ( v 0 L ∞ ), |||(u, v)||| r ≤ 2( u 0 L r + v 0 L r )}, instead of E T , where |||(u, v)||| r := u L ∞ ((0,T ),L r (R N )) + v L ∞ ((0,T ),L r (R N )) ,
and by estimating

u p L r (R N ) by u p-1 L ∞ (R N ) u L r (R N )
, the same for v, in the contraction mapping argument, using (2.4), we obtain a unique solution in E T,r . Thus, as above, we conclude that

(u, v) ∈ C([0, T max ), (C 0 (R N ) ∩ L r (R N )) × (C 0 (R N ) ∩ L r (R N ))).
In the case of u 0 , v 0 ∈ C 0 (R N ) ∩ L 2 (R N ) (the case which will be used below), we say that (u, v) is a global solution if T max = ∞, while in the case of T max < ∞ we say that (u, v) blows up in a finite time or that (u, v) is non-global and in this case we have

lim t→Tmax u(., t) L ∞ (R N ) + v(., t) L ∞ (R N ) + u(., t) L 2 (R N ) + v(., t) L 2 (R N ) = ∞.

Blow-up of solutions

In this section, we prove a blow-up result for system (1.1)-(1.2). First we give the definition of the weak solution and a lemma asserting that the mild solution is the weak solution. Hereafter

Q T = T 0 R N
dx dt for all T > 0;

R N = R N dx. Definition 2 (Weak solution) Let T > 0 and u, v ∈ L ∞ ([0, T ], L ∞ (R N ) ∩ L 2 (R N )). We say that U := (u, v) is a weak solution of the problem (1.1) -(1.2) if R N u 0 (x)ϕ(x, 0) + Q T J α 0|t (|v| p-1 v)(x, t)ϕ(x, t) = - Q T u(x, t)∆ϕ(x, t) - Q T u(x, t)ϕ t (x, t), (4.1) 
and

R N v 0 (x)ψ(x, 0) + Q T J β 0|t (|u| q-1 u)(x, t)ψ(x, t) = - Q T v(x, t)∆ψ(x, t) - Q T v(x, t)ψ t (x, t), (4.2) 
for any ϕ, ψ ∈ C 1 ([0, T ], H 2 (R N )) such that ϕ(x, T ) = ψ(x, T ) = 0, x ∈ R N , where Q T := [0, T ] × R N , α = 1 -γ and β = 1 -δ. Lemma 1 (Mild → Weak) Let T > 0 and U := (u, v), where u, v ∈ L ∞ ([0, T ], L ∞ (R N ) ∩ L 2 (R N )). If U is a mild solution of (1.1) -(1.
2), then U be a weak solution of (1.1) -(1.2), for all T > 0.

Proof Let T > 0, u, v ∈ L ∞ ([0, T ], L∞(R N ) ∩ L 2 (R N )) and U := (u, v) be a solution of (3.1). For ϕ, ψ ∈ C 1 ([0, T ], H 2 (R N )) such that ϕ(x, T ) = ψ(x, T ) = 0 for all x ∈ R N ,
we have, after multiplying the first (resp. second) equation in (3.1) by ϕ (resp. ψ) and integrate over R N ,

R N u(x, t)ϕ(x, t) = R N T (t)u 0 (x)ϕ(x, t) + R N t 0 T (t -s)J α 0|s |v| p-1 v (x, t) dsϕ(x, t),
and

R N v(x, t)ψ(x, t) = R N T (t)v 0 (x)ψ(x, t) + R N t 0 T (t -s)J β 0|s |u| q-1 u (x, t) dsψ(x, t),
where α = 1 -γ and β = 1 -δ. So after differentiation in time, we obtain

d dt R N u(x, t)ϕ(x, t) = R N d dt (T (t)u 0 (x)ϕ(x, t)) + R N d dt t 0 T (t -s)J α 0|s |v| p-1 v (x, s) dsϕ(x, t), (4.3) 
and

d dt R N v(x, t)ψ(x, t) = R N d dt (T (t)v 0 (x)ψ(x, t)) + R N d dt t 0 T (t -s)J β 0|s |u| q-1 u (x, s) dsψ(x, t). (4.4)
Now, using (2.5) and the property of the semigroup T (t) founded in [2, Chapter 3] with the negative self-adjoint operator ∆, we get:

R N d dt (T (t)u 0 (x)ϕ(x, t)) = R N ∆ (T (t)u 0 (x)) ϕ(x, t) dx + R N T (t)u 0 (x)ϕ t (x, t) = R N T (t)u 0 (x)∆ϕ(x, t) + R N T (t)u 0 (x)ϕ t (x, t), (4.5) R N d dt (T (t)v 0 (x)ψ(x, t)) = R N ∆ (T (t)v 0 (x)) ψ(x, t) dx + R N T (t)v 0 (x)ψ t (x, t) = R N T (t)v 0 (x)∆ψ(x, t) + R N T (t)v 0 (x)ψ t (x, t), (4.6) R N d dt t 0 T (t -s)f 1 (x, s) dsϕ(x, t) = R N f 1 (x, t)ϕ(x, t) + R N t 0 ∆ (T (t -s)f 1 (x, s)) dsϕ(x, t) + R N t 0 T (t -s)f 1 (x, s) dsϕ t (x, t) = R N f 1 (x, t)ϕ(x, t) + R N t 0 T (t -s)f 1 (x, s) ds∆ϕ(x, t) + R N t 0 T (t -s)f (x, s) dsϕ t (x, t), (4.7) 
and, similarly,

R N d dt t 0 T (t -s)f 2 (x, s) dsψ(x, t) = R N f 2 (x, t)ψ(x, t) + R N t 0 T (t -s)f 2 (x, s) ds∆ψ(x, t) + R N t 0 T (t -s)f 2 (x, s) dsψ t (x, t), (4.8) 
where

f 1 := J α 0|t |u| p-1 u ∈ L ∞ (0, T ; L 2 (R N )) and f 2 := J β 0|t |u| q-1 u ∈ L ∞ (0, T ; L 2 (R N )).
Thus, using (3.1) and (4.5) -(4.8), we conclude that (4.3) and (4.4) imply

d dt R N u(x, t)ϕ(x, t) = R N u(x, t)∆ϕ(x, t) + R N u(x, t)ϕ t (x, t) + R N f 1 (x, t)ϕ(x, t), (4.9) 
and

d dt R N v(x, t)ψ(x, t) = R N v(x, t)∆ψ(x, t) + R N v(x, t)ψ t (x, t) + R N f 2 (x, t)ψ(x, t). (4.10)
Finally, after integrating in time over [0, T ] and using the fact that ϕ(x, T ) = ψ(x, T ) = 0 for all x ∈ R N , we conclude the result.

Theorem 2 Let u 0 , v 0 ∈ C 0 (R N ) ∩ L 2 (R N ) be such that u 0 , v 0 ≥ 0 and u 0 , v 0 ≡ 0. If N 2 ≤ max (2 -δ)p + (1 -γ)pq + 1 pq -1 ; (2 -γ)q + (1 -δ)pq + 1 pq -1 (4.11) or p < 1 δ and q < 1 γ (4.12) then any mild solution (u, v) to (1.1) -(1.
2), blows-up in a finite time.

Proof The proof is by contradiction. Suppose that (u, v) is a global mild solution to

(1.1)-(1.2), then (u, v) is a solution of (1.1)-(1.2) where u, v ∈ C([0, T ], C 0 (R N )∩L 2 (R N )), for all T > 0, such that u(t), v(t) > 0 for all t ∈ [0, T ].
Thus, using Lemma 1, we conclude that u and v verify (4.1) and (4.2), respectively, for all

ϕ, ψ ∈ C 1 ([0, T ], H 2 (R N )) such that ϕ(x, T ) = ψ(x, T ) = 0, x ∈ R N . Now, we take ϕ(x, t) = D α t|T ( φ(x, t)) := D α t|T (ϕ 1 (x)) ϕ 2 (t) and ψ(x, t) = D β t|T ( φ(x, t)) , for α := 1 -γ and β := 1 -δ, with ϕ 1 (x) := Φ |x|/(T 1/2 ) , ϕ 2 (t) := (1 -t/T ) η
+ , where ≥ pq/((p -1)(q -1)), η 1, 1 ≤ B < T large enough such as in the case of T → ∞ we don't have B → ∞ in the same time, and Φ is a smooth nonnegative non-increasing function such that

Φ(r) = 1 if 0 ≤ r ≤ 1, 0 if r ≥ 2, 0 ≤ Φ ≤ 1, |Φ (r)| ≤ C 1 /r
, for all r > 0. So, using (2.14), we obtain

Ω u 0 (x)D α t|T φ(x, 0) + Ω T J α 0|t (v p )(x, t)D α t|T φ(x, t) = - Ω T u(x, t)∆D α t|T φ(x, t) - Ω T u(x, t)DD α t|T φ(x, t), (4.13) 
and

Ω v 0 (x)D β t|T φ(x, 0) + Ω T J β 0|t (u q )(x, t)D α t|T φ(x, t) = - Ω T v(x, t)∆D β t|T φ(x, t) - Ω T v(x, t)DD β t|T φ(x, t), (4.14) 
where

Ω T := [0, T ]×Ω, for Ω = x ∈ R N ; |x| ≤ 2T 1/2 , Ω T = Ω T dx dt and Ω = Ω dx.
Furthermore, using (2.9) and (2.14) in the left hand sides of (4.13) and (4.14) while in the right hand sides we use (2.10), we conclude that

C T -α Ω u 0 (x)ϕ 1 (x) + Ω T D α 0|t J α 0|t (v p )(x, t) φ(x, t) = - Ω T u(x, t)∆D α t|T φ(x, t) + Ω T u(x, t)D 1+α t|T φ(x, t), (4.15) 
and

C T -β Ω v 0 (x)ϕ 1 (x) + Ω T D β 0|t J α 0|t (u q )(x, t) φ(x, t) = - Ω T v(x, t)∆D β t|T φ(x, t) + Ω T v(x, t)D 1+β t|T φ(x, t). (4.16)
Moreover, from (2.11), we may write

Ω T v p (x, t) φ(x, t) + C T -α Ω u 0 (x)ϕ 1 (x) = - Ω T u(x, t)∆ϕ 1 (x)D α t|T ϕ 2 (t) + Ω T u(x, t)D 1+α t|T φ(x, t), (4.17) 
and

Ω T u q (x, t) φ(x, t) + C T -β Ω v 0 (x)ϕ 1 (x) = - Ω T v(x, t)∆ϕ 1 (x)D β t|T ϕ 2 (t) + Ω T v(x, t)D 1+β t|T φ(x, t). (4.18)
Then, the inequality (-∆) ϕ 1 ≤ ϕ -1 1 (-∆)ϕ 1 allows us to write:

Ω T v p (x, t) φ(x, t) + C T -α Ω u 0 (x)ϕ 1 (x) ≤ C Ω T u(x, t) ϕ -1 1 (x) (-∆)ϕ 1 (x)D α t|T ϕ 2 (t) + Ω T u(x, t) ϕ 1 (x) D 1+α t|T ϕ 2 (t) = C Ω T u(x, t) φ1/q φ-1/q ϕ -1 1 (x) (-∆)ϕ 1 (x)D α t|T ϕ 2 (t) + Ω T u(x, t) φ1/q φ-1/q ϕ 1 (x) D 1+α t|T ϕ 2 (t) (4.19)
and

Ω T u q (x, t) φ(x, t) dx dt + C T -β Ω v 0 (x)ϕ 1 (x) ≤ C Ω T v(x, t) ϕ -1 1 (x) (-∆)ϕ 1 (x)D β t|T ϕ 2 (t) + Ω T v(x, t) ϕ 1 (x) D 1+β t|T ϕ 2 (t) = C Ω T v(x, t) φ1/p φ-1/p ϕ -1 1 (x) (-∆)ϕ 1 (x)D β t|T ϕ 2 (t) + Ω T v(x, t) φ1/p φ-1/p ϕ 1 (x) D 1+β t|T ϕ 2 (t) (4.20)
Therefore, as u 0 , v 0 ≥ 0, using Hölder's inequality, we conclude that

Ω T v p (x, t) φ(x, t) ≤ Ω T u q (x, t) φ(x, t) 1/q A, (4.21 
)

Ω T u q (x, t) φ(x, t) ≤ Ω T v p (x, t) φ(x, t) 1/p B, (4.22) 
where

A := C Ω T ϕ 1 ϕ -1 q-1 2 D 1+α t|T ϕ 2 e q 1/e q + C Ω T ϕ -e q 1 ϕ -1 q-1 2 ∆ x ϕ 1 D α t|T ϕ 2 e q 1/e q , and 
B := C Ω T ϕ 1 ϕ -1 p-1 2 D 1+β t|T ϕ 2 e p 1/e p + C Ω T ϕ -e p 1 ϕ -1 p-1 2 ∆ x ϕ 1 D β t|T ϕ 2 e p 1/e p ,
with p := p/(p -1) and q := q/(q -1). Now, combining (4.21) and (4.22), we get

             Ω T v p (x, t) φ(x, t) 1-1/pq ≤ B 1/q A, Ω T u q (x, t) φ(x, t) 1-1/pq ≤ A 1/p B. (4.23) 
At this stage, we introduce the scaled variables: τ = T -1 t, ξ = T -1/2 x; using formula (2.12) and (2.13) in the right hand-side of (4.23), we obtain:

             Ω T v p (x, t) φ(x, t) 1-1/pq ≤ CT θ 1 , Ω T u q (x, t) φ(x, t) 1-1/pq ≤ CT θ 2 , (4.24) 
where

θ 1 := -(1 + α) q + (1 + N 2 ) 1 q + -(1 + β) p + (1 + N 2 ) 1 q p , (4.25) 
and

θ 2 := -(1 + β) p + (1 + N 2 ) 1 p + -(1 + α) q + (1 + N 2 ) 1 p q . ( 4 

.26)

Note that inequality (4.11) is equivalent to θ 1 ≤ 0 or θ 2 ≤ 0. So, we have to distinguish three cases:

• The case θ 1 < 0 (resp. θ 2 < 0) : We pass to the limit in the first equation (resp. second equation) in (4.24), as T goes to ∞; we get lim

T →∞ T 0 |x|≤2T 1/2 v p (x, t) φ(x, t) dx dt = 0. (resp. lim T →∞ T 0 |x|≤2T 1/2 u q (x, t) φ(x, t) dx dt = 0.)
Using the dominated convergence theorem and the continuity in time and space of v (resp. u), we infer that

Q∞ v p (x, t) dx dt = 0 =⇒ v ≡ 0. (resp. Q∞ u q (x, t) dx dt = 0 =⇒ u ≡ 0.)
Moreover, from (4.22) (resp. (4.21)), we infer that

T 0 |x|≤2T 1/2 u q (x, t) φ(x, t) dx dt = 0, (resp. 
T

0 |x|≤2T 1/2 v p (x, t) φ(x, t) dx dt = 0),
and by the same argument as above, we conclude that u ≡ v ≡ 0; contradiction.

• The case θ 1 = 0 (resp. θ 2 = 0) : In this case, using (4.24) as T → ∞, we conclude that

v ∈ L p (0, ∞; L p (R N )), (4.27) 
(resp. u ∈ L q (0, ∞; L q (R N )).

(4.28)

Now, we take ϕ 1 (x) := Φ |x|/(B -1/2 T 1/2 ) instead of the one chosen above, where 1 ≤ B < T large enough such that when T → ∞ we don't have B → ∞ in the same time, then if we repeat the same calculation as above and taking account of the support of ∆, we obtain (as in (4.19) -(4.20))

Σ B v p φ ≤ C Σ B u φ1/q φ-1/q (ϕ 1 (x)) D 1+α t|T ϕ 2 (t) + C ∆ B u φ1/q φ-1/q (ϕ 1 (x)) -1 (-∆ x )ϕ 1 (x) D α t|T ϕ 2 (t) , (4.29) 
and

Σ B u q φ ≤ C Σ B v φ1/p φ-1/p (ϕ 1 (x)) D 1+β t|T ϕ 2 (t) + C ∆ B v φ1/p φ-1/p (ϕ 1 (x)) -1 (-∆ x )ϕ 1 (x) D β t|T ϕ 2 (t) , (4.30) 
where

Σ B := [0, T ] × x ∈ R N ; |x| ≤ 2B -1/2 T 1/2 , Σ B = Σ B dx dt, and 
∆ B := [0, T ] × x ∈ R N ; B -1/2 T 1/2 ≤ |x| ≤ 2B -1/2 T 1/2 , ∆ B = ∆ B dx dt.
On the other hand, as U = (u, v) is a global solution then, u (resp. v) verifies (4.1) (resp. (4.2)) locally and in particular on ∆ B . Thus, we obtain

∆ B v p φ ≤ C ∆ B u φ1/q φ-1/q (ϕ 1 (x)) D 1+α t|T ϕ 2 (t) + C ∆ B u φ1/q φ-1/q (ϕ 1 (x)) -1 (-∆ x )ϕ 1 (x) D α t|T ϕ 2 (t) , (4.31) 
and

∆ B u q φ ≤ C ∆ B v φ1/p φ-1/p (ϕ 1 (x)) D 1+β t|T ϕ 2 (t) + C ∆ B v φ1/p φ-1/p (ϕ 1 (x)) -1 (-∆ x )ϕ 1 (x) D β t|T ϕ 2 (t) . (4.32)
At this stage, we set

U 1 := Σ B u q φ dx dt, U 2 := ∆ B u q φ dx dt, and V 1 := Σ B v p φ dx dt, V 2 := ∆ B v p φ dx dt.
Then by taking the Hölder inequality in (4.29), (4.30), (4.31) and (4.32), we infer

     V 1 ≤ U 1/q 1 A 1 + U 1/q 2 C 1 , U 1 ≤ V 1/p 1 B 1 + V 1/p 2 C 2 , (4.33) 
and

     V 2 ≤ U 1/q 2 A 2 + U 1/q 2 C 1 , U 2 ≤ V 1/p 2 B 2 + V 1/p 2 C 2 , (4.34) 
where

A 1 := C Σ B ϕ 1 ϕ -1 q-1 2 D 1+α t|T ϕ 2 e q 1/e q , A 2 := C ∆ B ϕ 1 ϕ -1 q-1 2 D 1+α t|T ϕ 2 e q 1/e q ≤ A 1 , B 1 := C Σ B ϕ 1 ϕ -1 p-1 2 D 1+β t|T ϕ 2 e p 1/e p , B 2 := C ∆ B ϕ 1 ϕ -1 p-1 2 D 1+β t|T ϕ 2 e p 1/e p ≤ B 1 , C 1 := C ∆ B ϕ -e q 1 ϕ -1 q-1 2 ∆ x ϕ 1 D α t|T ϕ 2 e q 1/e q , and 
C 2 := C ∆ B ϕ -e p 1 ϕ -1 p-1 2 ∆ x ϕ 1 D β t|T ϕ 2 e p 1/e p .
Combining (4.33) and (4.34), we obtain

V 1 ≤ V 1/pq 1 B 1/q 1 A 1 + V 1/pq 2 C 1/q 2 A 1 + V 1/pq 2 B 1/q 2 C 1 + V 1/pq 2 C 1/q 2 C 1 (4.35)
and

U 1 ≤ U 1/pq 1 A 1/p 1 B 1 + U 1/pq 2 C 1/p 1 B 1 + U 1/pq 2 A 1/p 2 C 2 + U 1/pq 2 C 1/p 1 C 2 .
(4.36)

To estimate the first term in the right-hand sides of (4.35) and (4.36), we apply Young's inequality

ab ≤ 1 pq a pq + pq -1 pq b pq pq-1 p > 1, q > 1, a > 0, b > 0.
This yields

(1 - 1 pq )V 1 ≤ B p pq-1 1 A pq pq-1 1 + V 1/pq 2 C 1/q 2 A 1 + B 1/q 2 C 1 + C 1/q 2 C 1 , (4.37) 
and

(1 -

1 pq )U 1 ≤ A q pq-1 1 B pq pq-1 1 + U 1/pq 2 C 1/p 1 B 1 + A 1/p 2 C 2 + C 1/p 1 C 2 . (4.38)
Using the definition of ϕ and applying the following change of variables

τ = T -1 t, ξ = T B -1/2
x, in the integrals in A i , B i and C i for i = 1, 2, we get

V 1 ≤ CT θ 1 pq pq-1 B δ 1 pq pq-1 + V 1/pq 2 CT θ 1 B δ 2 + CT θ 1 B δ 3 + CT θ 1 B δ 4 , (4.39) 
and

U 1 ≤ CT θ 2 pq pq-1 B η 1 pq pq-1 + U 1/pq 2 CT θ 2 B η 2 + CT θ 2 B η 3 + CT θ 2 B η 4 , (4.40) 
where

         δ 1 := - N 2 ( 1 q p + 1 q ), δ 2 := 1 q - N 2 ( 1 q p + 1 q ), δ 3 := 1 - N 2 ( 1 q p + 1 q ), δ 4 := 1 + 1 q - N 2 ( 1 q p + 1 q ),
and

         η 1 := - N 2 ( 1 p q + 1 p ), η 2 := 1 p - N 2 ( 1 p q + 1 p ), η 3 := 1 - N 2 ( 1 p q + 1 p ), η 4 := 1 + 1 p - N 2 ( 1 p q + 1 p ).
Let us recall that θ 1 = 0 (resp. θ 2 = 0) imply that

V 1 ≤ CB δ 1 pq pq-1 + V 1/pq 2 CB δ 2 + CB δ 3 + CB δ 4 , (4.41) 
(resp. U 1 ≤ CB η 1 pq pq-1 + U 1/pq 2 [CB η 2 + CB η 3 + CB η 4 ] , ) (4.42) 
Now, as v ∈ L p (0, ∞; L p (R N )), (resp. u ∈ L q (0, ∞; L q (R N ))), we have lim

T →∞ V 2 = 0, (resp. lim T →∞ U 2 = 0, )
then taking the limit as T → ∞ in (4.41), respectively in (4.42), taking into account the dominated convergence theorem, we conclude that

∞ 0 R N v p (x, t) dx dt ≤ CB δ 1 pq pq-1 . (4.43) (resp. ∞ 0 R N u q (x, t) dx dt ≤ CB η 1 pq pq-1 .) (4.44)
Finally, as δ 1 < 0 and η 1 < 0, taking the limit for B → ∞ in (4.43), respectively in (4.44) and using the continuity of u and v, we conclude that v ≡ 0 or u ≡ 0, and (4.33) implies that u ≡ v ≡ 0, which is a contradiction.

• The case p < (1/δ) and q < (1/γ) : We repeat the same procedure as in the case (θ 1 < 0 and θ 2 < 0) by choosing the following test function φ(x, t) = (ϕ 1 (x)) ϕ 2 (t) where ϕ 1 (x) = Φ (|x|/R) , ϕ 2 (t) = (1 -t/T ) r + , r 1 and R ∈ (0, T ) large enough such that in the case of T → ∞ we don't have R → ∞ in the same time, with the same functions Φ as above. Then, as in (4.23), we obtain

             C T v p φ(x, t) 1-1/pq ≤ D 1/q 2 D 1 , C T u q φ(x, t) 1-1/pq ≤ D 1/p 1 D 2 , (4.45)
where

C T := [0, T ] × x ∈ R N ; |x| ≤ 2R C T = C T dx dt, D 1 := C C T ϕ 1 ϕ -1 q-1 2 D 1+α t|T ϕ 2 e q 1/e q + C C T ϕ -e q 1 ϕ -1 q-1 2 ∆ x ϕ 1 D α t|T ϕ 2 e q 1/e q , and 
D 2 := C C T ϕ 1 ϕ -1 p-1 2 D 1+β t|T ϕ 2 e p 1/e p + C C T ϕ -e p 1 ϕ -1 p-1 2 ∆ x ϕ 1 D β t|T ϕ 2 e p 1/e p .
Then, the new variables ξ = R -1 x, τ = T -1 t and (2.12) -(2.13) allow us to write:

             C T v p φ(x, t) 1-1/pq ≤ C 1 (T, R), C T u q φ(x, t) 1-1/pq ≤ C 2 (T, R), (4.46) 
where

C 1 (T, R) := CT α 1 R β 1 + CT α 2 R β 2 + CT α 3 R β 3 + CT α 4 R β 4 , C 2 (T, R) := CT γ 1 R σ 1 + CT γ 2 R σ 2 + CT γ 3 R σ 3 + CT γ 4 R σ 4 , with            α 1 := 1 q 1 p -(1 + β) + 1 q -(1 + α) , α 2 := 1 q 1 p -(1 + β) + 1 q -α , α 3 := 1 q 1 p -β + 1 q -(1 + α) , α 4 := 1 q 1 p -β + 1 q -α ,            γ 1 := 1 p 1 q -(1 + α) + 1 p -(1 + β) , γ 2 := 1 p 1 q -(1 + α) + 1 p -β , γ 3 := 1 p 1 q -α + 1 p -(1 + β) , γ 4 := 1 p 1 q -α + 1 p -β ,            β 1 := N pq + N q , β 2 := N pq + N q -2,
β 3 := 1 q N p -2 + N q , β 4 := 1 q N p -2 + N q -2, and            β 1 := N qp + N p , β 2 := N qp + N p -2,
β 3 := 1 p N q -2 + N p , β 4 := 1 p N q -2 + N p -2.
Taking the limit as T → ∞, we infer, as

p < 1 δ ⇐⇒ 1 p -β < 0 and q < 1 γ ⇐⇒ 1 q -α < 0, that                  ∞ 0 |x|≤2R v p φ(x, t) dx dt 1-1/pq = 0, ∞ 0 |x|≤2R u q φ(x, t) dx dt 1-1/pq = 0.
Finally, by taking R → ∞, we get a contradiction with the fact that u(x, t) > 0 and v(x, t) > 0 for all x ∈ R N , t > 0.

Remarks 1 We can extend our analysis to the following system

           u t -∆u = 1 Γ(1 -γ) t 0 ψ 1 (x, s)|v| p-1 v(s) (t -s) γ ds x ∈ R N , t > 0, v t -∆v = 1 Γ(1 -δ) t 0 ψ 2 (x, s)|u| q-1 u(s) (t -s) δ ds x ∈ R N , t > 0,
where

ψ 1 , ψ 2 ∈ L 1 Loc (R N × (0, ∞))
, ψ 1 (., t), ψ 2 (., t) ≥ 0 for all t ≥ 0, ψ ≡ 0, and for all

0 < R, B < T, τ ∈ [0, 1], ξ ∈ [0, 2], 1 < p, 0 < β ≤ 2 and 0 < γ, δ < 1, we have    ψ 1 (B -1/2 T 1/2 ξ, T τ ) ≥ C > 0, ψ 2 (B -1/2 T 1/2 ξ, T τ ) ≥ C > 0, if (p, q) verifies (4.11), while    ψ 1 (Rξ, T τ ) ≥ C > 0, ψ 2 (Rξ, T τ ) ≥ C > 0,
if (p, q) verifies (4.12).

Blow-up Rate

In this section, we study the blow-up rate for the parabolic system (1.1) -(1.2) requiring the following regularity of the initial data:

u 0 , v 0 ≥ 0, u 0 , v 0 ≡ 0 and u 0 , v 0 ∈ C 0 (R N ) ∩ L 2 (R N ). (5.1) 
First, we give a lemma which will play a crucial role in the sequel.

Lemma 2 Let u, v be a nonnegative classical global solution of

u t = ∆u + J α -∞|t (v p ) in R N × R, v t = ∆v + J β -∞|t (u q ) in R N × R. (5.2) 
Then, for

N 2 ≤ max (2 -δ)p + (1 -γ)pq + 1 pq -1 ; (2 -γ)q + (1 -δ)pq + 1 pq -1 , (5.3) 
or p < 1 δ and q < 1 γ , (5.4) 
we have u ≡ v ≡ 0.

Proof Its sufficient to observe that

J α -∞|t (v p ) ≥ J α -T |t (v p ) and J β -∞|t (u q ) ≥ J β -T |t (u q ).
Then, by repeating the same computations as in Theorem 1 with ϕ 2 (t) := 1 -t 2 /T 2 η + , η 1, taking into account (2.15) -(2.17), and by taking

(ϕ 3 (t)ϕ 1 (x)) 1/q (ϕ 3 (t)ϕ 1 (x)) -1/q instead of ϕ 1/q ϕ -1/q in (4.19) -(4.29) -(4.31) and (ϕ 3 (t)ϕ 1 (x)) 1/p (ϕ 3 (t)ϕ 1 (x)) -1/p instead of ϕ 1/p ϕ -1/p in (4.20) -(4.30) -(4.32)
, where 1 and ϕ 3 (t) := 1 -t T η + , to use the Hölder's inequality, we conclude the result. Finally, we note that here, we need also to use the fact that ϕ 3 (t)ϕ 1 (x) ≤ ϕ(x, t) before the combination as in (4.21) -(4.22) and (4.33) -(4.34).

Theorem 3 Let

α 1 := (2 -γ) + (2 -δ)p pq -1 and α 2 := (2 -δ) + (2 -γ)q pq -1 . If N 2 ≤ max (2 -δ)p + (1 -γ)pq + 1 pq -1 ; (2 -γ)q + (1 -δ)pq + 1 pq -1 , or p < 1 δ and q < 1 γ ,
and (u, v) be the blowing-up solution of (1.1) -(1.2) -(5.1) in a finite time T max := T * , then there are constants c i , C i > 0, for i = 1, 2, such that

   c 1 (T * -t) -α 1 ≤ sup R N u(., t) ≤ C 1 (T * -t) -α 1 , t ∈ (0, T * ), c 2 (T * -t) -α 2 ≤ sup R N v(., t) ≤ C 2 (T * -t) -α 2 , t ∈ (0, T * ). (5.5) 
Proof We decompose the proof into two parts:

• The upper blow-up rate estimate: Let

M 1 (t) := sup R N ×(0,t]
u and M 2 (t) := sup

R N ×(0,t] v, t ∈ (0, T * ).
First, we show that there is η ∈ (0, 1) such that

η ≤ M 1 (t) -1/α 1 M 2 (t) 1/α 2 ≤ η -1 , t ∈ T * 2 , T * . (5.6) Th. 3] 
. Moreover, Schauder's estimates imply that the C 2+µ,1+µ/2 (S K )-norm of ϕ λn , ψ λn is uniformly bounded. Thus, there is a subsequence converging to a solution (ϕ, ψ) of the following system

ϕ s = ∆ϕ + J α -∞|t (ψ p ), ψ s = ∆ψ + J β -∞|t (ϕ q ), in R N × (-∞, 0], (5.15) 
such that ϕ(0, 0) ≥ A, and

0 ≤ ϕ ≤ 2A, 0 ≤ ψ ≤ lim n→∞ (2A) α 2 /α 1 M 2 (t n )M 1 (t n ) -α 2 /α 1 = 0.
Combining the last inequality with the system (5.15), we obtain ϕ ≡ 0 on R N × (-∞, 0]. This contradicts ϕ(0, 0) ≥ A. Consequently, (5.6) holds.

On the other hand, obviously, M 1 , M 2 are positive, continuous and nondecreasing on (0, T * ). Moreover, as lim t→T * M 1 (t) = ∞, this allow us, for all t 0 ∈ (0, T * ), to define

t + 0 := t + (t 0 ) := max{t ∈ (t 0 , T * ) : M 1 (t) = 2M 1 (t 0 )}. (5.16) 
Let

λ(t 0 ) := 1 2A M 1 (t 0 ) -1/( 2α 1 ) 
.

(5.17)

We claim that

λ -2 (t 0 )(t + 0 -t 0 ) ≤ D, t 0 ∈ T * 2 , T * , (5.18) 
where 0 < D < ∞ is a positive constant which does not depend on t 0 . Indeed, if (5.18) were false, then there would exist a sequence t n → T * such that

λ -2 n (t + n -t n ) -→ ∞,
where λ n = λ(t n ) and t + n = t + (t n ). For each t n choose ( x n , t n ) as in (5.8) and rescale (u, v) arround ( x n , t n ) as in (5.9)-(5.10). Then (ϕ λn , ψ λn ) is a mild solution (so weak solution) of the systems (5.11)-(5.12), in R N × I n (T * ) such that ϕ(0, 0) ≥ A, and in R N × I n (t + n ) we have from (5.6) and the definition of t + n the following inequality

0 ≤ ϕ λn ≤ λ 2α 1 n M 1 (t + n ) = λ 2α 1 n 2M 1 (t n ) := 4A, 0 ≤ ψ λn ≤ λ 2α 2 n M 2 (t + n ) ≤ λ 2α 2 n η -α 2 (M 1 (t + n )) α 2 /α 1 = (4A) α 2 /α 1 η -α 2 .
Interior regularity and uniform Schauder estimates for (ϕ λn , ψ λn ) yield a subsequence con-

verging in C 2+µ,1+µ/2 loc (R N × R) × C 2+µ,1+µ/2 loc (R N × R) to a solution (ϕ, ψ) of (ϕ) s = ∆ϕ + J α -∞|t (ψ p ), (ψ) s = ∆ψ + J β -∞|t (ϕ q ), in R N × R, (5.19) 
such that ϕ(0, 0) ≥ A and

0 ≤ ϕ ≤ 4A, 0 ≤ ψ ≤ (4A) α 2 /α 1 η -α 2 .
It follows from Lemma 2 that ϕ ≡ ψ ≡ 0. This is a contradiction with ϕ(0, 0) ≥ A ≥ 1. Now (5.18) is true.

Next we use an idea from Hu [START_REF] Hu | Remarks on the blowup estimate for solutions of the heat equation with a nonlinear boundary condition[END_REF]. From (5.17) and (5.18) it follows that

(t + 0 -t 0 ) ≤ D(2A) 1/α 1 M 1 (t 0 ) -1/α 1 for any t 0 ∈ T * 2 , T * .
Fix t 0 ∈ (T * /2, T * ) and denote

t 1 = t + 0 , t 2 = t + 1 , t 3 = t + 2 , .... Then t j+1 -t j ≤ D(2A) 1/α 1 M 1 (t j ) -1/α 1 , M 1 (t j+1 ) = 2M 1 (t j ), j = 0, 1, 2, .... Consequently, T * -t 0 = ∞ j=0 (t j+1 -t j ) ≤ D(2A) 1/α 1 ∞ j=0 M 1 (t j ) -1/α 1 = D(2A) 1/α 1 M 1 (t 0 ) -1/α 1 ∞ j=0 2 -j/α 1 .
We conclude that

u(x, t 0 ) ≤ 1 (t 0 ) ≤ C(T * -t 0 ) -α 1 , ∀ t 0 ∈ (0, T * )
where

C 1 = 2A   D ∞ j=0 2 -j/α 1   α 1
, and consequently sup

R N u(., t) ≤ C 1 (T * -t) -α 1 , ∀ t ∈ (0, T * ).
Finally, (5.6) implies

v(x, t 0 ) ≤ M 2 (t 0 ) ≤ C 2 (T * -t 0 ) -α 2 , ∀ t 0 ∈ (0, T * )
where

C 2 = η -α 2 C α 2 /α 1 1
, and consequently sup

R N v(., t) ≤ C 2 (T * -t) -α 2 , ∀ t ∈ (0, T * ).
• The lower blow-up rate estimate: If we repeat the same proof of the local existence in Theorem 1, by taking

u 1 ≤ θ 1 and v ≤ θ 2 instead of |||(u, v)||| ≤ 2( u 0 ∞ + v 0 ∞ ) in the space E T in (3.
2) for all positive constants θ 1 , θ 2 > 0 and all 0 < t < T, then the condition (3.3) of T will be:

u 0 ∞ + C 3 T 2-γ θ p 2 ≤ θ 1 and v 0 ∞ + C 4 T 2-δ θ q 1 ≤ θ 2 .
(5.20)

Then, by the same reasoning, we infer that u(t) ∞ ≤ θ 1 and v(t) ∞ ≤ θ 2 for all 0 < t < T. Consequently, if

u 0 ∞ + C 3 t 2-γ θ p 2 ≤ θ 1 and v 0 ∞ + C 4 t 2-δ θ q 1 ≤ θ 2 , then u(t) ∞ ≤ θ 1 and v(t) ∞ ≤ θ 2 .
Applying this to any point in the trajectories, we see that if 0 ≤ s < t and

(t -s) 2-γ ≤ θ 1 -u(s) ∞ C 3 θ p 2 and (t -s) 2-δ ≤ θ 2 -v(s) ∞ C 4 θ q 1 , (5.21) 
then u(t) ∞ ≤ θ 1 and v(t) ∞ ≤ θ 2 , for all 0 < t < T. Moreover, if 0 ≤ s < T * , u(s) ∞ < θ 1 and v(s) ∞ < θ 2 , then:

(T * -s) 2-γ > θ 1 -u(s) ∞ C 3 θ p 2 and (T * -s) 2-δ > θ 2 -v(s) ∞ C 4 θ q 1 .
(5.22) Indeed, by contradiction. Suppose that for some θ 1 > u(s) ∞ , θ 2 > v(s) ∞ and all t ∈ (s, T * ) we have

(t -s) 2-γ ≤ θ 1 -u(s) ∞ C 3 θ p 2 or (t -s) 2-δ ≤ θ 2 -v(s) ∞ C 4 θ q 1 ,
and then, using (5.21), we infer that u(t) ∞ ≤ θ 1 or v(t) ∞ ≤ θ 2 for all t ∈ (s, T * ).

Contradiction with the fact that u(t) ∞ → ∞ and v(t) ∞ → ∞ as t → T * . Next, for example, letting θ 1 = 2 u(s) ∞ and θ 2 = 2 v(s) ∞ in (5.22), we see that for 0 < s < T * we have:

(T * -s) 2-γ > u(s) ∞ 2 p C 3 v(s) p ∞ and (T * -s) 2-δ > v(s) ∞ 2 q C 4 u(s) q ∞ , which, after combination, imply c 1 (T * -t) -α 1 < u(s) ∞ and c 2 (T * -t) -α 2 < v(s) ∞ ,
where

c 1 := 2 p(1+q) C 3 C p 4 -1 pq-1 , c 2 := 2 q(1+p) C 4 C q 3 -1 pq-1 ,
and by the positivity of u and v we get

c 1 (T * -s) -α 1 < sup x∈R N u(x, s) and c 2 (T * -s) -α 2 < sup x∈R N v(x, s), ∀ s ∈ (0, T * ) (5.23)
A necessary condition for the existence of local and global solutions to the problem (1.1) -(1.2) are presented in this section. We obtain that these conditions depend on the behavior of the initial conditions when x goes to infinity.

Theorem 4 (Necessary conditions for global existence) 

Let u 0 , v 0 ∈ C 0 (R N ) ∩ L 2 (R N ), u 0 , v 0 ≥ 0,
(v 0 (x)|x| 2α 2 ) ≤ C, (6.1) 
where C > 0 is a real positive number which may change from line to line.

Proof Let (u, v) be a global mild solution to (1.1)

-(1.2), then u ∈ C([0, R]; C 0 (R N ) ∩ L 2 (R N
)) for all R > 0 sufficiently large. So we repeat the same calculation as in the proof of Theorem 2 by taking φ(x, t) := ϕ 1 (x/R) ϕ 2 (t) where ϕ 2 (t) := 1 -t/(R 2 ) + instead of the one chosen in Theorem 2, where, for

x ∈ R N , 0 ≤ ϕ 1 ∈ H 2 (R N ) ∩ L ∞ (R N ) is the first eigenfunction, for -∆ x , relative to the first eigenvector λ 1 := inf{ u H 1 ; u L 2 = 1 and u = 0 in B c 2 }
where B 2 stands for the ball of center 0 and radius 2 and B c 2 for its complementary. Then, as in (4.19) -(4.20), we have

Σ 1 v p φ dx dt + C R -2α |x|≤2R u 0 (x)ϕ 1 (x/R) dx ≤ C Σ 1 u φ1/q φ-1/q ϕ 1 (x/R) D 1+α t|R 2 ϕ 2 (t) dx dt + C Σ 1 u φ1/q φ-1/q (-∆ x )ϕ 1 (x/R) D α t|R 2 ϕ 2 (t) dx dt, (6.2) 
and

Σ 1 u q φ dx dt + C R -2β |x|≤2R v 0 (x)ϕ 1 (x/R) dx ≤ C Σ 1 v φ1/p φ-1/p ϕ 1 (x/R) D 1+β t|R 2 ϕ 2 (t) dx dt + C Σ 1 v φ1/p φ-1/p (-∆ x )ϕ 1 (x/R) D β t|R 2 ϕ 2 (t) dx dt. (6.3) 
where α := 1 -γ, β := 1 -δ and

Σ 1 := (x, t) ∈ R N × [0, ∞); |x| ≤ 2R, t ≤ R 2 .
Hence, using Hölder's inequality, we get

V 3 + CR -2α |x|≤2R u 0 (x)ϕ 1 (x/R) dx ≤ U 1/q 3 E 1/e q 1 + F 1/e q 1 , (6.4) 
and

U 3 + CR -2β |x|≤2R v 0 (x)ϕ 1 (x/R) dx ≤ V 1/p 3 E 1/e p 2 + F 1/e p 2 , (6.5) 
where

U 3 := Σ 1 u q φ dx dt, V 3 := Σ 1 v p φ dx dt E 1 := C Σ 1 ϕ 1 ϕ -1 q-1 2 D 1+α t|R 2 ϕ 2 e q dx dt 1/e q , E 2 := C Σ 1 ϕ 1 ϕ -1 p-1 2 D 1+β t|R 2 ϕ 2 e p dx dt 1/e p , F 1 := C Σ 1 (ϕ 1 ϕ 2 ) -1 q-1 (-∆ x )ϕ 1 D α t|R 2 ϕ 2 e q dx dt 1/e q , and 
F 2 := C Σ 1 (ϕ 1 ϕ 2 ) -1 p-1 (-∆ x )ϕ 1 D β t|R 2 ϕ 2 e p dx dt
1/e p .

Combining (6.4) and (6.5) leads to

V 3 + CR -2α |x|≤2R u 0 (x)ϕ 1 (x/R) dx ≤ V 1/pq 3 E 1/qe p 2 + F 1/qe p 2 E 1/e q 1 + F 1/e q 1 , (6.6) 
and

U 3 + CR -2β |x|≤2R v 0 (x)ϕ 1 (x/R) dx ≤ U 1/pq 3 E 1/pe q 1 + F 1/pe q 1 E 1/e p 2 + F 1/e p 2 
. (6.7)

Moreover, using Young's inequality in the right-hand side of (6.6) -(6.7), allows us to obtain

V 3 + CR -2α |x|≤2R u 0 (x)ϕ 1 (x/R) dx ≤ V 3 + E 1/qe p 2 + F 1/qe p 2 E 1/e q 1 + F 1/e q 1 pq pq-1 , and 
U 3 + CR -2β |x|≤2R v 0 (x)ϕ 1 (x/R) dx ≤ U 3 + E 1/pe q 1 + F 1/pe q 1 E 1/e p 2 + F 1/e p 2 pq pq-1 .
These imply

CR -2α |x|≤2R u 0 (x)ϕ 1 (x/R) dx ≤ E p-1 pq-1 2 + F p-1 pq-1 2 E p(q-1) pq-1 1 + F p(q-1) pq-1 1 , (6.8) 
and

CR -2β |x|≤2R v 0 (x)ϕ 1 (x/R) dx ≤ E q-1 pq-1 1 + F q-1 pq-1 1 E q(p-1) pq-1 2 + F q(p-1) pq-1 2 
. (6.9)

Now, if we take the scaled variables τ = R -2 t, ξ = R -1 x and use the fact that (-∆ x )ϕ 1 (x/R) = R -2 λ 1 ϕ 1 (x/R), we arrive at

CR -2α |ξ|≤2 u 0 (Rξ)ϕ 1 (ξ) dξ ≤ C 1 (R) |ξ≤2 ϕ 1 (ξ) dξ, (6.10) 
and

CR -2β |ξ|≤2 v 0 (Rξ)ϕ 1 (ξ) dξ ≤ C 2 (R) |ξ≤2 ϕ 1 (ξ) dξ, (6.11) 
where

C 1 (R) := CR -2 (1+βp)+p(1+αq) pq-1 and C 2 (R) := CR -2 (1+αq)+q(1+βp) pq-1
.

If we arrange the variable R in the right-hand side of (6.10)-( 6.11), we get

|ξ|≤2 u 0 (Rξ)ϕ 1 (ξ) ≤ C 3 (R) |ξ≤2 ϕ 1 (ξ) = C 3 (R) |ξ≤2 |Rξ| 2α 1 |Rξ| -2α 1 ϕ 1 (ξ) ≤ C |ξ|≤2 |Rξ| -2α 1 ϕ 1 (ξ), (6.12) 
and in the right-hand side of (6.12) and (6.13), we conclude, after dividing by |ξ|≤2 |Rξ| -2α 1 ϕ 1 (ξ) and |ξ|≤2 |Rξ| - Finally, a necessary conditions are given for local existence. We obtain a similar estimate of T founded in the proof of Theorem 1, as |x| goes to infinity. C -(pq-1) T (2-δ)+(2-γ)q B pq-1 ≤ 1.

|ξ|≤2 v 0 (Rξ)ϕ 1 (ξ) ≤ C 4 (R) |ξ≤2 ϕ 1 (ξ) = C 4 (R) |ξ≤2 |Rξ| 2α 2 |Rξ| -2α 2 ϕ 1 (ξ) ≤ C |ξ|≤2 |Rξ| -2α 2 ϕ 1 (ξ), ( 6 
Proof Take here, for R > 0 sufficiently large, ϕ(x, t) := ϕ 1 (x/R)ϕ 2 (t) where ϕ 2 (t) := (1 -t/T ) + , instead of the one chosen in Theorem 4. Then, as (6.8) -(6.9), we obtain, with (ϕ 1 ϕ 2 )

-1 q-1 (-∆ x )ϕ 1 D α t|T ϕ 2 e q dx dt
1/e q , and

H 2 := C Σ 2 (ϕ 1 ϕ 2 ) -1 p-1 (-∆ x )ϕ 1 D β t|T ϕ 2 e p dx dt
1/e p , with α := 1 -γ β := 1 -δ, p := p/(p -1) and q := q/(q -1). If we take the scaled variables τ = T -1 t, ξ = R -1 x, taking into account the fact that (-∆ x )ϕ 1 (x/R) = R -2 λ 1 ϕ 1 (x/R), then (6.17 

  .13) where C 3 (R) := CR 2α C 1 (R) = CR -2α 1 and C 4 (R) := CR 2β C 2 (R) = CR -2α 2 . Using the estimate inf |ξ|>1 (u 0 (Rξ)|Rξ| 2α 1 ) |ξ|≤2 |Rξ| -2α 1 ϕ 1 (ξ) ≤ 1<|ξ|≤2 u 0 (Rξ)ϕ 1 (ξ)

  2α 2 ϕ 1 (ξ), that inf |ξ|>1 (u 0 (Rξ)|Rξ| 2α 1 ) ≤ C, (6.14) and inf |ξ|>1 (v 0 (Rξ)|Rξ| 2α 2 ) ≤ C. (6.15) Passing to the limit in (6.14) -(6.15), as R → ∞, and taking account of the continuity of u 0 and v 0 , we obtain lim |x|→∞ (u 0 (x)|x| 2α 1 ) = lim inf |x|→∞ (u 0 (x)|x| 2α 1 ) ≤ C, and lim |x|→∞(v 0 (x)|x| 2α 2 ) = lim inf |x|→∞ (v 0 (x)|x| 2α 2 ) ≤ C.Corollary 1 (sufficient conditions for the nonexistence of global solution)Let u 0 v 0 ∈ C 0 (R N ) ∩ L 2 (R N ), u 0 , v 0 ≥ 0 and p, q > 1. If lim |x|→∞ (u 0 (x)|x| 2α 1 ) = lim |x|→∞ (v 0 (x)|x| 2α 2 ) = +∞,then the system (1.1) -(1.2) cannot have a global solution.

Theorem 5 (

 5 Necessary conditions for local existence)Let u 0 , v 0 ∈ C(R N )∩L ∞ (R N )∩L 2 (R N ), u 0 , v 0 ≥ 0, and p, q > 1. If (u, v)is a local solution to system (1.1) -(1.2) on [0, T ] where 0 < T < ∞, then we have the estimates lim |x|→∞ u 0 (x) ≤ C T -α 1 and lim |x|→∞ v 0 (x) ≤ C T -α 2 , (6.16) for some positive constant C > 0. Note that, if A := lim |x|→∞ u 0 (x) and B := lim |x|→∞ v 0 (x) then we obtain, a similar estimate founded in (3.6),    C -(pq-1) T (2-γ)+(2-δ)p A pq-1 ≤ 1,

Σ 2 :v 0

 20 = (x, t) ∈ R N × [0, ∞); |x| ≤ 2R, t ≤ T , (x)ϕ 1 (x/R) dx ≤ G

  ) -(6.18) impliesCT -α |ξ|≤2 u 0 (Rξ)ϕ 1 (ξ) dξ ≤ C 3 (R, T ) Rξ)ϕ 1 (ξ) dξ ≤ C 4 (R, T ) Rξ)ϕ 1 (ξ) dξ ≤ C 5 (R, T ) |ξ≤2 ϕ 1 (ξ) dξ, (6.21) and |ξ|≤2 v 0 (Rξ)ϕ 1 (ξ) dξ ≤ C 6 (R, T ) |ξ≤2 ϕ 1 (ξ) dξ,(6.22)whereC 5 (R, T ) := CT α C 3 (R, T ) and C 6 (R, T ) := CT β C 4 (R, T ).Using the estimateinf |ξ|>1 (u 0 (Rξ)) |ξ|≤2 ϕ 1 (ξ) dξ ≤ 1<|ξ|≤2 u 0 (Rξ)ϕ 1 (ξ) dξ ≤ |ξ|≤2 u 0 (Rξ)ϕ 1 (ξ) dξ

  and p, q > 1. If (u, v) is a mild global solution to problem (1.1) -(1.2), then there is a positive constant C > 0 such that

	lim |x|→∞	(u 0 (x)|x| 2α 1 ) ≤ C and	lim |x|→∞

Indeed, we proceed by contradiction, as in [START_REF] Fila | The Blow-Up Rate for a Semilinear Parabolic System[END_REF][Proof of (2.3)]. If (5.6) were false then there would exists a sequence t n → T * such that

(5.7)

We will study the first case in (5.7) while the second one can be treated by proceeding in the same way and by changing the role of u and v. Then, using the fact that the condition (5.1) and Theorem 1 imply M 2 > 0, we infer that M 1 diverges as t n → T * . So, for each t n , we choose

(5.8)

We rescale the solution (u, v) about the corresponding point ( x n , t n ) with the scaling factor

, for A ≥ 1, as follows:

)

where

i.e., for G(t) := G(x, t) := (4πt) -N/2 e -|x| 2 /4t , we have

tn|σ ((ψ λn ) p ) dσ, (5.13)

where * is the space convolution. So, as in Lemma 1, (ϕ λn , ψ λn ) is a weak solution of (5.11) -(5.12). Now, involving the interior regularity (cf. [START_REF] Ladyženskaja | Linear and Quasilinear Equations of Parabolic Type[END_REF][Theorem 10.1 p. 204]), there exists µ ∈ (0, 1) such that for any K > 0, the sequences ϕ λn , ψ λn are bounded in the C µ,µ/2 (S 2K )-norm by a constant independent on n, where

We notice here that we have to use the Maximal regularity theory to obtain such regularity of (ϕ λn , ψ λn ) to apply the interior regularity (for more precise information, see [START_REF] Fino | On certain time-and space-fractional evolution equations[END_REF][Proof of (resp.

in the left-hand side of (6.21) (resp. (6.22)), we conclude, after dividing by the term