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IEEE TRANSACTIONS ON MAGNETICS, VOL. MAG-19, NO. 6 ,  NOVEMBER 1983 

AXISYUMETRIC FORMULATION FOR BOUNDARY INTEGRAL 
EQUATION METHODS IN SCALAR POTENTIAL PROBLEMS 

by L. KRAHENBUHL and A. NICOLAS 

Abstract : Axisymmetric 'geometries often appaear 
in electromagnetic device studies. The authors pre- 
sent an original formulation for Boundary Integral 
Equation methods in scalar potential problems. This 
technique requires only 2D boundary in the r-z plane 
and evaluation of the equations only on those boun- 
dari es. 

INTRODUCTION 

Scalar potential problems are described by 
Laplace's equation : 

in the general 3D space. 

When the geometry is an axisymmetric there are 
two possibilities : 
- use cylindrical coordinates, express equation (1) 
in this set of coordinates and note that each quan- 
tity is invariant in the azili~uthal direction 
Laplace equation becomes : 

In axisymmetric geometry physical quantities 
keep constant values on circular lines : Green's 
function G and derivative function bG/ bn have 
to be integrated on circles. 

By this way a 2D Boundary Integral Equation 
can be generated in the r-z plane, similar to those 
in x-y plane (41. 

It can be noticed that G gives the poten- 
tial of a uniform charge disgibution on a circle. 
Classical development 121 can be applied to obtain 
function G . : ax 

where : 
Boundary Integral Equations have to developed : complete elliptic integral of the first kind 
with operator : 

13 1 
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This gives complicated expressions. 

p , R, D : as shovn on Fig. 1 

Function GIax  is obtained by a similar develop- 
ment : 

- the second method we propose to develop is to .dG 
express the BIE in 3D space and to integrate all G i x  = $=.dl ( 9 )  
the invariant quantities analytically before 
solving the equations. = - S a ~ ( k 2  + &.[~.coao - l . l . e o a ( a - ~ ) ]  .e(k21 
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AXISYMMETRIC FORMULATION 

In a 3D space Laplace equation is transformed with 
into BIE equation : E : complete elliptic integral of the second kind. 

a , ) . ' ,  D' : as shown on Fig. 1 
. . . . 
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as shown in previous publications 111. 

When p ,  c j l  and H,, are constant along one part 
of the boundary 6& , partial integration of func- 
tions G and 6G/Sn along that direction can be made. 
As an example it can be shown that partial integra- 
tion of 3D Green's function 

1 c = -  (4) 
47rr 

over a stralght llne glves 2D Green's functlon : 

I 
CZU = - - . lop r. ( 5 )  
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Figure 1 
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FLUX DENSITY CALCULATION 

The induced magnetic field in a point P of the 
region H I  : 

can be computed directly by integration of cp and 
B on the boundary 6 @I : 

with 

d z 
(13) 

cosa dG,, dc:, 
2.R dp (14) 

dp 
+ D.cosa - 2.R.cos(a-Y) (dE dk + 2. (R-P) .E) 

2.n.D" dk dp Dl2 

cosa dG,, dGa'x = -, - 
dz 2.R dz (15) 

+ ~.cosa - 2.~.cos(a-Y).~~& 
2.x.D" dk dz D 7 

As these integrals have to be computed a large number 
of times, the third solution appears to be the most 
convenient. 

Function E is always regular, but K becomes sin- 
gular when r pq-O. This singularity is similar to 

Log(r) singularity, and Gaussian quadrature formulae 
with weight function Log(t) are well matched for 
evaluation of the integral (6) of function K. 

This development is now applied in PHIAX program, 
using classical techniques 111, 141. 

NUMERICAL RESULT 

The analytical solution is known for a ferroma- 
gnetic sphere in a constant field 151. We have 
choosen this example to test the method. 

The sphere is discretised into 4 finite elements 
of second order (fig. 2). The accuracy of the solu- 
tion on the boundary is better than 0.4 %O on the 
potential and 1. %O on the normal flux density 
(fig. 3). 

It must be noticed that these expressions depend 
on the same functions K and E as Gax and GIax. 

When the point P is on the boundary, a more simple 
expression can be used : 

an equivalent result is obtained in this way. 
However computing time is less important in this 
case. 

NUMERICAL DEVELOPMENT 

Numerical calculation of integrals K and E can 
be done in several ways : 

- numerical integration ; 
- asymptotic development 131 ; 
- tabulation and interpolation. 

finite element 
second order. 

Fig. 2 : Finite element discretisation 
of the sphere. 

Fig.3 : Solution on the boundary. 
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The values of potential and flux density for 
6 external points are also presented with comparison 
to analytical values (fig. 4). The points 6 and 7 
are very near the boundary and the integration errors 
increase. 

The same integrals give the angular factor "C" 
(141 ; eq. ( 6 ) ) .  SO this coefficient becomes a 
"goodness factor" of the method and allows the defi- 
nition of a forbidden area around the boundary where 
potential and magnetic field cannot be computed. 

Fig.4 : Potential and flux density on the 

straight line 8 .  

Xpoints in the forbidden area. 

CONCLUSION 
The method we developed and exposed is the com- 

plementary to the BIE programs already existing in 
2D and 3D. It solves a large set of problems at a 
low computing cost and needs a very short geometry 
description time. With PHI2D, PHI3D and now this 
PHIAX packages it is possible to solve with the BIE 
method all magnetostatic or electrostatic problems. 
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