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A CONSTRUCTION OF THE ROUGH PATH ABOVE FRACTIONAL

BROWNIAN MOTION USING VOLTERRA’S REPRESENTATION

DAVID NUALART AND SAMY TINDEL

Abstract. This note is devoted to construct a rough path above a multidimensional
fractional Brownian motion B with any Hurst parameter H ∈ (0, 1), by means of its
representation as a Volterra Gaussian process. This approach yields some algebraic and
computational simplifications with respect to [18], where the construction of a rough
path over B was first introduced.

1. Introduction

Rough paths analysis is a theory introduced by Terry Lyons in the pioneering paper [11]
which aims to solve differential equations driven by functions with finite p-variation with
p > 1, or by Hölder continuous functions of order γ ∈ (0, 1). One possible shortcut to the
rough path theory is the following summary (see [7, 8, 9, 12] for a complete construction).
Given a γ-Hölder d-dimensional process X = (X(1), . . . , X(d)) defined on an arbitrary
interval [0, T ], assume that one can define some iterated integrals of the form

Xn

st(i1, . . . , in) =

∫

s≤u1<···<un≤t

dXu1(i1) dXu2(i2) · · ·dXun
(in),

for 0 ≤ s < t ≤ T , n ≤ ⌊1/γ⌋ and i1, . . . , in ∈ {1, . . . , d}. As long as X is a nonsmooth
function, the integral above cannot be defined rigorously in the Riemann sense (and not
even in the Riemann-Stieltjes sense if γ ≤ 1/2). However, it is reasonable to assume that
some elements Xn can be constructed, sharing the following three properties with usual
iterated integrals (here and in the sequel, we denote by Sk,T = {(u1, . . . , un) : 0 ≤ u1 <
· · · < un ≤ T} the kth order simplex on [0, T ]):

(1) Regularity: Each component of Xn is nγ-Hölder continuous (in the sense of the
Hölder norm introduced in (9)) for all n ≤ ⌊1/γ⌋, and X1

st = Xt −Xs.
(2) Multiplicativity: Letting (δXn)sut := Xn

st − Xn

su − Xn

ut for (s, u, t) ∈ S3,T , one
requires

(δXn)sut(i1, . . . , in) =

n−1
∑

n1=1

Xn1

su (i1, . . . , in1)X
n−n1

ut (in1+1, . . . , in). (1)

(3) Geometricity: For any n,m such that n+m ≤ ⌊1/γ⌋and (s, t) ∈ S2,T , we have:

Xn

st(i1, . . . , in)Xm

st (j1, . . . , jm) =
∑

k̄∈Sh(̄ı,̄)

Xn+m

st (k1, . . . , kn+m), (2)
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where, for two tuples ı̄, ̄, Σ(̄ı,̄) stands for the set of permutations of the indices
contained in (̄ı, ̄), and Sh(̄ı, ̄) is a subset of Σ(̄ı,̄) defined by:

Sh(̄ı, ̄) =
{

σ ∈ Σ(̄ı,̄); σ does not change the orderings of ı̄ and ̄
}

.

We shall call the family {Xn; n ≤ ⌊1/γ⌋} a rough path over X (it is also referred to as
the signature of X in [7]).

Once a rough path over X is defined, the theory described in [7, 8, 12] can be seen as
a procedure which allows us to construct, starting from the family {Xn; n ≤ ⌊1/γ⌋}, the
complete stack {Xn; n ≥ 1}. Furthermore, with the rough path over X in hand, one can
also define rigorously and solve differential equations driven by X.

The above general framework leads thus naturally to the question of a rough path
construction for standard stochastic processes. The first example one may have in mind
concerning this issue is arguably the case of a d-dimensional fractional Brownian motion
(fBm) B = (B(1), . . . , B(d)) with Hurst parameter H ∈ (0, 1). This is a Gaussian process
with zero mean whose components are independent and with covariance function given
by

E (Bt(i)Bs(i)) =
1

2

(

t2H + s2H − |t− s|2H
)

, s, t ∈ R+.

For H = 1
2

this is just the usual Brownian motion. For any H ∈ (0, 1), the variance of
the increments of B is then given by

E
[

(Bt(i) −Bs(i))
2] = (t− s)2H , (s, t) ∈ S2,T , i = 1, . . . , d,

and this implies that almost surely the trajectories of the fBm are γ-Hölder continuous
for any γ < H , which justifies the fact that the fBm is the canonical example for a rough
path construction.

The first successful rough path analysis for B has been implemented in [5] by means of
a linearization of the fBm path, and it leads to the construction of a family {B1,B2,B3}
satisfying (1) and (2), for any H > 1/4 (see also [6] for a generalized framework). Some
other constructions can be found in [13, 15] by means of stochastic analysis methods, and
in [17] thanks to complex analysis tools. In all those cases, the barrier H > 1/4 remains,
and it has long been believed that this was a natural boundary, in terms of regularity, for
an accurate rough path construction.

Let us describe now several recent attempts to go beyond the threshold H = 1/4.
First, the complex analysis methods used in [16] allowed the authors to build a rough
path above a process Γ called analytic fBm, which is a complex-valued process whose
real and imaginary parts are fBm, for any value of H ∈ (0, 1). It should be mentioned
however that ℜΓ and ℑΓ are not independent, and thus the arguments in [16] cannot be
extrapolated to the real-valued fBm. Then, a series of brilliant ideas developed in [18, 19]
lead to the rough path construction in the real-valued case. We will try now to summarize
briefly, in very vague terms, this series of ideas (see Section 3 for a more detailed didactic
explanation):

(i) Consider a smooth approximation Bε of the fBm B, and the corresponding approxi-
mation Bn,ε of Bn. Clearly Bn,ε satisfies relation (1), but may diverge as ε → 0 whenever
H < 1/4. Then, one can decompose B

n,ε
st as B

n,ε
st = A

n,ε
st + C

n,ε
st , where Cn,ε is the

increment of a function f , namely C
n,ε
st = ft − fs, and An,ε is obtained as a boundary

term in the integrals defining Bn,ε. As explained in Section 3, a typical example of such
a decomposition is given (for n = 2) by A

2,ε
st = −Bε

s ⊗ δBε
st and C

2,ε
st =

∫ t

s
Bε

u ⊗ dBε
u,
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and in this case ft =
∫ t

0
Bε

u ⊗ dBε
u. Then it can be easily checked, thanks to the relation

C
n,ε
st = ft − fs, that C

n,ε
st − Cn,ε

su −C
n,ε
ut = 0 for any (s, u, t) ∈ S3,T . This means that Cn,ε

does not affect the multiplicative property (1) of Bn,ε. On the other hand, the boundary
term A

n,ε
st is usually easily seen to be convergent as ε → 0 to some limit An

st. Then,
the limit An

st should fulfill the desired multiplicative property, but it does not exhibit the
desired Hölder regularity kγ for any γ < H . It should also be noticed that A

n,ε
st is not

the only natural increment sharing the multiplicative property with Bn,ε. We refer to
Section 3 for further details, but let us mention that another possibility for n = 2 is the
boundary term δXε

st ⊗Xε
t , which is easily seen to satisfy relation (1).

(ii) The essential point in Unterberger’s method is then the following. Consider a series
representation of the fBm B =

∑

k Bk. We can carry out the above program for each
component Bk by choosing a particular boundary term. Then, it turns out that there is
a choice of the boundary term for each component Bk such that their sum satisfies the
desired Hölder and multiplicative properties. This idea has been successfully implemented
in [18, 19] using an entire series representation, providing a construction of a rough path
associated to B. However, this construction is rather long and intricate, first because
the entire series representation is obtained by a deterministic change of variable involving
the Cayley’s transform and second because the changes in the order of integration in
the multiple integrals are coded by admissible cuts in some trees associated to multiple
integrals. This language, well-known by theoretical Physicits (see e.g. [4], or [9] in the
rough paths context), may sound however difficult to the noninitiated reader. Another
construction involving the harmonizable representation of fBm is outlined in [20], but this
method does not avoid the use of tree-based expansions.

The purpose of the current paper is to take up the program initiated in [18], and
construct a rough path over B in a rather simple way, using the stochastic integral repre-
sentation of the fBm as a Volterra Gaussian process. We know that (see [14, Proposition
5.1.3] for a justification) for H < 1/2, each component B(i) of B can be written as

Bt(i) =

∫

R

K(t, u) dWt(i), t ≥ 0, (3)

where W = (W (1), . . . ,W (d)) is a d-dimensional Wiener process, and where the Volterra-
type kernel K is defined on R+ × R+ by

K(t, u) = cH

[ (u

t

)
1
2
−H

(t− u)H− 1
2

+

(

1

2
−H

)

u
1
2
−H

∫ u

s

vH− 3
2 (v − s)H− 1

2 dv
]

1{0<u<t}, (4)

with a strictly positive constant cH , whose exact value is irrelevant for our purposes.
Then, we show that the simple trick described at point (ii) above can be applied in a
straightforward way using the Volterra representation, leading to a simple general formula
for the multiple integrals Bn. To be more specific, let us describe the main result of this
paper.

Theorem 1.1. Let B be a d-dimensional fractional Brownian motion with Hurst parame-
ter H ∈ (0, 1/2), admitting representation (3). For 2 ≤ n ≤ ⌊1/H⌋, any tuple (i1, . . . , in)
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of elements of {1, . . . , d}, 1 ≤ j ≤ n and (s, t) ∈ S2,T , set

B̂
n,j
st (i1, . . . , in)

= (−1)j−1

∫

An
j

j−1
∏

l=1

K(s, ul) [K(t, uj) −K(s, uj)]
n
∏

l=j+1

K(t, ul) dWu1(i1) · · · dWun
(in), (5)

where the kernel K is given by (4) and An
j is the subset of [s, t]n defined by

An
j = {(u1, . . . , un) ∈ [0, t]n; uj = min(u1, . . . , un), u1 > · · · > uj−1, and uj+1 < · · · < un} .

Notice that the multiple stochastic integral in (5) is understood in the Stratonovich sense,
and is well-defined as a L2(Ω) random variable as long as n ≤ ⌊1/H⌋. Set also B1

st(i) =
Bt(i) − Bs(i), and for 2 ≤ n ≤ ⌊1/H⌋,

Bn

st(i1, . . . , in) =

n
∑

j=1

B̂
n,j
st (i1, . . . , in).

Then the family {Bn; 1 ≤ n ≤ ⌊1/H⌋} defines a rough path over B, in the sense that Bn

is almost surely nγ-Hölder continuous for any γ < H, and that it satisfies relations (1)
and (2).

As announced above, formula (5) defines in a compact and simple way the (substitute
to) iterated integrals of B with respect to itself. Furthermore, this formula also yields a
reasonably short way to estimate the moments of Bn

st, and thus its Hölder regularity. It
should be mentioned however that our construction is not as general as the one proposed
in [19], though it can be extended to a general class of Gaussian Volterra processes (see
Remark 2.6).

In the case 1/4 < H ≤ 1/2, let us also say a word about the relationship between the
processes Bn we have produced and the ones constructed in the aforementioned references
[5, 13, 17], which shall be denoted by Bn,p (where p stands for pathwise). First of all, let us
recall that only n = 2 has to be considered for 1/3 < H ≤ 1/2, while n = 2, 3 corresponds
to the rougher case 1/4 < H ≤ 1/3. Then an easy comparison can be established for
H = 1/2. Indeed, a slight extension of our construction also allows to define B2 for the
usual Brownian motion, and it is readily checked in this case that B2 coincides with the
usual Stratonovich Levy area. Whenever 1/4 < H < 1/2, the situation is less clear: one
the one hand, we know that δBn = δBn,p, and it can be seen from this relation that Bn

and Bn,p only differ by the increment of a function fn. On the other hand, it is still
an open question for us to clearly identify the function fn. We are thus left with two
candidates Bn and Bn,p for the rough path construction, Bn,p having the advantage of
being produced as a limit taken on some smooth approximations of the fBm path.

Here is how our article is divided: some preliminary results, including algebraic in-
tegration vocabulary, some estimates on the kernel K and Itô-Stratonovich corrections,
are given in Section 2. Then the basic ideas of the construction are implemented in
Section 3 on second order iterated integrals. This section is thus intended as a didactic
introduction to the construction, and could be enough for a first quick glimpse at the
topic. Then we give all the details concerning the general iterated integral definition and
prove Theorem 1.1 in Section 4.
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2. Preliminaries

This section is first devoted to recall some notational conventions for a special subset
(called set of increments) of functions of several variables. These conventions are taken
from the algebraic integration theory as explained in [8, 10]. We will then recall some
basic estimates on iterated Stratonovich integrals with respect to the Wiener process,
which turn out to be useful for the remainder of the article.

2.1. Some algebraic integration vocabulary. The current section is not intended
as an introduction to algebraic integration, which would be useless for our purposes.
However, we shall use in the sequel some notation taken from this method of rough paths
analysis, and we shall proceed to recall them now.

The algebraic integration setting is based on the notion of increment, together with
an elementary operator δ acting on them. The notion of increment can be introduced in
the following way: for an arbitrary real number T > 0, a vector space V , and an integer
k ≥ 1, we denote by Sk,T the kth order simplex on [0, T ], and by Ck(V ) the set of continuous
functions g : Sk,T → V such that gt1···tk = 0 whenever ti = ti+1 for some i ≤ k − 1. Such
a function will be called a (k − 1)-increment, and we will set C∗(V ) = ∪k≥1Ck(V ). The
operator δ alluded to above can be seen as an operator acting on k-increments, and is
defined as follows on Ck(V ):

δ : Ck(V ) → Ck+1(V ), (δg)t1···tk+1
=

k+1
∑

i=1

(−1)igt1···t̂i···tk+1
, (6)

where t̂i means that this particular argument is omitted. Then a fundamental property
of δ, which is easily verified, is that δδ = 0, where δδ is considered as an operator from
Ck(V ) to Ck+2(V ). We will denote ZCk(V ) = Ck(V ) ∩ Kerδ.

Some simple examples of actions of δ, which will be the ones we will really use through-
out the paper, are obtained by letting g ∈ C1 and h ∈ C2. Then, for any (s, u, t) ∈ S3,T ,
we have

(δg)st = gt − gs, and (δh)sut = hst − hsu − hut, (7)

and in this particular case, it can be trivially checked that for any g ∈ C1, one has δδg = 0.
Conversely, any h ∈ ZC2 can be written as h = δg for an element g ∈ C1. In the sequel of
the paper, we shall write for two elements h1, h2 ∈ C2

h1 ZC2= h2, iff h1 = h2 + z with z ∈ ZC2. (8)

Otherwise stated, h1 ZC2= h2 iff δh1 = δh2.

Notice that our future discussions will rely on some analytical assumptions made on
elements of Ck(V ). Suppose V is equipped with a norm | · |. We measure the size of the
increments by Hölder norms defined in the following way: for g ∈ C2(V ) let

‖g‖µ ≡ sup
(s,t)∈S2,T

|gst|

|t− s|µ
, and Cµ

2 (V ) = {g ∈ C2(V ); ‖g‖µ <∞} . (9)

With this notation, we also set Cµ
1 (V ) = {f ∈ C1(V ); ‖δf‖µ < ∞} (notice that the sup

norm of f is not taken into account in this definition). In the same way, for h ∈ C3(V ),
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set

‖h‖γ,ρ = sup
(s,u,t)∈S3,T

|hsut|

|u− s|γ|t− u|ρ
, (10)

‖h‖µ ≡ inf

{

∑

i

‖hi‖ρi,µ−ρi
; h =

∑

i

hi, 0 < ρi < µ

}

, (11)

where the last infimum is taken over all sequences {hi ∈ C3(V )} such that h =
∑

i hi and
for all choices of the numbers ρi ∈ (0, µ). Then ‖·‖µ is easily seen to be a norm on C3(V ),
and we set

Cµ
3 (V ) := {h ∈ C3(V ); ‖h‖µ <∞} .

In order to avoid ambiguities, we shall denote by N [f ; Cµ
j (V )] the µ-Hölder norm (or

semi-norm) on the space Cj(V ), for j = 1, 2, 3.

In order to define our increments Bn

st for all s, t almost surely, we will also need the
following definition, which has already been introduced in [16, Section 1.3]: for j ≥ 1 and

β > 0, let Cm,β
j (V ), where m stands for multiparametric, be the subspace of Cj(V ) induced

by the semi-norm:

N [h; Cm,β
j (V )] = sup

{

|hs1+ε,...,sj+ε − hs1,...,sj
|

εβ
; ε ∈ [0, 1], s1, . . . , sj ∈ [0, T ]

}

. (12)

Let us also mention that when V = R, we will simply denote the spaces Cj(V ), Cµ
j (V ) and

Cm,β
j (V ) by Cj , C

µ
j , C

m,β
j respectively.

Finally the lemma below, borrowed from [8, Lemma 4], will be an essential tool for the
analysis of Hölder type regularity of our increments:

Lemma 2.1. Let κ > 0 and p ≥ 1. Let R ∈ C2(R
l), with δR ∈ Cκ

3 (Rl) in the sense given
by (11). If

∫

S2,T

|Ruv|2p

|u− v|2κp+4
du dv <∞,

then R ∈ Cκ
2 (Rl). In particular, there exists a constant Cκ,p,l > 0, such that

N
[

R; Cκ
2 (Rl)

]

≤ Cκ,p,l

(

∫

S2,T

|Ruv|2p

|u− v|2κp+4
du dv

)
1
2p

+ Cκ,p,l N
[

δR; Cκ
3 (Rl)

]

.

2.2. Analytic bounds on the fractional Brownian kernel. We gather in this section
some technical bounds on the kernel K involved in the Volterra representation of B, for
which we use the following convention (valid until the end of the article): for two positive
quantities a and b, we write a . b whenever there exists a universal constant C such that
a ≤ C b.

First, a classical bound on K is the following:

Lemma 2.2. Let K be the fBm kernel defined by (4). Then for any 0 < u < t, one has

K(t, u) . (t− u)H− 1
2 + uH− 1

2 , and ∂tK(t, u) .
(u

t

)
1
2
−H

(t− u)H− 3
2 . (13)

The following simple integral estimate on K also turns out to be useful:

Lemma 2.3. Let 0 < v < t ≤ T . Then
∫ t

v
K2(t, w) dw . (t− v)2H .
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Proof. Invoking the bound (13) on K, we have

∫ t

v

K2(t, w) dw .

∫ t

v

[

(t− w)H− 1
2 + wH− 1

2

]2

dw

.

∫ t

v

(t− w)2H−1 dw +

∫ t

v

w2H−1 dw . (t− v)2H −
[

t2H − v2H
]

.

Furthermore, since aα − bα ≤ (a− b)α for any 0 ≤ b < a and α ∈ (0, 1), we end up with
∫ t

v
K2(t, w) dw . (t− v)2H , which is our claim.

�

We shall also use a slightly more elaborated result on K:

Lemma 2.4. Let 0 < s < t ≤ T , assume H < 1/2, and consider the quantity

Ist =

∫ t

0

[K(t, u1) −K(s, u1)]
2

(
∫ t

u1

K2(t, u2) du2

)

du1,

where we recall that we have used the convention K(t, u) = K(t, u)1[0,t)(u). Then |Ist| .

|t− s|4H .

Proof. According to the fact that K(t, u) = 0 whenever u ≥ t, we obtain the expression

Ist =

∫ s

0

[K(t, u1) −K(s, u1)]
2

(
∫ t

u1

K2(t, u2) du2

)

du1

+

∫ t

s

K2(t, u1)

(
∫ t

u1

K2(t, u2) du2

)

du1 := I1
st + I2

st.

Let us bound now the first of those terms: thanks to Lemma 2.3, one can write
∫ t

u1
K2(t, u2)

du2 . (t− u1)
2H . Moreover, for 0 ≤ u < s the bound (13) on ∂tK(t, u) yields

|K(t, u) −K(s, u)| =

∣

∣

∣

∣

∫ t

s

∂vK(v, u)dv

∣

∣

∣

∣

. (s− u)H− 1
2 − (t− u)H− 1

2 , (14)

and thus, putting these two estimates together, we obtain:

I1
st .

∫ s

0

[

(s− u)H− 1
2 − (t− u)H− 1

2

]2

(t− u)2Hdu.

Performing the changes of variable v = s− u and y = v/(t− s), we end up with

I1
st . (t− s)4H

∫ s/(t−s)

0

[

(1 + y)H− 1
2 − yH− 1

2

]2

(1 + y)2H dy.

Furthermore, it is easily checked that
∫∞

0

[

(1 + y)H− 1
2 − yH− 1

2

]2

(1 + y)2H dy is a conver-

gent integral whenever H < 1/2, which gives the desired bound for I1
st. The term I2

st is in
fact easier to handle, and we leave those details to the reader for the sake of conciseness.
Then, the estimates on I1

st and I2
st yield our claim.

�

Finally, the following related integral bound also turns out to be an important estimate
for the analysis of nth order iterated integrals:
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Lemma 2.5. Suppose that 2kH < 1. For A > 0, set

βA =

∫ A

0

[

yH− 1
2 − (1 + y)H− 1

2

] [

yH− 1
2 + (A− y)H− 1

2

]

y2(k−1)Hdy.

Then supA>0 βA <∞.

Proof. We can write βA ≤ αA + γA, with

αA =

∫ ∞

0

[

yH− 1
2 − (1 + y)H− 1

2

]

y2(k−1)H+H− 1
2 dy

γA =

∫ A

0

[

yH− 1
2 − (1 + y)H− 1

2

]

(A− y)H− 1
2y2(k−1)H dy.

One can check easily, as in the proof of Lemma 2.4, that αA is finite as long as 2kH < 1.
On the other hand, an obvious change of variables yields

γA = A2kH

∫ 1

0

hA(y) (1 − y)H− 1
2 y2(k−1)Hdy, (15)

where the (positive) function hA is defined on R+ by hA(y) = yH− 1
2 − ( 1

A
+ y)H− 1

2 . We
now use two elementary estimates:

hA(y) ≤

(

1

2
−H

)

yH− 3
2

A
, and hA(y) ≤ yH− 1

2 ,

and we obtain

hA(y) = hA(y)2kH hA(y)1−2kH

≤

((

1

2
−H

)

1

A
yH− 3

2

)2kH

y(H− 1
2
)(1−2kH) =

cH,k y
(1−2k)H− 1

2

A2kH
,

where cH,k = (1
2
−H)2kH . Plugging this bound into (15), we get

γA ≤ cH,k

∫ 1

0

(1 − y)H− 1
2y−H− 1

2dy.

This last integral being finite, our claim is now proved.
�

Remark 2.6. The reader can check that the only properties of the kernel K used in the
sequel are

K(t, u) . (t− u)H− 1
2 + uH− 1

2 , and ∂tK(t, u) . (t− u)H− 3
2

for someH ∈ (0, 1/2). Our rough path construction is thus valid for any Gaussian Volterra
process defined by a kernel satisfying the above estimates.

2.3. Contraction of Stratonovich iterated integrals. An important tool in our anal-
ysis of iterated integrals will be a general formula of Itô-Stratonovich corrections for it-
erated integrals. This kind of result has already been obtained in the literature, and for
our purposes, it will be enough to use a particular case of [2, Proposition 1], recalled here
for further use. Note that we need an additional notation for this intermediate result: we
set dY for the Stratonovich type differential with respect to a process Y , while the Itô
type differential is denoted by ∂Y .
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Proposition 2.7. Let Y = (Y (1), . . . , Y (n)) be a n-dimensional martingale of Gaussian
type, defined on an interval [s, t], of the form Yu(j) =

∫ u

s
ψv(j) dWv(ij) for a family of

L2([s, t]) functions (ψ(1), . . . , ψ(n)), a set of indices (i1, . . . , in) belonging to {1, . . . , d}n,
and where we recall that (W (1), . . . ,W (d)) is a d-dimensional Wiener process. Then the
following decomposition holds true:

∫

s≤u1<···<un≤t

dYu1(i1) · · · dYun
(in) =

n
∑

k=⌊n/2⌋

1

2n−k

∑

ν∈Dk
n

Jst(ν).

In the above formula, the sets Dk
n are subsets of {1, 2}k given by

Dk
n =

{

ν = (n1, . . . , nk);

k
∑

j=1

nj = n

}

,

and the Itô-type multiple integrals Jst(ν) are defined as follows:

Jst(ν) =

∫

s≤u1<···<uk≤t

∂Zu1(1) · · ·∂Zuk
(k),

where, setting
∑j

l=1 nl = m(j), we have

Z(j) = Y (im(j)) if nj = 1,

and

Zu(j) =

(
∫ u

s

ψv(m(j) − 1)ψv(m(j)) dv

)

1(im(j)−1=im(j)) if nj = 2.

The previous Itô-Stratonovich decomposition allows us to bound the second order mo-
ment of iterated Stratonovich integrals in the following way:

Lemma 2.8. Let ϕ ∈ L2([s, t]). Consider the Stratonovich iterated integral

In
st(ϕ) =

∫

s<u1<···<un<t

n
∏

i=1

ϕ(ui) dWu1(i1) · · · dWun
(in).

Then,

E
[

In
st(ϕ)2

]

≤ C

(
∫ t

s

ϕ(u)2du

)n

, (16)

where the constant C depends on n and the multiindex (i1, . . . , in).

Proof. By Proposition 2.7, we can decompose the Stratonovich integral In
st(ϕ) into a sum

of Itô integrals:

In
st(ϕ) =

n
∑

k=⌊n/2⌋

1

2n−k

∑

ν∈Dk
n

Jst(ν),

and it suffices to consider each Itô integral Jst(ν). Then we proceed by recurrence with
respect to k, with the notation of Proposition 2.7. Suppose first that nk = 1. Then,

Jst(ν) =

∫ t

s

Jsu(ν
′)ϕ(u)∂uW (in),

where ν ′ = (n1, . . . , nk−1). As a consequence,

E[Jst(ν)
2] =

∫ t

s

E
[

Jsu(ν
′)2
]

ϕ(u)2du ≤ sup
s≤u≤t

E
[

Jsu(ν
′)2
]

∫ t

s

ϕ(u)2du.
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On the other hand, if nk = 2, then Jst(ν) =
∫ t

s
Jsu(ν

′′)ϕ(u)2du, with ν ′′ = (n1, . . . , nk−2),
and again

E[Jst(ν)
2] ≤ sup

s≤u≤t
E
[

Jsu(ν
′′)2
]

(
∫ t

s

ϕ(u)2du

)2

.

By recurrence we obtain (16), where C =

(

∑n
k=⌊n/2⌋

|Dk
n|

2n−k

)2

.

�

3. Iterated integrals of order 2

In this section, we will define the element B2 announced in Theorem 1.1. The study of
this particular case will (hopefully) allow us to introduce many of the technical ingredients
needed for the general case in a didactic way.

3.1. Heuristic considerations. Let us first specify what is meant by an iterated integral
of order 2: according to the definitions contained in the Introduction, we are searching
for a process {B2

st(i1, i2); (s, t) ∈ S2,T , 1 ≤ i1, i2 ≤ d} satisfying:

(i) The regularity condition B2 ∈ C2γ
2 (Rd,d).

(ii) The multiplicative property

δB2

sut(i1, i2) = B1

su(i1)B1

ut(i2) = [Bu(i1) − Bs(i1)] [Bt(i2) − Bu(i2)] , (17)

which should be satisfied almost surely for all (s, u, t) ∈ S3,T and 1 ≤ i1, i2 ≤ d.
(iii) The geometric relation, which can be read here as:

B2

st(i1, i2) + B2

st(i2, i1) = B1

st(i1)B1

st(i2), (s, t) ∈ S2,T , 1 ≤ i1, i2 ≤ d. (18)

In order to construct this kind of element, let us start with some heuristic considerations,
similar to the starting point of [18]: assume for the moment that X is a smooth d-
dimensional function defined on [0, T ]. Then the natural notion of iterated integral of

order 2 for X is obviously an element X̂2, defined in the Riemann sense by

X̂2

st(i1, i2) =

∫

s≤u1≤u2≤t

dXu1(i1) dXu2(i2) =

∫ t

s

[Xu(i1) −Xs(i1)] dXu(i2). (19)

We shall now decompose X̂2 into terms of the form A2 and C2 as explained in the
Introduction. In our case, this can be done in two ways: first, equation (19) immediately
yields

X̂2

st(i1, i2) = Â
2,2
st + Ĉ

2,2
st , with Â

2,2
st = −Xs(i1) δXst(i2), Ĉ

2,2
st =

∫ t

s

Xu(i1) dXu(i2),

where we have called those quantities Â2,2 and Ĉ2,2 because they involve increments of
the second component X(i2) of X. Notice now that Ĉ2,2 is the increment of a function

f defined as ft =
∫ t

0
Xu(i1) dXu(i2). Hence, according to convention (8), one can write

X̂2(i1, i2)
ZC2= Â2,2. By inverting the order of integration in u1, u2 thanks to Fubini’s

theorem, we also obtain

X̂2

st(i1, i2) = Â
2,1
st + Ĉ

2,1
st , with Â

2,1
st = δXst(i1)Xt(i2), Ĉ

2,1
st = −

∫ t

s

Xu(i2) dXu(i1),

and thus X̂2(i1, i2)
ZC2= Â2,1.
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Let us go back now to the case of the d-dimensional fBm B. If we wish the iterated
integral B2 we are constructing to behave in a similar manner as a Riemann type integral,
then one should also have the relation:

B2(i1, i2)
ZC2= A2,2, and B2(i1, i2)

ZC2= A2,1,

with A
2,2
st = −Bs(i1) δBst(i2) and A

2,1
st = δBst(i1)Bt(i2). This means in particular, ac-

cording to the fact that δ|ZC2 = 0, that both A2,1 and A2,2 satisfy the multiplicative
relation (17), as it can be easily checked by direct computations. However, this naive
decomposition has an important drawback: the increments A2,1 and A2,2 only belong to
Cγ

2 , instead of C2γ
2 , for any γ < H (this point was also stressed in [18]).

Our construction diverges from [18] in the way we cope with the regularity problem
mentioned above. Indeed, we start from the following observation: invoking the represen-
tation (3) of B, one can write

A
2,2
st = −Bs(i1) δBst(i2) = −

∫

R

K(s, u1)dWu1(i1)

∫

R

[K(t, u2) −K(s, u2)] dWu2(i2)

= −

∫

R2

K(s, u1) [K(t, u2) −K(s, u2)] dWu1(i1)dWu2(i2),

where we recall that the stochastic differentials dW are defined in the Stratonovich sense.
In the same way, we get

A
2,1
st =

∫

R2

[K(t, u1) −K(s, u1)]K(t, u2) dWu1(i1)dWu2(i2).

The idea in order to transform A2,1,A2,2 into C2γ
2 increments is then to replace the

integrals over R
2 above by integrals on the simplex, as mentioned in the Introduction.

Namely, we set now

B̂
2,1
st (i1, i2) =

∫

u1<u2

[K(t, u1) −K(s, u1)]K(t, u2) dWu1(i1)dWu2(i2) (20)

B̂
2,2
st (i1, i2) = −

∫

u2<u1

K(s, u1) [K(t, u2) −K(s, u2)] dWu1(i1)dWu2(i2), (21)

and notice that these formulas are a particular case of (5) for n = 2. We shall see that

B̂2,1(i1, i2) and B̂2,2(i1, i2) are elements of C2γ
2 , but they do not satisfy the multiplicative

and geometric property anymore. However, it is now easily conceived, by some symmetry
arguments, that the sum of these last two terms do satisfy the desired algebraic properties
again. Indeed, we set now

B2

st(i1, i2) = B̂
2,1
st (i1, i2) + B̂

2,2
st (i1, i2), (22)

and we claim that B2 is a C2γ
2 (Rd,d) increment which fulfills relations (17) and (18). The

remainder of this section is devoted to prove these claims.

3.2. Properties of the second order increment. It is obviously essential for the
following developments to check that B2 is a well defined object in L2(Ω). The next
proposition asserts the existence of B2

st as a L2 random variable for all s, t in the interval
[0, T ].

Proposition 3.1. Let H < 1/2, (s, t) ∈ S2,T and B2

st be the matrix valued random variable
defined by (22). Then B2

st(i1, i2) ∈ L2(Ω; R
d,d) and E[|B2

st|
2] . (t− s)4H .
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Proof. Assume first i1 6= i2. We shall focus on the relation E[(B2,1
st (i1, i2))

2] . (t − s)4H ,
the bound on B

2,2
st being obtained in a similar way. Now Stratonovich and Itô type

integrals coincide when i1 6= i2, and according to expression (20) we have

E
[

(

B
2,1
st (i1, i2)

)2
]

=

∫

u1<u2

[

K(t, u1)1[0,t](u1) −K(s, u1)1[0,s](u1)
]2
K2(t, u2)1[0,t](u2) du1du2,

which is exactly the quantity Ist studied at Lemma 2.4. The desired bound follows from
Lemma 2.4.

Let us now treat the case i1 = i2 = i, still concentrating our efforts on the inequality
E[(B2,1

st (i, i))2] . (t − s)4H . In this context, Proposition 2.7 yields the decomposition
B

2,1
st (i, i) = Mst + Vst, with

Mst =

∫

u1<u2

[K(t, u1) −K(s, u1)]K(t, u2) ∂Wu1(i) ∂Wu2(i)

Vst =
1

2

∫

u1<u2

[K(t, u1) −K(s, u1)]K(t, u2) du1 du2,

where we stress the fact that Vst is a deterministic correction term. It is thus obviously
enough to obtain the bounds E[M2

st] . (t− s)4H and V 2
st . (t− s)4H separately, the first

of these bounds being obtained by evaluating Ist in Lemma 2.4 again. As far as Vst is
concerned, Jensen’s inequality allows us to assert

V 2
st .

∫

u1<u2

[K(t, u1) −K(s, u1)]
2K(t, u2)

2 du1 du2 = Ist,

which trivially finishes the proof.
�

A second technical step in the study of B2 is to prove that this increment belongs to a
space of the form Cm,β

2 (Rd,d).

Proposition 3.2. Let B2 be the iterated integral increment defined by Equation (22).

Then there exists a version of B2 such that B2 ∈ Cm,β
2 (Rd,d) for any β < H.

Proof. Thanks to the multiparametric version of Kolmogorov’s criterion [3], it is enough
to check that

E
[

|B2

s+h,t+k −B2

st|
p
]

. |h|p + |k|p, (23)

for (s, t) ∈ S2,T , h, k such that s + h, t + k ∈ [0, T ], s + h < t + k, and p large enough.
Furthermore, invoking the fact that B2

st is an element of the second chaos of W , on which
all Lp norms are equivalent, it is enough to check relation (23) for p = 2. This last
computation is however very similar to the one contained in the proof of Proposition 3.1,
and we omit it here for the sake of conciseness.

�

We are now equipped with the continuous version of B2 exhibited in the last proposition,
on which we will work without further mention, and we are now ready to prove the
algebraic relations satisfied by our second order increment.

Proposition 3.3. The increment B2 defined by (22) satisfies relations (17) and (18).
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Proof. Recall that we are now dealing with a continuous version of B2. In fact, one can
easily modify the arguments of Proposition 3.2 in order to get a continuous version of the
pair (B1,B2). This means that it is enough to check relations (17) and (18) for some
fixed 0 ≤ s < u < t ≤ T .

Let us then verify (17) for s, u, t ∈ [0, T ] such that s < u < t. It is readily seen, by
writing the definitions of B

2,1
st (i1, i2),B

2,1
su (i1, i2) and B2

ut(i1, i2), that

δB2,1
sut(i1, i2) =

∫

u1<u2

[K(u, u1) −K(s, u1)] [K(t, u2) −K(u, u2)] dWu1(i1)dWu2(i2),

the right hand side of this equality being well defined as a L2 random variable (a fact
which can be shown similarly to Proposition 3.1). Along the same lines, we also get

δB2,2
sut(i1, i2) =

∫

u1>u2

[K(u, u1) −K(s, u1)] [K(t, u2) −K(u, u2)] dWu1(i1)dWu2(i2),

and thus

δB2

sut(i1, i2) = δB2,1
sut(i1, i2) + δB2,2

sut(i1, i2)

=

∫

R2

[K(u, u1) −K(s, u1)] [K(t, u2) −K(u, u2)] dWu1(i1)dWu2(i2)

= B1

su(i1)B1

ut(i2),

which is relation (17). Relation (18) is shown thanks to the same kind of elementary
considerations, and its proof is left to the reader.

�

Finally, let us close this section by giving the proof of the announced regularity result
on B2.

Proposition 3.4. The increment B2 is almost surely an element of C2γ
2 (Rd,d), for any

γ < H.

Proof. Consider a fixed Hölder exponent γ < H . The proof of this result is based on
Lemma 2.1, which can be read here as N [B2; C2γ

2 (Rd,d)] . A+D, with

A =

(

∫

S2,T

|B2

uv|
2p

|u− v|4γp+4
du dv

)
1
2p

, and D = N
[

δB2; C2γ
3 (Rd,d)

]

.

Let us first deal with the termD above: we have seen that B2 satisfies the multiplicative
property (17), which can be summarized as δB2 = δB ⊗ δB. Furthermore, B ∈ Cγ

1 (Rd)
for any γ < H , and thus, for any 1 ≤ i1, i2 ≤ d and 0 ≤ s < u < t ≤ T

|δB2

sut(i1, i2)| = |δBsu(i1)| |δBut(i2)| ≤ N 2[B; Cγ
1 (Rd)] |u− s|γ|t− u|γ.

In other words, the quantity ‖δB2‖γ,γ defined by (10) is almost surely finite, and according
to definition (11), we obtain that D is also almost surely finite.

We will now show that A is finite almost surely when p is large enough, by proving that
E[A] <∞. Indeed, invoking Jensen’s inequality we obtain:

E [A] ≤

(

∫

S2,T

E [|B2

uv|
2p]

|u− v|4γp+4
dudv

)
1
2p

.

(

∫

S2,T

Ep [|B2

uv|
2]

|u− v|4γp+4
dudv

)
1
2p

, (24)
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where we have used the fact that B2 belongs to the second chaos of W , on which all
the Lp norms are equivalent. On the other hand, Proposition 3.1 gives Ep [|B2

uv|
2] .

|u− v|4pH , and plugging this inequality into (24), we obtain that E[A] is finite as long as
p > 1/(H − γ).

�

In conclusion, putting together the last two propositions, we have constructed an ele-
ment B2 which satisfies the properties (i)–(iii) given at the beginning of the section, for
any H < 1/2.

4. General case

The aim of this section is to prove Theorem 1.1 in its full generality. Recall that we
define our substitute Bn to nth order integrals in the following way: for 2 ≤ n ≤ ⌊1/H⌋,
any tuple (i1, . . . , in) of elements of {1, . . . , d}, 1 ≤ j ≤ n and (s, t) ∈ S2,T , set

B̂
n,j
st (i1, . . . , in)

= (−1)j−1

∫

An
j

j−1
∏

l=1

K(s, ul) [K(t, uj) −K(s, uj)]
n
∏

l=j+1

K(t, ul) dWu1(i1) · · ·dWun
(in),

(25)

where the kernel K is given by (4) and An
j is the subset of [s, t]n defined by

An
j = {(u1, . . . , un) ∈ [0, t]n; uj = min(u1, . . . , un), u1 > · · · > uj−1, and uj+1 < · · · < un} .

The increment Bn is then given by

Bn

st(i1, . . . , in) =

n−1
∑

j=1

B̂
n,j
st (i1, . . . , in). (26)

It is obviously harder to reproduce the heuristic considerations leading to this expression
than in Section 3.1. Let us just mention that the same kind of changes in the order
of integration allows us to produce some increments similar to A2,1,A2,2. Then the
reordering trick yields some terms of the form B̂

n,j
st . After observing the form of several

of these terms, the general expression (25) is then intuited in a natural way.

Notation: in order to write shorter formulas in the computations below, we use the
following conventions in the sequel, whenever possible:

(i) A product of kernels of the form
∏n

j=1K(τj , uj) will simply be denoted by
∏n

j=1Kτj
,

meaning that the variable uj has to be understood according to the position of the kernel
K in the product.

(ii) In the same context, we will also set δKst for a quantity of the formK(t, uj)−K(s, uj).

(iii) Furthermore, when all the τj are equal to the same instant t, we write
∏n

j=1K(t, uj) =

K⊗n
t .

(iv) Finally, we will also shorten the notations for the increments of the Wiener process
W , and simply write dW for

∏n
j=1 dWuj

(ij).

All these conventions allow us, for instance, to summarize formula (25) into

B̂
n,j
st (i1, . . . , in) = (−1)j−1

∫

An
j

K⊗(j−1)
s δKstK

⊗(n−j)
t dW. (27)
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4.1. Moments of the nth order integrals. As in Section 3.2, an important step of
our analysis is a control of the second moment of Bn. This is given in the following
proposition.

Proposition 4.1. For n ≤ ⌊ 1
H
⌋, let Bn

st be defined by (26). Then for (s, t) ∈ S2,T , we
have

E
[

|Bn
st|

2] ≤ C(t− s)2nH ,

for a strictly positive constant C.

Proof. Thanks to decomposition (26), it suffices to show that for any fixed family of
indexes i1, . . . , in ∈ {1, . . . , d} and for any 1 ≤ j ≤ n− 1, we have

E

[

∣

∣

∣
B̂

n,j
st (i1, . . . , in)

∣

∣

∣

2
]

≤ C(t− s)2nH .

Invoking now expression (25) for B̂n,j and decomposing the integral over the region Aj

appearing in the definition of B̂
n,j
st (i1, . . . , in) into integrals over the simplex, it suffices to

show an inequality of the type

E
[

(Qst)
2
]

≤ C(t− s)2nH , with Qst =

∫

0<u1<···<un<t

δKst

n
∏

i=2

Kτi
dW. (28)

Notice that in the expression above, we made use of the notation introduced at the
beginning of the current section, and for i = 1, . . . , n, we assume τi = s or t. We
concentrate our efforts now in proving (28).

Let us further decompose Q into Q = Q1 +Q2, where

Q1
st =

∫

s<u1<···<un<t

K⊗n
t dW, and Q2

st =

∫

0<u1<···<un<t,u1<s

δKst

n
∏

i=2

Kτi
dW. (29)

Notice that in Q1
st we have assumed the τi = t for all i, since otherwise this term vanishes.

Moreover, the term Q1
st can be handled using the properties of the multiple Stratonovich

integrals established in Lemma 2.8, and applying the estimate obtained in Lemma 2.3.
This yields easily the relation E[(Q1

st)
2] . (t− s)2nH .

Concerning Q2
st, one can write Q2

st =
∑n

j=1B
j
st where

Bj
st =

∫

0<u1<···<uj<s<uj+1<···<un<t

δKst

n
∏

i=2

Kτi
dW.

Notice that in the above equation τi = t if i = j + 1, . . . , n, since we have again Bj
st = 0

otherwise. Each term Bj
st can thus be written as the product of two factors: Bj

st = Cj
stD

j
st,

where for j ≥ 2

Cj
st =

∫

0<u1<···<uj<s

δKst

j
∏

i=2

Kτi
dW, and Dj

st =

∫

s<uj+1<···<un<t

K
⊗(n−j)
t dW,

and for j = 1, C1
st =

∫ s

0
δKstdW and D1

st is given by the above formula.

The random variables Cj
st andDj

st are independent, and E[(Dj
st)

2] can be bounded easily
like E[(Q1

st)
2]. Hence we obtain

E
[

(Bj
st)

2
]

= E
[

(Cj
st)

2
]

E
[

(Dj
st)

2
]

≤ CE
[

(Cj
st)

2
]

(t− s)2(n−j)H . (30)
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In order to bound the second moment of Cj
st, we express this factor as a sum of Itô

integrals by means of Proposition 2.7. To do this, we give up for a moment our convention
on products of increments, and we define, for u ∈ [0, s] and l = 2, . . . , j, the processes

Yu(1) =

∫ u

0

[K(t, v) −K(s, v)] dWv(i1) and Yu(l) =

∫ u

0

K(τl, v)dWv(il).

Then, the processes {Yu(l); 0 ≤ u ≤ s} are Gaussian martingales and

Cj
st =

∫

0<u1<···<uj<s

dYu1(1)dYu1(2) · · ·dYul
(l).

Thus, a direct application of Proposition 2.7 yields

Cj
st =

j
∑

k=⌊j/2⌋

1

2j−k

∑

ν∈Dk
j

J0s(ν), where J0s(ν) =

∫

0<u1<···<uk<s

∂Zu1(1) · · ·∂Zuk
(k),

for ν = (j1, . . . , jk). Thus, setting
∑h

l=1 jl = m(h), we have Z(h) = Y (im(h)) if jh = 1, and
Zu(h) = 〈Y (m(h) − 1), Y (m(h))〉u if jh = 2 and im(h)−1 = im(h), where 〈·, ·〉 designates
the bracket of two continuous martingales. We are going to estimate E[J0s(ν)

2] using a
recursive argument. This will be done in several steps:

Step 1: Suppose jk, jk−1, . . . , j1 = 2. Then j = 2k, and we can assume that im = im−1

for m = 2, 4, . . . , 2k, otherwise J0s(ν) = 0. The term J0s(ν) is deterministic and it can be
expressed as follows:

J0s(ν) =

∫

0<u1<···<uk<s

[K(t, u1) −K(s, u1)]K(τ2, u1)

×
k
∏

h=2

K(τ2h−1, uh)K(τ2h, uh)du1 · · · duk.

As a consequence, owing to (13) and (14), we have

|J0s(ν)| ≤ C

∫

0<u1<···<uk<s

ϕ(1)
u1

k
∏

h=2

ϕ(2)
uh
du1 · · · duk, (31)

where

ϕ(1)
u1

=
[

(s− u1)
H− 1

2 − (t− u1)
H− 1

2

] [

(s− u1)
H− 1

2 + u
H− 1

2
1

]

,

and

ϕ(2)
uh

=
[

(s− uh)
H− 1

2 + u
H− 1

2
h

]2

.
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Moreover, the integral of
∏k

h=2 ϕ
(2)
uh is easily bounded: indeed, we have

∫

u1<u2<···<uk<s

k
∏

h=2

ϕ(2)
uh
du2 · · · duk

≤

∫

u1<u2<···<uk<s

k
∏

h=2

[

(s− uh)
H− 1

2 + (uh − uh−1)
H− 1

2

]2

du2 · · · duk

≤C

∫

u1<u2<···<uk<s

k
∏

h=2

[

(uh+1 − uh)
2H−1 + (uh − uh−1)

2H−1
]

du2 · · ·duk

≤C(s− u1)
2(k−1)H ,

with the convention uk+1 = s. Therefore, plugging this inequality into (31) and making
the change of variables s− u1 = v and y = v

t−s
, we get

|J0s(ν)| ≤ C

∫ s

0

[

(s− u1)
H− 1

2 − (t− u1)
H− 1

2

] [

(s− u1)
H− 1

2 + u
H− 1

2
1

]

(s− u1)
2(k−1)Hdu1

= C

∫ s

0

[

vH− 1
2 − (t− s+ v)H− 1

2

] [

vH− 1
2 + (s− v)H− 1

2

]

v2(k−1)Hdv

= C(t− s)2kH

∫ s/(t−s)

0

[

yH− 1
2 − (1 + y)H− 1

2

]

[

yH− 1
2 +

(

s

t− s
− y

)H− 1
2

]

y2(k−1)Hdy.

We are now in a position to use Lemma 2.5 with A = s/(t− s), and we obtain

|J0s(ν)| ≤ C(t− s)2kH , (32)

which implies that J0s(ν)
2 ≤ C(t− s)2jH , owing to the fact that 2k = j.

Step 2: Suppose that jk = 1. Then Proposition 2.7 gives

J0s(ν) =

∫

0<u1<···<uk<s

∂Zu1(1) · · ·∂Zuk−1
(k − 1)K(τj , uk) ∂Wu(ij),

and

E
[

J0s(ν)
2
]

=

∫ s

0

E
(

J0u(ν
′)2
)

K(τj , u)
2du

≤

∫ s

0

E
(

J0u(ν
′)2
) (

(s− u)2H−1 + u2H−1
)

du,

with ν ′ = (j1, . . . , jk−1). This relation allows to set an induction procedure, as we shall
see later.

Step 3: Suppose that jk, jk−1, . . . , jb+1 = 2 and jb = 1, where b ≥ 2. We assume that
im(h) = im(h)−1 for h = b+ 1, . . . , k. Here again, Proposition 2.7 implies

J0s(ν) =

∫

0<u1<···<uk<s

∂Zu1(1) · · ·∂Zub
(b)

k
∏

h=b+1

K(τm(h)−1, uh)K(τm(h), uh)du1 · · ·duk,

and Fubini’s theorem yields

J0s(ν) =

∫ s

0

J0ub
(ν ′)K(τm(h), ub)G(ub)dWub

(im(h)),
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with ν ′ = (j1, . . . , jb−1), and where

G(ub) =

∫

0<ub<ub+1<···<uk<s

k
∏

h=b+1

K(τm(h)−1, uh)K(τm(h), uh)dub+1 · · ·duk.

As for the previous bound (32) we obtain

|G(ub)| ≤ C(s− ub)
2(k−b)H .

Therefore

E
[

J0s(ν)
2
]

=

∫ s

0

E
[

J0ub
(ν ′)2

]

K(τm(h), ub)
2G(ub)

2dub

≤ C

∫ s

0

E
[

J0ub
(ν ′′)2

] [

(s− ub)
2H−1 + u2H−1

b

]

(s− ub)
4(k−b)Hdub.

Notice that the above inequality includes the inequality obtained in Step 2, which corre-
sponds to the case b = k.

Step 4: Suppose that jk, jk−1, . . . , jb+1 = 2, jb = 1, jb−1, jb−2, . . . , jc+1 = 2 and jc = 1,
where 2 ≤ c ≤ b. We assume also that im(h) = im(h)−1 for h = c+1, . . . , , b−1, b+1, . . . , k.
By the same arguments as in Step 2 we obtain

E
[

J0s(ν)
2
]

≤ C

∫

0<uc<ub<s

E
[

J0uc
(ν ′)2

] [

(ub − uc)
2H−1 + u2H−1

c

]

(ub − uc)
4(b−c)H

×
[

(s− ub)
2H−1 + u2H−1

b

]

(s− ub)
4(k−b)Hducdub,

with ν ′ = (j1, . . . , jc−1). Replacing u2H−1
b by (ub − uc)

2H−1 and integrating with respect
to ub yields

E
[

J0s(ν)
2
]

≤ C

∫ s

0

E
[

J0uc
(ν ′)2

] [

(s− uc)
2H−1 + u2H−1

c

]

(s− uc)
4(k−c)H+2Hduc.

Step 5: Iteration scheme. Iterating the argument in Step 4, we reduce the size of ν ′ until
we obtain a multiindex of length r such that ν ′ = (1, 2, . . . , 2) or ν ′ = (2, 2, . . . , 2), with
jr+1 = 1, and we obtain an estimate of the form

E
[

J0s(ν)
2
]

≤ C

∫ s

0

E
[

J0u(ν
′)2
] [

(s− u)2H−1 + u2H−1
]

(s− u)2H
Pk

l=r+2 jldu, (33)

Suppose first that ν ′ = (1, 2, . . . , 2). Then,

J0s(ν
′) =

∫

0<u1<···<ur<u

[K(t, u1) −K(s, u1)]

×
r
∏

h=2

K(τm(h)−1, uh)K(τm(h), uh)dWu1(i1)du2 · · · dur.

and by Fubini’s theorem

J0s(ν
′) =

∫ u

0

[K(t, u1) −K(s, u1)]F (u1)dWu1(i1),

where

F (u1) =

∫

u1<u2<···<ur<u

r
∏

h=2

K(τm(h)−1, uh)K(τm(h), uh)du2 · · ·dur.
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As in the proof of (32) we get

|F (u1)| ≤ C(u− u1)
2(r−1)H .

Therefore,

E
[

J0s(ν
′)2
]

≤ C

∫ u

0

[(t− u1)
H− 1

2 − (s− u1)
H− 1

2 ]2(u− u1)
4(r−1)Hdu1. (34)

Substituting (34) into (33) yields, after integrating in the variable u,

E
[

J0s(ν)
2
]

≤ C

∫ s

0

[(t− u)H− 1
2 − (s− u)H− 1

2 ]2(s− u)2(j−1)Hdu.

Performing the changes of variables v = s− u and y = v/(t− s), we end up with

E
[

J0s(ν)
2
]

≤ C(t− s)2jH

∫ s/(t−s)

0

[(1 + t)H− 1
2 − yH− 1

2 ]2y2(j−1)Hdy ≤ C(t− s)2jH , (35)

where the last step is obtained thanks to a slight variation of Lemma 2.5.
If ν ′ = (2, 2, . . . , 2), then we proceed as in Step 1 and we obtain

|J0u(ν
′)| ≤ C

∫ u

0

[(s−u1)
H− 1

2 −(t−u1)
H− 1

2 ][(u−u1)
H− 1

2 +u
H− 1

2
1 ](u−u1)

2(r−1)Hdu1. (36)

Substituting (36) into (33), integrating first in the variable u and using the same arguments
as in Step 1 we obtain also the estimate

E
[

J0s(ν)
2
]

≤ C(t− s)2jH . (37)

Step 6: Conclusion. Our bounds (35) and (37) on J0s(ν) yields the same kind of estimate
for the term Cj

st. Thus relation (30) gives Bj
st . (t − s)2nH . This estimate can now be

plugged into the definition (29) of Q2, then in the definition of Q, which leads to our
claim (28). The proof is now finished.

�

4.2. Proof of Theorem 1.1. Before we prove our main theorem, we need a last elemen-
tary technical ingredient, which relies on the notational convention given at the beginning
of the current section.

Lemma 4.2. For n ≥ 3, j = 2, . . . , n− 1 and 0 ≤ s < t ≤ T , set

Mn,j
st = K⊗(j−1)

s δKstK
⊗(n−j)
t .

Recall that for an element M ∈ C2, δM is defined by (7). Then

δMn,j
sut = −

j−1
∑

m=1

K⊗(m−1)
s δKsuK

⊗(j−1−m)
u δKutK

⊗(n−j)
t

+K⊗(j−1)
s δKsu

n−j
∑

m=1

K⊗(m−1)
u δKutK

⊗(n−j−m)
t .

The relation still holds true for j ∈ {1, n} and n = 2, with the convention K⊗0 = 1 and
δK⊗0 = 0.
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Proof. This proof is completely elementary, and included here for the sake of completeness,
since it uses heavily the notation of Section 2.1.

First, if a, b, c are 3 increments in C1, and if we define N ∈ C2 by Nst = as δbst ct, then
a simple application of Definition (7) gives

δNsut = −δasu δbut ct + as δbsu δcut.

Our claim is thus proved by applying this relation to a = K⊗(j−1), b = K, c = K⊗(n−j),

and observing that [δK⊗l]st =
∑l

p=1K
⊗(p−1)
s δKstK

⊗(l−p)
t .

�

Proof of Theorem 1.1. The structure of the proof is the same as in the second order case
of Section 3.2: we first prove that (a modification of) Bn is almost surely an element of

Cm,β
2 ((Rd)⊗n) for any β < H , applying Kolmogorov’s criterion and with the same kind of

computations as for Proposition 4.1. This allows us to reduce the algebraic relations (1)
and (2) to the case of some fixed s, u, t. We will first focus on (1).

Step 1: Proof of the mutliplicative property (1). Fix (s, u, t) ∈ S3,T . Recall that B̂
n,j
st is

defined by (27). Therefore, invoking Lemma 4.2, δB̂n,j is given by

δB̂n,j
sut(i1, . . . , in) = (−1)j

∫

An
j

j−1
∑

m=1

K⊗(m−1)
s δKsuK

⊗(j−1−m)
u δKutK

⊗(n−j)
t dW

+ (−1)j−1

∫

An
j

K⊗(j−1)
s δKsu

n−j
∑

m=1

K⊗(m−1)
u δKutK

⊗(n−j−m)
t dW. (38)

On the other hand, set Zsut =
∑n−1

n1=1 Bn1

suBn−n1

ut . One can easily check that

Zsut =
n−1
∑

n1=1

n1
∑

k=1

n−n1
∑

h=1

B̂n1,k
su B̂

n−n1,h
ut (39)

=

n−1
∑

n1=1

n1
∑

k=1

n−n1
∑

h=1

(−1)k+h

∫

Ak,h(n1)

K⊗(k−1)
s δKsuK

⊗(n1−k+h−1)
u δKutK

⊗(n−n1−h)
t dW,

where Ak,h(n1) is the set defined by

Ak,h(n1) = An1

k ×An−n1

h =
{

(u1, . . . , un); uk < uk+1 < · · · < un1, uk < uk−1 < · · · < u1,

un1+h < un1+h+1 < · · · < un, un1+h < un1+h−1 < · · · < un1+1

}

.

We want to show that (39) and (38) coincide.
In order to follow the computations below, it might be useful to keep in mind an

illustration of the coordinates ordering on a set of the form Ak,h(m), for which an example
is provided at Figure 1 (note that the ordering between um and um+1 is not specified).

Notice that on the set Ak,h(n1) ∩ {uk < un1+h} the minimum of the coordinates is uk,
and on the set Ak,h(n1) ∩ {un1+h < uk} the minimum is un1+h. Define

A1
h,k(n1) = Ak,h(n1) ∩ {uk < un1+h}, and A2

h,k(n1) = Ak,h(n1) ∩ {un1+h < uk}.
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n1 k m m+1 m+h

Figure 1. Coordinates ordering on Ak,h(m).

Consider now the decomposition Z = Z1 + Z2, where

Z i
sut =

n−1
∑

n1=1

n1
∑

k=1

n−n1
∑

h=1

(−1)k+h

∫

Ai
k,h

(n1)

K⊗(k−1)
s δKsuK

⊗(n1−k+h−1)
u δKutK

⊗(n−n1−h)
t dW.

We fix j and we try to compute the contribution of Z i
sut on the set An

j for i = 1, 2.

This contribution will be the sum of the integrals on the set An
j ∩ Ai

k,h(n1), for each
k = 1, . . . , n1, h = 1, . . . , n− n1 and for each n1 = 1, . . . , n− 1.

Notice first that the intersection An
j ∩ A1

k,h(n1) is non empty only if k = j, h = 1, and

um < um+1 which also implies j ≤ n1. Moreover, in this case we have A1
j,1(n1) ∩ {um <

um+1} = An
j . In this way we obtain that the contribution of Z1

sut on An
j is

(−1)j−1
n−1
∑

n1=j

∫

An
j

K⊗(j−1)
s δKsuK

⊗(n1−j)
u δKutK

⊗(n−n1−1)
t dW

=(−1)j−1

n−j
∑

m=1

∫

An
j

K⊗(j−1)
s δKsuK

⊗(m−1)
u δKutK

⊗(n−m−j)
t dW, (40)

where we have used the simple change of variables m = n1 − j + 1. In the same manner,
on the set An

j ∩ A2
k,h(n1) we have k = n1, h = j, which also implies n1 ≤ j. Therefore, the

contribution of Z2
sut on An

j is

(−1)j

j−1
∑

n1=1

∫

An
j

K⊗(n1−1)
s δKsuK

⊗(j−1−n1)
u K

⊗(n−j)
t dW. (41)

One can now easily verify that the sum of (40) and (41) is equal to the term (38).

It remains to prove that the contribution of Zsut to the set (∪jA
n
j )c is zero. For this,

observe that (∪jA
n
j )c can be split into slices Dk,p,h of the following form: for 1 ≤ k ≤ p ≤

n − 1, we assume that uk < uk−1 < · · · < u1 and uk < uk+1 < · · · < up but up > up+1.
Suppose also that 1 ≤ h ≤ n − p and that up+h is the minimum of the coordinates
up+1, . . . , un. Then, for Dk,p,h to be a subset of ∪n

n1=1 ∪k,h Ak,h(n1), we need the further
condition up+h < up+h+1 < · · · < un and up+h < up+h−1 < · · · < up+1. With all these
constraints in mind, it is easily seen that Dk,p,h corresponds to two possible choices of set
Ak,h(n1). Indeed, we have

Dk,p,h = Ak,h(p) = Ak,h+1(p− 1).

Going back now to the expression (39) of Zsut, it is readily checked that the two contri-
butions, respectively on Ak,h(p) and Ak,h+1(p − 1), yield two terms with opposite sign,
which cancel out in the sum.
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Step 2: Proof of the geometric property (2). Fix n,m such that n + m ≤ ⌊1/γ⌋ and let
(s, t) ∈ S2,T . Consider the product

Bn

st(i1, . . . , in)Bm

st (j1, . . . , jm)

=

n
∑

j=1

m
∑

h=1

(−1)j+h

(

∫

An
j

K⊗(j−1)
s δKstK

⊗(n−j)
t dW

)(

∫

Am
h

K⊗(h−1)
s δKstK

⊗(m−h)
t dW

)

,

where we have used notation (27) and where we recall that the sets An
j and Am

h are defined
by

An
j = {u ∈ [0, t]n : uj < uj−1 < · · · < u1, uj < uj+1 < · · · < un},

Am
h = {v ∈ [0, t]m : vh < vh−1 < · · · < v1, vh < vh+1 < · · · < vm}.

The product of the two Stratonovich integrals can be expressed as a Stratonovich integral
on the region An

j × Am
h with respect to the differential

dWu1(i1) · · · dWun
(in)dWv1(j1) · · ·dWvm

(jm).

We will make use of the notation z = (u, v), where zα = uα, for α = 1, . . . , n and zα = vα−n

for α = n + 1, . . . , n + m. Like in Step 1, the region An
j × Am

h can be first decomposed
into the union of the disjoint regions Dj,h and Ej,h, corresponding respectively to the
additional constraints {uj < vh} and {uj > vh} (notice that this decomposition is valid
up to the set {uj = vh}, whose contribution to the stochastic integral is null).

Consider first the case {uj < vh}. On Dj,h the minimum of all the coordinates zα is zj .
Then Dj,h can be further decomposed into the disjoint union of the sets

Dπ
j,h,1 = {z ∈ [0, t]n+m : zj < zαj+h−2

< · · · < zα1 , zj < zβ1 < · · · < zβn−j+1+m−h
}

∩{zn+h < zn+h−1},

where

π(1, . . . , n+m) = (α1, . . . , αj+h−2, j, β1, . . . , βn−j+1+m−h)

runs over all permutations of the coordinates 1, . . . , n+m such that π(j+h−1) = j and:

(i) α1, . . . , αj+h−2 is a permutation of the coordinates 1, . . . , j−1 and n+1, . . . , n+h−1
that keeps the orderings z1 > · · · > zj−1 and zn+1 > · · · > zn+h−1.

(ii) β1, . . . , βn−j+1+m−h is a permutation of the coordinates j+1, . . . , n and n+h, . . . , n+m
that keeps the orderings zj+1 < · · · < zn and zn+h < · · · < zn+m.

Moreover, Dj,h can be also be decomposed into the disjoint union of the sets

Dπ̃
j,h,2 = {z ∈ [0, t]n+m : zj < zαj+h−1

< · · · < zα1 , zj < zβ1 < · · · < zβn−j+m−h
}

∩{zn+h < zn+h+1},

where

π̃(1, . . . , n+m) = (α1, . . . , αj+h−1, j, β1, . . . , βn−j+m−h)

runs over all permutations of the coordinates 1, . . . , n+m such that π̃(j + h) = j and:

(i) α1, . . . , αj+h−1 is a permutation of the coordinates 1, . . . , j − 1 and n + 1, . . . , n + h
that keeps the orderings z1 > · · · > zj−1 and zn+1 > · · · > zn+h.

(ii) β1, . . . , βn−j+m−h is a permutation of the coordinates j+1, . . . , n and n+h+1, . . . , n+m
that keeps the orderings zj+1 < · · · < zn and zn+h+1 < · · · < zn+m.
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Then, on the set Dj,h we write

K⊗(j−1)
s δKstK

⊗(n−j)
t K⊗(h−1)

s δKstK
⊗(m−h)
t

= K⊗(j−1)
s δKstK

⊗(n−j)
t K⊗(h−1)

s K
⊗(m−h+1)
t −K⊗(j−1)

s δKstK
⊗(n−j)
t K⊗h

s K
⊗(m−h)
t ,

and the integral

Ij,h :=

∫

Dj,h

K⊗(j−1)
s δKstK

⊗(n−j)
t K⊗(h−1)

s δKstK
⊗(m−h)
t dW

can be expressed as the sum Ij,h = I+
j,h + I−j,h, with

I+
j,h =

∑

π

∫

Dπ
j,h,1

(−1)j+h−2

j+h−2
∏

l=1

K(s, zαl
)δKst(zj)

×

n−j+1+m−h
∏

l=1

K(t, zβl
) dWz1(i1) · · ·dWzn+m

(in+m),

and

I−j,h =
∑

π̃

∫

Dπ̃
j,h,2

(−1)j+h−1

j+h−1
∏

l=1

K(s, zαl
)δKst(zj)

×

n−j+m−h
∏

l=1

K(t, zβl
) dWz1(i1) · · ·dWzn+m

(in+m).

Let us handle first the term I+
j,h: consider a permutation σ of 1, . . . , n+m which maps

α1, . . . , αj+h−2 into 1, . . . , j+h−2 and β1, . . . , βn−j+1+m−h into j+h, . . . , n+m, with the
additional condition σ(j) = j + h− 1. If we make this permutation in the coordinates of
I+
j,h we obtain

I+
j,h =

∫

An+m
j+h−1∩{zν<zη}

(−1)j+h−2

j+h−2
∏

l=1

K(s, zl)δKst(zj+h−1)

×
n+m
∏

l=j+h

K(t, zl) dWz1(k1) · · · dWzn+m
(kn+m),

where k1, . . . , kn+m is a permutation of the indexes i1, . . . , in, j1, . . . , jm preserving the
orderings of the indexes i1, . . . , in and j1, . . . , jm, and which puts ij in the j+h− 1 place,
and where ν, η are defined by

ν = min{i ≥ j + h : ki ∈ {j1, . . . , jm}}, η = max{i ≤ j + h− 2 : ki ∈ {j1, . . . , jm}}.

In the same way, we can consider a permutation σ in the coordinates zi which maps
α1, . . . , αj+h−1 into 1, . . . , j + h − 1 and β1, . . . , βn−j+m−h into j + h + 1, . . . n + m, and
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σ(j) = j + h. If we make this permutation in the coordinates of I−j,h we obtain

I−j,h =

∫

An+m
j+h

∩{zν>zη}

(−1)j+h−1

j+h−1
∏

l=1

K(s, zl)δKst(zj+h−1)

×
n+m
∏

l=j+h+1

K(t, zl)dWz1(k1) · · · dWzn+m
(kn+m),

where k1, . . . , kn+m is a permutation of the indexes i1, . . . , in, j1, . . . , jm which does not
change the orderings of the indexes i1, . . . , in and and j1, . . . , jm, and where ν, η are now
defined by

ν = min{i ≥ j + h+ 1 : ki ∈ {j1, . . . , jm}}, η = max{i ≤ j + h− 1 : ki ∈ {j1, . . . , jm}}.

When we sum these integrals over all permutations σ of the above type, and also over
j and h, we obtain

∑

k̄∈Sh(̄ı,̄) B
n+m,1
st (k1, . . . , kn+m), where

B
n+m,1
st (k1, . . . , kn+m) =

n+m
∑

p=1,kp∈{i1,...,in}

∫

An+m
p

(−1)p−1

p−1
∏

l=1

K(s, zl)δKst(zp)

×
n+m
∏

l=p+1

K(t, zl)dWz1(k1) · · · dWzn+m
(kn+m),

In a similar manner we could show that the sum of the integrals over Ej,h give rise to
∑

k̄∈Sh(̄ı,̄) B
n+m,2
st (k1, . . . , kn+m), for h = 1, . . . , m, where

B
n+m,2
st (k1, . . . , kn+m) =

n+m
∑

p=1,kp∈{j1,...,jm}

∫

An+m
p

(−1)p−1

p−1
∏

l=1

K(s, zl)δKst(zp)

×
n+m
∏

l=p+1

K(t, zl)dWz1(k1) · · ·dWzn+m
(kn+m).

Taking into account the two contributions B
n+m,1
st and B

n+m,2
st , the proof of the geometric

property is now easily finished.

Step 3: Proof of the regularity property. Like in Proposition 3.4, the fact that Bn belongs
to Cnγ

2 for any γ < H is an easy consequence of the moment estimate of Proposition 4.1,
plus a simple induction procedure.

Indeed, assume that Bk ∈ Ckγ
2 ((Rd)⊗k) for any k ≤ n− 1. Then Lemma 2.1 gives here

that N [Bn; Cnγ
2 (Rd,d)] . A +D, with

A =

(

∫

S2,T

|Bn

uv|
2p

|u− v|2nγp+4
du dv

)
1
2p

, and D = N
[

δBn; Cnγ
3 (Rd,d)

]

.

Furthermore, since we have seen that Bn satisfies the multiplicative property (1), then
D is easily shown to be almost surely finite thanks to our induction hypothesis. Finally,
the quantity E[A] can be bounded along the same lines as in Proposition 3.4, except that
Proposition 4.1 is used instead of Proposition 3.1.

�
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[2] G. Ben Arous: Flots et séries de Taylor stochastiques. Probab. Theory Related Fields 81 (1989), no.

1, 29–77.
[3] N. N. Chentsov: Weak convergence of stochastic processes whose trajectories have no discontinuities

of the second type and the “heuristic” approach to the Kolmogorov-Smirnov test. Theor. Probability

Appl. 1 (1956), 140–144.
[4] A. Connes, D. Kreimer: Hopf algebras, renormalization and noncommutative geometry. Comm.

Math. Phys. 199 (1998), (1), 203–242.
[5] L. Coutin, Z. Qian: Stochastic analysis, rough path analysis and fractional Brownian motions.

Probab. Theory Related Fields 122 (2002), no. 1, 108–140.
[6] P. Friz, N. Victoir (2009): Differential equations driven by Gaussian signals (I). Ann. Inst. H.
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