
HAL Id: hal-00413730
https://hal.science/hal-00413730

Submitted on 6 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recovering portfolio default intensities implied by CDO
quotes

Rama Cont, Andreea Minca

To cite this version:
Rama Cont, Andreea Minca. Recovering portfolio default intensities implied by CDO quotes. Math-
ematical Finance, 2013, 23 (1), pp.94-121. �10.1111/j.1467-9965.2011.00491.x�. �hal-00413730�

https://hal.science/hal-00413730
https://hal.archives-ouvertes.fr


Recovering portfolio default intensities

implied by CDO quotes∗

Rama CONT Andreea MINCA

Revised version. First version appeared as: Columbia Financial
Engineering Report No. 2008-01, Jan 2008.

Abstract

We propose a stable non-parametric algorithm for the calibration of

pricing models for portfolio credit derivatives: given a set of observations

of market spreads for CDO tranches, we construct a risk-neutral default

intensity process for the portfolio underlying the CDO which matches

these observations, by looking for the risk neutral loss process ’closest’ to

a prior loss process, verifying the calibration constraints. We formalize

the problem in terms of minimization of relative entropy with respect to

the prior under calibration constraints and use convex duality methods to

solve the problem: the dual problem is shown to be an intensity control

problem, characterized in terms of a Hamilton–Jacobi system of differen-

tial equations, for which we present an analytical solution. Given a set of

observed CDO tranche spreads, our method allows to construct a default

intensity process which leads to tranche spreads consistent with the ob-

servations. We illustrate our method on ITRAXX index data: our results

reveal strong evidence for the dependence of loss transitions rates on the

past number of defaults, thus offering quantitative evidence for contagion

effects in the risk–neutral loss process.
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1 Introduction

Credit derivatives markets have witnessed an extraordinary activity in the last
decade, especially with the development of a large market in portfolio credit
derivatives of which collateralized debt obligations (CDOs) are the most well
known example [8]. Yet, as illustrated in the recent market turmoil, commonly
used modeling approaches –mostly static, copula-based pricing models such as
the Gaussian copula model– appear to be insufficient for pricing and hedging
these complex derivatives. One of the reasons has been the lack of transparency
of such pricing methods in which non-intuitive and unobservable “default cor-
relation” parameters are required as an input.

The Gaussian copula model, which has been widely used for the pricing of
CDOs, has some well known shortcomings: its inability to reproduce market val-
ues of CDO tranche spreads, as exemplified by the base correlation skew, the in-
stability of its “default correlation” parameters –as revealed by the GM/FORD
crisis in May 2005 and the subprime crisis in 2007– and, most importantly, the
lack of a well-defined dynamics for the risk factors which prevents any model-
based assessment of hedging strategies. Other copula-based models may provide
better fits to market quotes but share the other drawbacks of the Gaussian cop-
ula model, most notably its static character. These shortcomings have inspired
a lot of research on alternative approaches to credit risk modeling [24]. On the
other hand, a great advantage of static copula models is the ease with which
the parameters can be calibrated to market data: this is a feature which many
of the more complex, multi-name dynamic models such as Duffie & Garleanu
[16], have lacked so far. The key challenge in improving on the Gaussian copula
model lies therefore not so much in adding more realistic features to the model
but in adding these features while maintaining analytical tractability, especially
in regard to the calibration to market data.

To tackle some of these issues while allowing for a parsimonious parametriza-
tion of the model, several recent works [28, 21, 19, 1, 25] have proposed a “top-
down” approach to the problem, in which one models in “reduced form” the
dynamics of the portfolio loss, as a jump process whose intensity �t represents
the (conditional) rate of occurrence of the next default and whose jump sizes
represent the losses given default. Though top-down pricing models are typ-
ically much simpler to simulate or implement than high-dimensional reduced
form models, numerical methods –Laplace transforms, numerical resolution of
ODEs– are still required for the pricing of CDO tranches which makes parameter
calibration computationally challenging. Existing studies of top-down pricing
models [28, 21, 19, 1, 25] address model calibration by applying black box op-
timization procedures, whose convergence is not guaranteed, to the resulting
high-dimensional nonlinear optimization problems. The lack of convexity of the
optimization problems involved may lead to multiple solutions and numerical
sensitivity of the results, making such results difficult to reproduce and render-
ing their interpretation delicate.

In this work we propose a rigorous nonparametric approach to the calibration
of “top-down” pricing models for portfolio credit derivatives to a set of observed
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CDO tranche spreads. First, we show a “mimicking theorem” for point processes
which states that the marginal distributions of a loss process with arbitrary
stochastic intensity can be matched using aMarkovian point process. This result
implies that, given any risk-neutral loss process with given default intensity we
can construct a Markovian loss process which leads to the same prices. This
observation allows to narrow down the calibration problem to the search for a
Markovian loss process verifying a set of calibration constraints. We formalize
this problem in terms of the minimization of relative entropy with respect to
the law of a prior loss process under calibration constraints. We use convex
duality techniques to solve the problem: the dual problem is shown to be an
intensity control problem, characterized in terms of a Hamilton-Jacobi system of
differential equations which can be analytically solved using a change of variable.

Given a set of observed CDO tranche spreads, our method allows to construct
an implied intensity process �t which leads to tranche spreads consistent with
the observations. The implied intensity �t = f(t, Lt) depends on the defaults
in the portfolio, which naturally leads to ’contagion’ effects in the occurrence
of defaults. The resulting model is parameterized by the probability (per unit
time) of the next default in the portfolio, which allows for an intuitive check on
parameter values.

The article is structured as follows. Section 2 describes the cash flow struc-
ture of a (static) CDO and present a brief review of the “top-down” modeling
approach for portfolio credit derivatives. In section 3 we discuss the level of in-
formation about the risk-neutral loss process which can be extracted from CDO
tranches: we state a “mimicking theorem” for point processes which implies
that, in a general setting, the information content of CDO tranche quotations
can be represented in the form of an effective intensity function allowing for de-
pendence of the default rate on the current number of defaults in the portfolio
and calendar time. The model calibration problem is defined in section 4 and
formulated in terms of relative entropy minimization under constraints. In sec-
tion 4.3 we show that, via convex duality, the calibration problem maps into an
intensity control problem for a point process, which is then solved using dynamic
programming. These results translate into a calibration algorithm which can be
used to extract the risk–neutral default intensity from CDO tranche spreads:
the algorithm is laid out in detail in section 5 and applied to ITRAXX index
data. Section 6 discusses the implications of our results.

2 Portfolio credit derivatives

Let (Ω, (ℱt)t≤T ) be the set of market scenarios endowed with a filtration (ℱt)0≤t≤T

representing the flow of information with time. Consider a reference portfolio
on which the credit derivatives we consider will be indexed. The main object
of interest are the number of defaults Nt and the (cumulative) default loss Lt

of this reference portfolio during a period [0, t]. Although the discussion below
can be generalized to account for correlation between interest rates and default
rates, for simplicity we shall assume independence between default risk and in-
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terest rate risk. We denote by B(t, T ) the discount factor at date t for the
maturity T ≥ t.

A portfolio credit derivative can be modeled as a contingent claim whose
payoff is a (possibly path-dependent) function of the portfolio loss process
(Lt)t∈[0,T ]. The most important example of portfolio credit derivatives are index
default swaps and collateralized debt obligations (CDO) [8].

2.1 Index default swaps

Index default swaps are now commonly traded on various credit indices such as
ITRAXX and CDX series, which are equally weighted indices of credit default
swaps on European and US names [8]. In an index default swap transaction,
a protection seller agrees to pay all default losses in the index (default leg)
in return for a fixed periodic spread S paid on the total notional of obligors
remaining in the index (premium leg). Denoting by tj , j = 1..J the payments
dates,

∙ the default leg pays at tj the losses L(tj) − L(tj−1) due to defaults in
]tj−1, tj ]

∙ the premium leg pays at tj an interest (spread) S on the notional of the
remaining obligors

(tj − tj−1)S(1−
Ntj

n
). (1)

In particular the cash flows of the index default swap only depend on the port-
folio characteristics via Nt and Lt. The value at t = 0 of the default leg is
therefore

J
∑

j=1

Eℚ[B(0, tj)(L(tj)− L(tj−1)]

while the value at t = 0 of the premium leg is

S

J
∑

j=1

Eℚ[B(0, tj)(tj − tj−1)(1 −
Ntj

n
)].

The index default swap spread at t = 0 is defined as the (fair) value of the
spread which equalizes the two legs at inception:

Sindex =
Eℚ[

∑J
j=1 B(0, tj)(L(tj)− L(tj−1) )]

∑J
j=1 E

ℚ[B(0, tj)(tj − tj−1)(1−
Ntj

n
)]
. (2)

2.2 Collateralized Debt Obligations (CDOs)

Consider a tranche defined by an interval [a, b], 0 ≤ a < b < 1 for the loss process
normalized by the total nominal. A CDO tranche swap (or simply CDO tranche)
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is a bilateral contract in which an investor sells protection on all portfolio losses
within the interval [a, b] over some time period [0, tJ ] in return for a periodic
spread S(a, b) paid on the nominal remaining in the tranche after losses have
been accounted for.

The loss of an investor exposed to the tranche [a, b] is

La,b(t) = (Lt − a)+ − (Lt − b)+. (3)

The premium leg is represented by the cash flow payed by the protection buyer
to the protection seller. In case of a premium S, its value at time t = 0 is

P (a, b, tJ) =

J
∑

j=1

S(tj − tj−1)E
ℚ[B(0, tj)((b − L(tj))

+ − (a− L(tj))
+ )]

The default leg is represented by the cash payed by the protection seller to the
protection buyer in case of default. Its value at time t = 0 is

D(a, b, tJ) =

J
∑

j=1

Eℚ[B(0, tj)(La,b(tj)− La,b(tj−1) )].

The “fair spread” (or simply, the tranche spread) is the premium value S0(a, b, tJ)
that equates the values of the two legs:

S0(a, b, tJ) =
Eℚ

∑J
j=1 B(0, tj)[La,b(tj)− La,b(tj−1) ]

Eℚ
∑J

j=1 B(0, tj)(tj − tj−1)[(b− L(tj))+ − (a− L(tj))+]
.

Table 1 gives an example of such a tranche structure and the corresponding
spreads for a standardized portfolio, the ITRAXX index. Note that these ex-
pressions for the tranche spreads depend on the portfolio loss process via the
expected tranche notionals C(tj ,K) where

C(t,K) = Eℚ[(K − Lt)
+]. (4)

2.3 Top-down models for CDO pricing

It is immediately observed that the above expressions for the spread of a CDO
tranche depend on the portfolio characteristics only through the (risk-neutral)
law of the loss process Lt. The idea of “top-down” pricing models [1, 19, 21, 25,
28] is to model the risk neutral loss process, either by specifying the dynamics of
the cumulative loss [1, 19, 21, 25] or by looking at the forward loss distribution
[28]. We adopt here the former approach, which is simpler to implement.

The loss Lt is a piecewise constant process with upward jumps at each default
event: its path is therefore completely characterized by the default times (�j)j≥1,
representing default events and the jump sizes ΔLj representing the loss given
default. Here �j denotes the j-th default event observed in the portfolio: the
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Maturity Low High Bid∖ Upfront Mid∖ Upfront Ask∖ Upfront

5Y

0% 3% 11.75% 11.88% 12.00%
3% 6% 53.75 54.50 55.25
6% 9% 14.00 14.75 15.50
9% 12% 5.75 6.25 6.75
12% 22% 2.13 2.50 2.88
22% 100% 0.80 1.05 1.30

7Y

0% 3% 26.88% 27.00% 27.13%
3% 6% 130 131.50 132
6% 9% 36.75 37.00 38.25
9% 12% 16.50 17.25 18.00
12% 22% 5.50 6.00 6.50
22% 100% 2.40 2.65 2.90

10Y

0% 3% 41.88% 42% 42.13%
3% 6% 348 350.50 353
6% 9% 93 94.00 95
9% 12% 40 41.00 42
12% 22% 13.25 13.75 14.25
22% 100% 4.35 4.60 4.85

Table 1: CDO tranche spreads, in bp, for the ITRAXX index on March 15
2007. For the equity tranche the periodic spread is 500bp and figures represent
upfront payments.
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index j is not associated with the default of a given obligor but with the ordering
in time of the events. The idea of aggregate loss models is to represent the rate
of occurrence of defaults in the portfolio via the portfolio default intensity �t:
we model the number of defaults (Nt)t∈[0,T∗] is a point process with ℱt-intensity

(�t)t∈[0,T∗] under ℚ i.e.

Nt −

∫ t

0

�tdt

is an ℱt-local martingale under ℚ [6]. Intuitively, �t can be seen as probability
per unit time of the next default conditional on current market information:

�t = lim
Δt→0

1

Δt
ℚ[Nt+Δt = Nt + 1∣ℱt]

Here ℱt represents the coarse-grained information resulting from the observation
of the aggregate loss process Lt of the portfolio and risk factors affecting it. In
the simplest case it corresponds to the information (filtration) generated by the
variables �j ,ΔLj but it may also contain information on other market variables.
This risk neutral intensity �t can be interpreted as the short term credit spread
for protection against the first default in the portfolio [28].

�t can be modeled as a stochastic process that may depend on the loss
process itself. The simplest specification is to model the loss Lt as a compound
Poisson process [7], but since the intensity is constant and independent of the
loss process, this does not enable to model features such as spread volatility or
default contagion [14]. Spread volatility can be introduced by modeling �t as an
autonomous jump-diffusion process and then constructing Nt as a Cox process:
conditional on (�t)t∈[0,T∗], N has the law of a Poisson process with intensity
(�t)t∈[0,T∗]. This approach, common in the credit risk literature, has been used
by Longstaff & Rajan [25] to model aggregate default rates in the CDX index.
Default contagion can be incorporated in the model by introducing a dependence
of the default intensity on the number of defaults. Ding et al. [15] construct
the default process by starting from a linear birth process with immigration
�t = c + gNt and applying a time change, while Arnsdorff & Halperin [1] use
a two factor specification: �t = �0(N0 − Nt)Yt where Yt is a non-negative
stochastic process (see also [26]). Finally, one can argue that not only the
occurrence of defaults but also their timing and magnitude can affect the default
intensity: this feature has been modeled using Hawkes or self-exciting processes
[19, 21].

Given the wide variety of models available for the default intensity, the choice
of the model class among the above is not easy in practice. Indeed, even at the
qualitative level it is not obvious which parametric specifications adequately
reproduce observed features of market data. Also, once the class of models has
been chosen, it is a nontrivial task to calibrate the model parameters in order
to reproduce market spreads of index CDO tranches. In fact, in the models de-
scribed above, numerical methods must be used to compute tranche spreads so
the corresponding inverse problem of recovering parameters from market quotes
is a computationally intensive one. Finally, these parameterizations mainly stem
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from analytical convenience, more than from any fundamental economic consid-
erations, so a nonparametric approach which makes fewer arbitrary assumptions
on the form of the default intensity can provide some insight for model selection.

3 The information content of CDO tranches

One issue in the design and calibration of top-down models is how to parame-
terize the portfolio loss process in a general, yet parsimonious, way which can
be flexible enough to accommodate market observations of tranche spreads and
remain tractable. The main issue is how to specify the dependence of the default
intensity �t with respect to other variables in the model: existing models range
from a deterministic intensity �(t) to full path-dependence with respect to the
loss process [19, 21].

While richer models might generate more realistic statistical features, an
important issue in model calibration is the identifiability of such complex models.
Given current prices of portfolio credit derivatives, what can be inferred from
them in terms of the characteristics of the loss process? In this section we present
a result which sheds light on this identifiability issue, showing that the marginal
distributions of any marked point process with IID marks can be matched by a
Markovian jump process. From this “mimicking theorem” we conclude that the
retrievable information in the intensity process is exactly given by its conditional
expectation given the loss process, which we call the effective intensity.

3.1 Mimicking marked point processes with Markovian
jump processes

We first show a “mimicking theorem” which shows that the marginal distri-
butions of any marked point process with IID marks can be matched by a
Markovian jump process:

Proposition 1. Consider any non-explosive jump process (Lt)t∈[0,T∗] with a
intensity process (�t(!))t∈[0,T∗] and IID jumps with distribution F . Define

(L̃t)t∈[0,T∗] as the Markovian jump process with jump size distribution F and
intensity

�eff(t, l) = Eℚ[�t∣Lt− = l,ℱ0] (5)

Then, for any t ∈ [0, T ∗], Lt and L̃t have the same distribution conditional on
ℱ0. In particular, the flow of marginal distributions of (Lt)t∈[0,T∗] only depends
on the intensity (�t)t∈[0,T∗] through its conditional expectation �eff(., .).

We call (5) the effective intensity associated to the process L. The relation
between the intensity �t and the effective intensity �eff(t, Lt−) is analogous to
the relation between instantaneous volatility and local volatility in diffusion
models [11, 17].
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Proof. Consider any bounded measurable function f(.). Using the pathwise
decomposition of LT into the sum of its jumps we can write

f(LT ) = f(L0) +
∑

0<s≤T

(f(Ls− +ΔLs)− f(Ls−) ) (6)

so

E[f(LT )∣ℱ0] = f(L0) + E[
∑

0<s≤T

(f(Ls− +ΔLs)− f(Ls−) )∣ℱ0]

= f(L0) +

∫ ∞

0

F (dy)

∫ T

0

dt E[(f(Lt− +ΔLt)− f(Lt−) )�t∣ℱ0]

Denote
Gt = �(ℱ0 ∨ Lt−)

the information set obtained by adding the knowledge of Lt− to the current
information set ℱ0. Define the local intensity function

�eff(t, l) = Eℚ[�t∣ℱ0, Lt− = l]. (7)

Noting that ℱ0 ⊂ Gt we have

E[ (f(Lt− + y)− f(Lt−) )�t∣ℱ0] = E[ E[ (f(Lt− + y)− f(Lt−) )�t∣Gt]∣ℱ0] =

E[ (f(Lt− + y)− f(Lt−)) E[�t∣Gt]∣ℱ0] = E[�eff(t, Lt−) (f(Lt− + y)− f(Lt−) ∣ℱ0] so

E[f(LT )∣ℱ0] = f(L0) + E[

∫ T

0

dt �eff(t, Lt−)

∫

F (dy) (f(Lt− + y)− f(Lt−) ) ∣ℱ0]

The above equality shows that E[f(LT )∣ℱ0] has the same value as E[f(L̃T )∣ℱ0]
where (L̃t)0≤t≤T is the Markovian loss process with intensity 
t = �eff(t, L̃t−)
and jump size distribution F , which shows the result.

Remark 1. Proposition 1 can be viewed as a “mimicking theorem”: it states
that the flow of marginal distributions of a (rather general) point process with
(a possibly path-dependent) intensity �t can be matched by a Markovian jump
process whose intensity is given by (7). In this sense, it is a discontinuous ana-
logue of a similar result of Gyöngy [23] in the context of continuous martingales
driven by Brownian motion.

Note that this result also applies regardless of whether the filtration ℱt is
the natural filtration of L. In other words, the intensity (�t) can depend not
only on the history of the (marked) point process itself but also on a richer
information set as in the settings where �t is constructed through a stochastic
differential equation involving an auxiliary Brownian motionW [1, 25, 20]. Even
in these cases, however, the construction of L̃t does not involve any knowledge
of the filtration of the Brownian motion: in other words, we can mimick the flow
of marginal distributions of L by a process which is constructed on a smaller
filtration.
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3.2 Information content of portfolio credit derivatives

Consider now a portfolio loss model defined by a stochastic default intensity
process (�t) and IID losses given default with distribution F . Applying the
above result we obtain the following

Corollary 1. The value Eℚ[f(LT )∣ℱ0] at t = 0 of any derivative whose payoff
depends on the aggregate loss LT of the portfolio on a fixed grid of dates, only
depends on the default intensity (�t)t∈[0,T∗] through its risk-neutral conditional
expectation with respect to the current loss level:

�eff(t, l) = Eℚ[�t∣Lt− = l,ℱ0] (8)

In particular, CDO tranche spreads and mark-to-market value of CDO tranches
only depends on the transition rate (�t)t∈[0,T∗] through the effective default in-
tensity �eff(., .).

Remark 2 (Case of index default swap). The cash flows of an index default
swap depend both on the loss Lt and on Nt, the number of defaults. In the case
where recovery rates are constant Lt = Nt� where � = (1−R)/n is the loss given
a single default so the above results also apply to the index default swap rate,
whose value only depends on the effective intensity (5). In the general case of
random loss given default, Nt is a path-dependent functional of L but the above
proof can be easily adapted to show that the index default swap only depends on
(�t)t∈[0,T∗] through

�(t, l, n) = Eℚ[�t∣ℱ0, Lt− = l, Nt− = n]

In the sequel we shall consider the more commonly used setting where the loss
is proportional to the number of defaults.

Being able to mimick the marginal distribution of the loss processes using a
Markovian model allows for considerable simplifications in pricing algorithms.
First, it is well known that for a Markovian jump process the transition proba-
bilities can be computed by solving a Fokker Planck equation. Combined with
Proposition 1, this shows that the transition probabilities qj(t, T ) = ℚ(NT =
j∣ℱt) also solve the Fokker-Planck equation corresponding to the effective in-
tensity:

dq0
dT

(t, T ) = −�eff(T, 0)q0(t, T ) (9)

dqj
dT

(t, T ) = −�eff(T, j)qj(t, T ) + �eff(T, j − 1)qj−1(t, T ) (10)

dqn
dT

(t, T ) = �eff(T, n− 1)qn−1(t, T ) (11)

Moreover, by analogy with the Dupire equation for diffusion models [17], one
can show that the expected tranche notional C(T,K) can be obtained by solving
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a (single) Dupire-type forward equation [11]:

∂C(T,K)

∂T
− C(T,K − �)�k(T ) + �k−1(T )C(T,K)

+

k−2
∑

j=1

[�j+1(T )− 2�j(T ) + �j−1(T )] C(T, j�) = 0 (12)

where �k(T ) = �eff(T, k�). This is a bidiagonal system of ODEs which can be
solved efficiently in order to compute the expected tranche notionals (and thus
the values of CDO tranches) given the local intensity function �eff(., .) without
Monte Carlo simulation.

4 The calibration problem

The model calibration problem for CDO pricing models can be defined as the
problem of recovering the law of the portfolio default intensity (�t)t∈[0,T ] from
market observations, which consist of spreads for (a small number of) CDO
tranches.

Denote by T1 < ... < Tm the maturities of the observed CDO tranches
(usually m = 3 or 4) with T = Tm being the largest maturity and 0,K1, ..,KI

the attachment points. We shall use the notations of section 2: the payment
dates are denoted (tj , j = 1..J). At t = 0 we observe the tranche spreads
(S0(Ki,Ki+1, Tk), i = 1..I − 1, k = 1..m). The calibration problem for a “top-
down” CDO pricing model can be formulated as follows:

Problem 1 (Calibration problem). Given a set of observed CDO tranche spreads
(S0(Ki,Ki+1, Tk), i = 1..I − 1, k = 1..m) for a reference portfolio, construct a
(risk–neutral) default rate/ loss intensity � = (�t)t∈[0,T ] such that the spreads

computed under the model ℚ� match the market observations:

S0(Ki,Ki+1, Tk) =

∑

tj≤Tk
B(0, tj)E

ℚ�

[LKi,Ki+1
(tj)− LKi,Ki+1

(tj−1) ]
∑

tj≤Tk
B(0, tj)(tj − tj−1)Eℚ� [(Ki+1 − L(tj))+ − (Ki − L(tj))+]

(13)

Proposition 1 tells us that if the data can be calibrated using a default
intensity process � they can also be calibrated using its Markovian projection
�eff defined by (5). Using this fact we can restrict ℚ� to the set Λ of Markovian
loss processes.

Stated in this form, the calibration problem is an ill-posed problem: it re-
quires to reconstitute the law of an unknown stochastic process (the portfolio
loss) given a finite (and typically, small) number of observations.

4.1 Calibration as relative entropy minimization under
constraints

Problem 1 is an ill-posed inverse problem, similar to the one which arises in
the calibration of pricing models for equity and index derivatives, where one

12



attempts to recover a risk-neutral probability measure from a finite set of option
prices: there is little hope to obtain a unique solution, let alone to compute it
in a stable manner. One solution strategy is to restore uniqueness and stability
by adding some information into the problem in the form of a prior model ℚ0

and looking for the risk-neutral loss process verifying the calibration constraints
(13) which is the “closest” to ℚ0 in some sense. The relative entropy of ℚ with
respect to ℚ0, defined as

Eℚ0 [
dℚ�

dℚ0
ln

dℚ�

dℚ0
]

may be used to quantify the closeness of a given loss process with law ℚ to the
prior model; it also allows for an information-theoretic interpretation [13]. This
approach has been successfully applied to calibration of option pricing models
in various static [3, 30] and dynamic [2, 4, 9] settings. Finally, this approach
to model calibration is linked via duality to exponential utility maximization
problems [22].

For a Markovian loss proces ℚ� ∈ Λ denote by (�t)t∈[0,T∗] its ℱt-predictable
default intensity. Given market tranche spreads S(Ki,Ki+1, Tk) and a prior
guess 
t for the loss intensity, the calibration problem for the default intensity
can be formalized as:

Problem 2 (Calibration via relative entropy minimization). Given a prior
loss process with law ℚ0, find a loss process with law ℚ� and default intensity
(�t)t∈[0,T∗] which minimizes

inf
ℚ�∈Λ

Eℚ0 [
dℚ�

dℚ0
ln

dℚ�

dℚ0
] under Eℚ�

[Hi,k] = 0 (14)

where

Hik = S0(Ki,Ki+1, Tk)
∑

tj≤Tk

B(0, tj)(tj − tj−1)[(Ki+1 − L(tj))
+ − (Ki − L(tj))

+]

+
∑

tj≤Tk

B(0, tj)[(Ki+1 − L(tj))
+ − (Ki − L(tj))

+ − (Ki+1 − L(tj−1))
+ + (Ki − L(tj−1))

+)) ] (15)

and ℚ� denotes the law of the point process with intensity (�t)t∈[0,T∗] and ℚ0

is the law of the point process with intensity (
t)t∈[0,T∗].

The rest of the paper is devoted to the solution of this problem. We will see
that the choice of relative entropy as calibration criterion makes the problem
both well-posed and tractable: we will exhibit an efficient numerical method
for solving the problem and apply this method to data sets of index CDOs to
extract implied default intensities from index CDO tranche spreads.

4.2 Computation of the relative entropy

Other than its information–theoretic interpretation and its convexity, another
advantage of using the relative entropy as a calibration criterion is that it can
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be computed efficiently in the case of point processes. This is due to the fact
that the law of a point process with a given intensity can be obtained from, say,
the law of a Poisson process by an exponential change of measure [5, 6], while
the computation of entropy involves computing the logarithm of the correspond-
ing density. This feature makes the relative entropy explicitly computable for
many useful classes of loss processes. We shall use the following result [5, 6] on
equivalent changes of measure for point processes:

Proposition 2. Let Nt be a point process with intensity 
t on (Ω,ℱt,ℚ0). Let
� = (�t)t∈[0,T ] be a nonnegative, ℱt-predictable process such that

∫ t

0

�sds < ∞ ℚ0 − a.s. (16)

and {t ≥ 0, �t > 0} = {t ≥ 0, 
t > 0} a.s. Define the process

Zt =

⎛

⎝

∏

�j≤t

��j


�j

⎞

⎠ exp

{∫ t

0

(
s − �s) ds

}

(17)

where �1 ≤ �2 ≤ �3 ≤ .. are the jump times of N . Suppose moreover that
Eℚ0 [ZT ] = 1 and define the probability measure ℚ� on ℱt by

dℚ�

dℚ0
= ZT (18)

Then Nt is a point process with ℱt intensity (�t)t∈[0,T ] under ℚ�.

Taking 
0 = 1 (Poisson process) this result can be used to construct (via
change of measure) the law of a process with a given intensity (�t)t∈[0,T ]. The

above result allows to compute the entropy of ℚ� relative to ℚ0, the law of the
point process with intensity (
t)t∈[0,T ]:

Proposition 3 (Computation of relative entropy). Denote by

∙ ℚ0 the law on [0, T ] of a point process with intensity (
t)t∈[0,T ] and

∙ ℚ� the law on [0, T ] of the point process with intensity (�t)t∈[0,T ] verifying
the assumptions of proposition 2.

The relative entropy of ℚ� with respect to ℚ0 is given by:

Eℚ0 [
dℚ�

dℚ0
ln

dℚ�

dℚ0
] = Eℚ�

[

∫ T

0

(�t ln
�t


t
dt− �t + 
t)dt] (19)

Proof. It is a straightforward application of Proposition 2.

Eℚ0 [
dℚ�

dℚ0
ln

dℚ�

dℚ0
] = Eℚ�

[
∑

�i≤T

ln
��i


�i
+

∫ T

0

(
t − �t)dt].
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The intensity (�t)t∈[0,T ] of the loss L under ℚ� is characterized [6] by the prop-
erty that for any ℱt−predictable process C(t),

Eℚ�

[
∑

0<�i≤T

C(�i)] = Eℚ�

[

∫ T

0

�tC(t)dt]

It follows that

Eℚ�

(
∑

0<�i≤T

ln
��i


�i
) = Eℚ�

(

∫ T

0

ln
�s


s
dNs) = Eℚ�

(

∫ T

0

�s ln
�s


s
ds) (20)

4.3 Dual problem as an intensity control problem

To solve the constrained optimization problem (14) by introducing Lagrange
multipliers and using convex duality methods [18]. Define the Lagrangian

ℒ(�, �) = Eℚ�

[

∫ T

0

(�s ln
�s


s
+ 
s − �s)ds−

I
∑

i=1

m
∑

k=1

�i,kHik] (21)

where �ik is the Lagrange multiplier for the inequality constraints in (15). The
(primal) problem (14) is equivalent to

inf
�∈Λ

sup
�∈ℝm.I

Eℚ�

[

∫ T

0

(�s ln
�s


s
+ 
s − �s)ds−

I
∑

i=1

m
∑

k=1

�i,kHik] (22)

We assume that the calibration problem (14) has at least one solution i.e. the
primal problem (22) is finite-valued. Then the strict convexity of the objec-
tive function implies that the above problem has the same value function (and
solution) as the associated dual problem [18] given by

sup
�∈ℝm.I

inf
�∈Λ

Eℚ�

[

∫ T

0

(�s ln
�s


s
+ 
s − �s)ds−

I
∑

i=1

m
∑

k=1

�i,kHik] (23)

The inner optimization problem

J(�) = ℒ(�∗(�), �) = inf
ℚ�∈Λ

ℒ(�, �)

is an example of an intensity control problem [5, 6]: the optimal choice of the
intensity of a jump process in order to minimize a criterion of the type

Eℚ�

[

∫ T

0

'(t, �t)dt+

J
∑

j=1

Φj(tj , Ltj )], (24)
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where '(t, �t) is a running cost and Φj(tj , Ltj ) represents a “terminal” cost. In
our case

'(t, x) = x ln
x


t
+ 
t − x and Φj(tj , Ltj) =

I
∑

i=1

Mij(Ki − Ltj )
+ (25)

where Mij = B(0, tj+1)
∑

Tk≥tj+1

(�ik − �i−1,k) +

B(0, tj)
∑

Tk≥tj

[�ik(1−ΔS(Ki,Ki+1, Tk))− �i−1,k(1−ΔS(Ki−1,Ki, Tk)] (26)

where Δ = tj − tj−1 is the interval between payment dates.
The solution of an intensity control problem can be obtained using a dynamic

programming principle and is characterized in terms of a system of Hamilton-
Jacobi equations [6, Ch. VII]. We will now use these properties to solve (24).

Once the inner optimization/ intensity control problem has been solved we
have to solve the outer problem by optimizing J(�) over the Lagrangemultipliers
� ∈ ℝmI : the corresponding optimal control �∗ then yields precisely the default
intensity which calibrates the observations. The problem setting is similar to
the one formulated by Avellaneda et al. [2] in the context of diffusion models.
We will observe however that, unlike the setting of [2], we are able to solve the
stochastic control problem in (24) analytically thereby greatly simplifying the
algorithm.

Standard formulations of intensity control problems involve a single horizon
(J = 1); we will first examine this case in the next section and then discuss how
to extend the analysis to the case of several maturities in section 4.5.

4.4 Hamilton Jacobi equations

Let us consider first the case where J = 1 i.e a single time horizon is involved.
The dual problem is then to minimize

Eℚ�

[

∫ T

0

'(t, �t)dt+Φ(T, LT )] (27)

where Φ(.) is of the form (25) (and thus depends on the Lagrange multipliers
�). The solution of the stochastic control problem (23) can be obtained us-
ing dynamic programming methods [5, 6]. The idea is to define a family of
optimization problems indexed by the initial condition (t, n),

V (t, Nt) = inf
ℚ�∈Λ([t,T ])

Eℚ�

[

∫ T

t

(�s ln
�s


s
+ 
s − �s)ds+Φ(T, �NT ))∣ℱt] (28)

where � = (1 − R)/n is the loss given default and Λ([t, T ]) is the set of laws
of point processes on [t, T ] parameterized by their intensity � as in (17). The
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value function V (t, k) then solves the dynamic programming equation [6]:

∂V

∂t
(t, k) + inf

�∈]0,∞[
{�(t, k)[V (t, k + 1)− V (t, k)] + �(t, k) ln

�(t, k)


(t, k)
− �(t, k) + 
(t, k)} = 0 (29)

for t ∈ [0, T ] and V (T, k) = Φ(T, k�)) (30)

The value function of (27) is then given by V (0, 0) and the optimal intensity
control is obtained by maximizing over � in the nonlinear term [6]:

Proposition 4 (Verification theorem). If V : [0, T ]× ℕ is a bounded solution
of (29)–(30), differentiable in t then ℒ(�∗

�, �) = V (0, 0) and the optimal control
�∗
� is given by the minimizer of

�∗
�(t, k) = argmin

�>0
�[V (t, k + 1)− V (t, k)] + (� ln

�


t
+ 
t − �),

for each t and 0 ≤ k ≤ n.

In this case the maximum in the nonlinear term can be explicitly computed:

�∗
�(t, k) = 
(t, k)e−[V (t,k+1)−V (t,k)] (31)

∂V

∂t
(t, k) + 
(t, k)(1− e−[V (t,k+1)−V (t,k)]) = 0 (32)

To solve the dual problem we need to solve the Hamilton–Jacobi equations
(29)–(30). This is a system of n nonlinear ODEs which may seem daunting at
first glance. Remarkably, in this case a logarithmic change of variable yields an
explicit solution:

Proposition 5 (Value function). Consider a function Φ such that Φ(x) = 0
for x ≥ n�. The solution of (29)-30 has the probabilistic representation

V (t, k) = − ln[1 +

n−k
∑

j=0

ℚ0(NT = k + j∣Nt = k)(e−Φ(T,(k+j)�) − 1)] (33)

Corollary 2 (Case of Poisson prior). If the prior process is a Poisson process
with intensity 
0 stopped at n, then the value function V is given by

V (t, k) = Φ(T, n�)− ln[1 +
n−k−1
∑

j=0


j
0(T − t)je−
0(T−t)

j!
(eΦ(T,n�)−Φ(T,(k+j)�) − 1)] (34)

Proof. If we consider u(t, k) = e−V (t,k) then u solves a linear equation

∂u(t, k)

∂t
+ 
(t, k)(u(t, k + 1)− u(t, k)) = 0 with u(T, k) = exp(−Φ(T, k�))

which is recognized as the backward Kolmogorov equation associated with the
Markovian point process with intensity function 
(t, k) (i.e. the prior process,
with law ℚ0). The solution is thus given by the Feynman-Kac formula

u(t, k) = Eℚ0 [e−Φ(T,�NT )∣Nt = k]
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The expectation is easily computed using the transition probabilities of the
prior process, where the sum over jumps can be truncated using the fact that
Φ(x) = 0 for x ≥ n�:

u(t, k) =

n−k
∑

j=0

ℚ0(NT = k + j∣Nt = k)e−Φ(T,(k+j)�) +
∑

j>n−k

ℚ0(NT = k + j∣Nt = k)

=

n−k
∑

j=0

ℚ0(NT = k + j∣Nt = k)e−Φ(T,(k+j)�) + 1−

n−k
∑

j=0

ℚ0(NT = k + j∣Nt = k)

= 1 +

n−k
∑

j=0

ℚ0(NT = k + j∣Nt = k)[e−Φ(T,(k+j)�) − 1]

which leads to (33). These transitions probabilities can be explicitly computed
for a (stopped) Poisson process which then leads to (34).

The fact that a logarithmic change of variable linearizes the Hamilton Jacobi
equation is not a coincidence: this is a common feature of stochastic control
problems related to exponential utility maximization [31]. This result can also
be derived using the dual representation of the entropic risk measure as in [27].

4.5 Handling payment dates

In the (realistic) case where several payment dates 0 ≤ t1 ≤ t2 ⋅ ⋅ ⋅ ≤ tJ are
involved, the criterion to be optimized in the dual problem is of the form

Eℚ
�

[

∫ tJ

0

'(t, �t)dt+Φ1(t1, Lt1) + Φ2(t2, Lt2) + . . .ΦJ(tJ , LtJ )].

We will now show that this problem can be treated as a sequence of single-
horizon intensity control problems in a recursive manner using a dynamic pro-
gramming principle. Denote by Λ([tj , tj+1]) the restriction of loss processes in
Λ to t ∈ [tj , tj+1]. Consider the value function:

V (t, k;�) = inf
Λ([t,tJ ])

Eℚ�

[

∫ tJ

t

'(t, �t)dt+
∑

tj>t

Φj(tj , Ltj )∣Nt = k]

We will compute V going backwards from tJ . First, we note that V (tJ−1, k;�)
is of the form (27) and can be computed using the formula (33) with Φ = ΦJ .
Assume now we have computed V (t, k;�) for t ≥ tj+1. Then

V (tj , k;�) = inf
Λ([tj ,tJ ])

Eℚ�

[

∫ tj+1

tj

'(t, �t)dt+Φj+1(tj+1, Ltj+1
)

+

∫ tJ

tj+1

'(t, �t)dt+

J
∑

i=j+2

Φj(tj , Ltj )∣Ntj = k] (35)
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The dynamic programming principle can be stated by saying that the cost func-
tional is a martingale when computed at the optimal policy �∗, hence:

V (tj , k;�) =

Eℚ∗ [

∫ tj+1

tj

'(t, �∗
t )dt+Φj+1(tj+1, Ltj+1

) +

∫ tJ

tj+1

'(t, �∗
t )dt+

J
∑

i=j+2

Φj(tj , Ltj )∣Ntj = k]

= inf
Λ([tj ,tJ ])

Eℚ�

[

∫ tj+1

tj

'(t, �t)dt+Φj+1(tj+1, Ltj+1
) + V (tj+1, k;�)∣Ntj = k]

Therefore on [tj , tj+1[ we also have a problem of the form (27) with Φ = Fj+1 =
Φj+1 + V (tj+1, .): V (tj , k;�) can therefore be computed using the formula (33)
with Φ = Fj+1. This results in the following method for computing recursively
the value function V (t, k;�):

1. Start from the last payment date j = J and set FJ (k) = ΦJ(tJ , �k).

2. Solve the Hamilton–Jacobi equations (29) on ]tj−1, tj ] backwards starting
from the terminal condition

V (tj , k, �) = Fj(k) (36)

V (tj , k, �) can be explicitly computed for t ∈]tj−1, tj ] using (33) with
Φ = FJ .

3. Set Fj−1(k) = V (tj−1, k) + Φj−1(tj−1, k�)

4. Go to step 2 and repeat until j = 0 is reached.

The value function of the dual problem is then given by V (0, 0, �). This pro-
cedures yields an explicit (although lengthy) formula for V (0, 0, �), which is
obtained by nesting J times the expression (33). In particular this formula can
be used to compute ∇V (0, 0, �) and to use gradient-based methods to minimize
V (0, 0, �) with respect to � in the last step of the algorithm.

5 Recovering market-implied default rates

5.1 Calibration algorithm

The above results lead to a non-parametric algorithm for recovering a market-
implied portfolio default intensity from CDO spreads. The algorithms consists
of the following steps:

1. Solve the dynamic programming equations (29)–(30) for � ∈ ℝm.I to
compute V (0, 0, �).

2. Optimize V (0, 0, �) over � ∈ ℝm.I using a gradient–based method:

sup
�∈ℝm.I

V (0, 0, �) = V (0, 0, �∗) = V ∗(0, 0)
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3. Compute the calibrated default intensity (optimal control) as follows:

�∗(t, k) = 
(t, k)eV
∗(t,k)−V ∗(t,k+1) (37)

4. Compute the term structure of loss probabilities by solving the Fokker-
Planck equations (10).

5. The calibrated default intensity �∗(., .) can then be used to compute CDO
spreads for different tranches, forward tranches,...: first we compute the
expected tranche notionals C(T,K) by solving the forward equation (12)
and then use the expected trance notionals to evaluate CDO tranche
spreads, mark to market value, etc. In particular the calibrated default
intensity can be used to “fill the gaps” in the base correlation surface in
an arbitrage-free manner, by first computing the expected tranche loss for
all strikes and then computing the base correlation for that strike.

5.2 Application to ITRAXX tranches

We have applied the above methodology to several data sets of CDO quotes; we
present here only the results for three data sets, consisting of ITRAXX Europe
IG tranche quotes on Sept 26, 2005, March 15, 2007 and March 25, 2008.

Maturity Low High Bid∖ Upfront September 26, 2005 March 25, 2008

5Y

0% 3% 29.50% 29.875% 38.67 %
3% 6% 96 98 454.08
6% 9% 33 34.5 280.22
9% 12% 13 14 189.40
12% 22% 7.50 8.125 110.74
22% 100% 2.25 3.125 46.87

7Y

0% 3% 47.1% 47.55 % 43.97%
3% 6% 193 196.5 514.76
6% 9% 52 54.5 312.50
9% 12% 29 31.5 206.53
12% 22% 12 13.5 115.47
22% 100% 5.25 6.25 48.55

10Y

0% 3% 58.25% 58.75% 48.43%
3% 6% 505 512.5 633.16
6% 9% 100 103 362.40
9% 12% 48 51.5 238.54
12% 22% 22 23.5 25
22% 100% 8.25 9.5 10.75

Table 2: ITRAXX IG Europe tranche spreads (mid), September 26, 2005 vs
March 25, 2008.
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Figure 1: Model vs market spreads: ITRAXX September 26, 2005 (left) Sept
2008 (right).
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Figure 2: Implied ITRAXX default intensity functions: September 2005 (left)
vs Sept 2008 (right).

Figure 2 displays the local intensity function �(t, l) as a function of time t
and the number of defaults l.

Several features deserve to be commented. First, we note the strong depen-
dence of the default intensity on the portfolio loss level: as noted in section 3,
this dependence is the signature of ’contagion effects’ in CDO tranches. Figure
2 shows the dependence of the default intensity with respect to the number of
defaults at two different dates (in 2005 and 2008). We observe a similar pattern
in both cases: while the initial default rate is quite low (less than 0.5, which
means on average less one default every two years), this default intensity quickly
increases as defaults occur in the portfolio, which is a clear signature of default
contagion. Such contagion effects, which leads to the clustering of defaults, have
been observed in historical time series [14]: our results indicated that their effect
is also detectable in the implied default intensity, i.e. that contagion risk is effec-
tively priced into market quotes of CDO tranches. In pricing terms, this steep
initial slope means that in this period (2005-2007) equity tranches are priced
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Figure 3: Implied default intensity as a function of number of defaults at a 2
year horizon: Sept 2005 (left) and Sept 2008 (right).
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relatively cheaply with respect to mezzanine or senior tranches. The values of
�(t, k) for small k also give interesting insights for the pricing of first-to-default
and k−th to default swaps.

Once the equity tranche of the portfolio is wiped out by defaults, we observe
in figure 2 a plateau where the default intensity remains relatively insensitive
to the number of defaults: in this regime,in fact, a constant, Poisson-type ap-
proximation seems to work well. This regime corresponds to the bulk of the
portfolio, composed of obligors whose default risk is well represented by the av-
erage spread of the portfolio. From a pricing perspective, this flat region implied
that, in these examples, apart from the equity tranche, the other tranches were
priced assuming a constant (and high) value of the default intensity once the
equity tranche has been wiped out. The steep decline of the �(t, k) for large k
can be understood as corresponding to the group of obligors in the index with
the lowest spreads/ default risk and which are the least exposed to systemic
risk: they are the last to default, with a very low probability.

Finally we note that, as illustrated in Figures 1, 2 and 3, both the preci-
sion of the calibration the qualitative features of the default intensity function
remain the same throughout the period 2005-2008, a particularly turbulent pe-
riod during which base correlations computed using Gaussian copula models
have been notoriously unstable and sometimes impossible to calibrate to market
spreads. This shows that the instability of such “default correlations” parame-
ters is linked more to model mis-specification than to genuine non-stationarity:
using a richer model structure along with a stable calibration algorithm restores
a greater degree of parameter stability. This aspect is of course essential if the
model is to be used for hedging [10].

We also note that there is a discontinuity in the dependence on t at each
observed maturity: this discontinuity is a structural feature related to properties
of the dynamic programming equation and does not have any informational
content . Such discontinuities are not present in quantities such as default
probabilities (Figure 4).

The above approach can be used to construct an arbitrage-free interpola-
tion/extrapolation of ’base correlations’, by first calibrating the local intensity
function to the observed tranche spreads then computing expected tranche losses
for a fine grid of detachment points/maturities and converting them into a base
correlation figure. Note that, unlike the usual linear interpolation of base corre-
lations, this method also provides an arbitrage-free extrapolation of base corre-
lations beyond the largest detachment point and below the smallest attachment
point. Figure 5 shows the result of such an interpolation for the ITRAXX data,
compared with the linear interpolation method used by many market partici-
pants. The difference between the two methods is striking, especially for senior
tranches.
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Figure 5: Base correlation surface generated by the calibrated model: ITRAXX
Europe Series 6, March 15 2007.

6 Conclusion

We have proposed a rigorous methodology for calibrating a CDO pricing model
to market data, by formulating the calibration problem as a relative entropy
minimization problem under constraints and mapping it into an intensity control
problem for a point process, which can be solved analytically.

By contrast with other calibration methods proposed for top-down CDO
pricing models in the literature, our method proposed is nonparametric: it does
not assume any arbitrary functional form for the default intensity. Another fea-
ture of algorithm proposed is that it does not require preliminary interpolation
or smoothing of CDO data in maturity or strike (which may violate arbitrage
constraints), nor does it require a preliminary (model-dependent) “stripping”
of CDO spreads into expected tranche notionals. In particular, our algorithm
yields meaningful and stable results even for sparse data sets such as the ones
available in CDS index markets.

Our method allows to compute portfolio default rates implied by index CDO
quotes. Results obtained on ITRAXX tranche spreads point to default contagion
effects in the riskneutral loss process and also illustrate that the implied default
intensity corresponding to the first few defaults are very different from those of
the bulk of the portfolio.

The model obtained from our calibration is a Markovian loss process where
the default intensity depends on the current loss level and time. When compared
with other possible specifications of top-down pricing models, the Markovian loss
process considered here is of course quite simple in structure. Though it does
account for clustering of defaults, it does not include, for instance, spread risk
and the influence of other factors such as interest rates. Although more complex
specifications are possible, as shown in Proposition 1, the information content
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of CDO spreads does not allow to identify such models uniquely. Recently,
Lopatin & Misirpashayev [26] have suggested to use a Markovian loss model
as an intermediate step in the calibration of a two-factor model with richer
dynamics using a relation such as (5) to link the parameters of the. In this
context our algorithm can be used as the first phase of a calibration algorithm
for a more complex model.
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