Numerical Investigation of Abradable Coating Wear Through Plastic Constitutive Law

Application to Aircraft Engines

Mathias Legrand & Christophe Pierre

McGill University

IDETC/CIE 2009 - DETC2009-87669 San Diego, USA

September 1, 2009

Outling			
000	000	0000	
Introduction	Solution Method	Results	Conclusion

Outline

Introduction

Problem statement Wear or material removal? General strategy

2 Solution Method

Equations of motion Abradable constitutive law: plasticity Proposed algorithm

8 Results

Model convergence Modal interactions Final wear profile maps Animations

4 Conclusion

IN CON DOM FI INO DO

- • • •			
● ○ ○	000	0000	
Introduction	Solution Method	Results	Conclusion

Problem statement

Technologies for improved efficiency

- light and composite materials
- few turbine and compressor stages with higher conicity
- aerodynamically improved blade designs
- higher operating temperatures

CFM56- CFM International

New strategy: use of abradable coatings

- minimal operating clearance for improved compression rates
- capable of undergoing structural contacts through wear
- unexpected diverging behaviors?

- • • •			
● ○ ○	000	0000	
Introduction	Solution Method	Results	Conclusion

Problem statement

Technologies for improved efficiency

- light and composite materials
- few turbine and compressor stages with higher conicity
- aerodynamically improved blade designs
- higher operating temperatures

CFM56- CFM International

New strategy: use of abradable coatings

- minimal operating clearance for improved compression rates
- capable of undergoing structural contacts through wear
- unexpected diverging behaviors?

modeling of abradable coating wear in aircraft engines

Mathias Legrand

Referenced mechanisms

- abrasion, erosion, corrosion, adhesion, fretting
- drilling, grinding, turning, milling
- high speed tangential velocities

Abradable properties

- strength to withstand gas turbine environment
- wear characteristics to minimise incurring blade wear

Current knowledge and modeling

- Wear: experimental and empirical \rightarrow Archard's law
- Machining : kinematic relationships
- CPU-intensive numerical approaches in the FEM framework

	6 8 6
Introduction Solution Method Results C 00● 000 00000 0000<	Conclusion

Assumptions

- A single blade in contact
- Statically distorted casing on a 2-nodal diameter shape

Ξ.

- No friction
- No thermomechanical coupling

Solution method

- Blade dynamics reduction through Craig-Bampton technique
- Abradable coating wear through quasi-static plastic constitutive law
- Time-marching solution method

Equations	of motion		
Introduction 000	Solution Method	Results 0000	Conclusion

$$\int_{\Omega_1} \rho_1 \ddot{\mathbf{u}}_1 \delta \mathbf{u}_1 \, \mathrm{dV} + \int_{\Omega_1} \bar{\bar{\sigma}}_1(E_1) : \delta \bar{\bar{\epsilon}}_1 \, \mathrm{dV} = - \int_{\Gamma_c} t_N \delta g \, \mathrm{dS} \quad \leftarrow \text{ blade}$$
$$\int_{\Omega_2} \bar{\bar{\sigma}}_2(E_2, E_T, \sigma_Y) : \delta \bar{\bar{\epsilon}}_2 \, \mathrm{dV} = \int_{\Gamma_c} t_N \delta g \, \mathrm{dS} \quad \leftarrow \text{ abradable coating}$$

Equations	of motion		
Introduction 000	Solution Method	Results 0000	Conclusion

$$\begin{aligned} &\int_{\Omega_1} \rho_1 \ddot{\mathbf{u}}_1 \delta \mathbf{u}_1 \, \mathrm{dV} + \int_{\Omega_1} \overline{\bar{\sigma}}_1(E_1) : \delta \overline{\bar{\epsilon}}_1 \, \mathrm{dV} = -\int_{\Gamma_c} t_N \delta g \, \mathrm{dS} & \leftarrow \text{blade} \\ &\int_{\Omega_2} \overline{\bar{\sigma}}_2(E_2, E_T, \sigma_Y) : \delta \overline{\bar{\epsilon}}_2 \, \mathrm{dV} = \int_{\Gamma_c} t_N \delta g \, \mathrm{dS} & \leftarrow \text{abradable coating} \end{aligned}$$

Finite element discretization

$$egin{array}{lll} \mathsf{M}\ddot{\mathsf{u}} + \mathsf{D}\dot{\mathsf{u}} + \mathsf{K}\mathsf{u} + \lambda &= \mathbf{0} &\leftarrow \mathsf{blade} \ \lambda &= \mathsf{F}_\mathsf{int} &\leftarrow \mathsf{abradable} \end{array}$$

Equations of	of motion		
Introduction	Solution Method	Results	Conclusion
000	●○○	0000	

$$\int_{\Omega_1} \rho_1 \ddot{\mathbf{u}}_1 \delta \mathbf{u}_1 \, \mathrm{dV} + \int_{\Omega_1} \bar{\bar{\sigma}}_1(E_1) : \delta \bar{\bar{\epsilon}}_1 \, \mathrm{dV} = -\int_{\Gamma_c} t_N \delta g \, \mathrm{dS} \quad \leftarrow \text{blade}$$
$$\int_{\Omega_2} \bar{\bar{\sigma}}_2(E_2, E_T, \sigma_Y) : \delta \bar{\bar{\epsilon}}_2 \, \mathrm{dV} = \int_{\Gamma_c} t_N \delta g \, \mathrm{dS} \quad \leftarrow \text{abradable coating}$$

Finite element discretization

Contact conditions

$$\begin{split} \mathsf{M}\ddot{\mathsf{u}} + \mathsf{D}\dot{\mathsf{u}} + \mathsf{K}\mathsf{u} + \lambda &= \mathbf{0} \quad \leftarrow \text{ blade} \\ \lambda &= \mathsf{F}_{\text{int}} & \leftarrow \text{ abradable} \end{split} \qquad \qquad \lambda \geqslant 0, \quad \mathbf{g} \geqslant 0, \quad \lambda \mathbf{g} = \mathbf{0} \end{split}$$

Ν

Equations	of motion		
Introduction	Solution Method	Results	Conclusion
000	●○○	0000	

$$\int_{\Omega_1} \rho_1 \ddot{\mathbf{u}}_1 \delta \mathbf{u}_1 \, \mathrm{dV} + \int_{\Omega_1} \bar{\bar{\sigma}}_1(E_1) : \delta \bar{\bar{\epsilon}}_1 \, \mathrm{dV} = -\int_{\Gamma_c} t_N \delta g \, \mathrm{dS} \quad \leftarrow \text{blade}$$
$$\int_{\Omega_2} \bar{\bar{\sigma}}_2(E_2, E_T, \sigma_Y) : \delta \bar{\bar{\epsilon}}_2 \, \mathrm{dV} = \int_{\Gamma_c} t_N \delta g \, \mathrm{dS} \quad \leftarrow \text{abradable coating}$$

Finite element discretizationContact conditions $M\ddot{u} + D\dot{u} + Ku + \lambda = 0$ \leftarrow blade $\lambda \ge 0$, $g \ge 0$, $\lambda g = 0$ $\lambda = F_{int}$ \leftarrow abradable

Explicit time stepping technique: central finite differences

$$\ddot{\mathbf{u}}_n = \frac{\mathbf{u}_{n+1} - 2\mathbf{u}_n + \mathbf{u}_{n-1}}{h^2}, \quad \dot{\mathbf{u}}_n = \frac{\mathbf{u}_{n+1} - \mathbf{u}_{n-1}}{2h}$$

000	000	0000	
Introduction	Solution Method	Results	Conclusion

Abradable constitutive law: plasticity

Assumptions

- Uni-axial plasticity in compression only
- Isotrope hardening: •

$$f(\sigma,\alpha) = \sigma - (\sigma_Y + K\alpha)$$

Linear additive law:

$$\varepsilon = \varepsilon^{\mathbf{e}} + \varepsilon^{\mathbf{p}}$$
$$\sigma = \mathbf{E}\varepsilon^{\mathbf{e}}$$

Integration

- Kuhn & Tucker conditions
- Prediction-correction incremental approach: Return Map algorithm
 - if $f^{\rm p} \leq 0$, admissible prediction
 - if $f^{p} > 0$, correction of prediction

plastic constitutive law

Proposed a	algorithm		
Introduction	Solution Method	Results	Conclusion
000	○○●	0000	

1. Displacement prediction by neglecting contact constraints

$$\mathbf{u}_{n+1,p} = \left[\frac{\mathbf{M}}{h^2} + \frac{\mathbf{D}}{2h}\right]^{-1} \left(\left(\frac{2\mathbf{M}}{h^2} - \mathbf{K}\right) \mathbf{u}_n + \left(\frac{\mathbf{D}}{2h} - \frac{\mathbf{M}}{h^2}\right) \mathbf{u}_{n-1} \right)$$

- 2. **Determination** of $g_{n+1,p}$ by identifying all abradable elements $i \in I$ being penetrated by the blade
- 3. Abradable internal forces computation $\mathbf{u}_{n+1,p} \rightarrow \varepsilon_{i \in I} \rightarrow (\sigma_{i \in I}, \alpha_{i \in I}) \rightarrow \mathbf{F}_{int}$ $\varepsilon_{i \in I}^{p} \rightarrow \text{abradable profil update}$
- Displacements correction consistent with abradable internal forces (~ contact forces)

$$\mathbf{u}_{n+1} = \mathbf{u}_{n+1,p} - \left[\frac{\mathbf{M}}{h^2} + \frac{\mathbf{D}}{2h}\right]^{-1} \mathbf{F}^{\mathsf{c}}$$

Model con	vergence		
Introduction 000	Solution Method	Results • 0 0 0	Conclusion

Modal convergence

- Craig-Bampton reduction technique
- frequency deviation

$$\Delta f = \frac{|f_f - f_r|}{f_f} < 0.1\%$$

- initial size : \sim 80,000 dof
- final size : 109 dof

First five modes of the blade

Model con	vergence		
Introduction	Solution Method	Results	Conclusion
000	000	•••••	

Modal convergence

- Craig-Bampton reduction technique
- frequency deviation

$$\Delta f = \frac{|f_f - f_r|}{f_f} < 0.1\%$$

- initial size : \sim 80,000 dof
- final size : 109 dof

First five modes of the blade

CB componant modes

CB static modes

Model conv	vergence		
Introduction 000	Solution Method	Results • • • • •	Conclusion

Time-step convergence

- Conditionally stable explicit time-stepping scheme: very small time-step
- Blade displacement convergence
- Abradable wear profile convergence

Model convergence	
Introduction Solution Method Re 000 000 000	OO Conclusion

Time-step convergence

- Conditionally stable explicit time-stepping scheme: very small time-step
- Blade displacement convergence
- Abradable wear profile convergence

Modal inte	eractions		
Introduction	Solution Method	Results	Conclusion
000	000	000	

Modal intera	actions		
Introduction 000	Solution Method	Results OOO	Conclusion

Modal inte	eractions		
Introduction	Solution Method	Results	Conclusion
000	000	000	

Ω low ductility – after ten rounds

0.2

0.3

0.4

0.1

Ω high ductility – after ten rounds

0.2

0.3

0

'n

0ò

0.1

0.4

Introduction 000	Solution Method	Results ○○○●	Conclusion
Animations			
$\Omega eq \Omega_c$			
$\Omega\simeq\Omega_c$			

Mathias Legrand

IDETC-CIE 2009: Numerical Investigation of Abradable Coating Wear

Introduction 000	Solution Method	Results 0000	Conclusion
Conclusions			

Summary

- Available numerical tool accounting for macroscopic peudo-wear mechanisms
- Convergence + low CPU features
- Possibility of experimental measure for abradable identification
- Wear + clearance opening \rightarrow New phenomena compared to the usual unilateral contact framework
- Detection of unexpected high levels of vibration at critical velocities in agreement with first experimental results

Future work

- Addition of friction
- More contact and wear interfaces (~ more CB interface nodes)
- More realistic plastic constitutive laws
- New scenarios of interaction