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Abstract

In this paper, we study backward doubly stochastic integralequations of the Volterra
type ( BDSIEVs in short). Under uniform Lipschitz assumptions, We establish an ex-
istence and uniqueness result.
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1 Introduction

Backward doubly stochastic differential equations (BDSDEs for short) are equations with
two different directions of stochastic integrals, i.e., the equations involve both a standard
(forward) stochastic integraldWt and a backward stochastic integral

←−
dBt :

Y (t) = ξ+
∫ T

t
f (s,Y (s),Z(s))ds+

∫ T

t
g(s,Y (s),Z(s))

←−
dBs−

∫ T

t
Z(s)dWs. (1.1)

This kind of equation was introduced by Pardoux and Peng [2] in 1994. They proved the
existence and uniqueness of solutions for BDSDEs under uniform Lipschitz conditions.
Many others investigations concerned BDSDEs were made withweaker conditions namely
by Zhou and al. [9] in 2004 with non-Lipschitz assumptions witch in turn were weakened
by Han Baoyan and al. [3] in 2005 and recently by N’zi and Owo [4] (2008). In [10]
(2005), Shi and al. weaken the uniform Lipschitz assumptions to linear growth and contin-
uous conditions by virtue of the comparison theorem that is introduced by themselves. They
obtain the existence of solutions to BDSDE but without uniqueness. Pursuing their inves-
tigations on BDSDEs, N’zi and Owo [5] (2009) obtained recently an existence result with
discontinuous conditions. Meanwhile, an other line of researches concerned with backward
stochastic integral equations of Volterra type (BSIEVs forshort) i.e., equations in form:

Y (t) = ξ+
∫ T

t
f (t,s,Y (s),Z(t,s))ds−

∫ T

t
Z(t,s)dWs, (1.2)



are lead by Lin [6] in (2002) under global Lipschitz condition on the drift witch was recently
weakened by A. Aman and M. N’zi [1] in (2005) to local Lipschitz condition.
Recently, general case of BSIEVs (1.2), has been studied by J. Yong [[7],[8]] (2006).

The purpose of this paper is to generalize the theory of Volterra equations to backward
doubly stochastic integral equations.
Thus, we consider the following equation:

Y (t) = ξ+
∫ T

t
f (t,s,Y (s),Z(t,s))ds+

∫ T

t
g(t,s,Y (s),Z(t,s))

←−
dBs−

∫ T

t
Z(t,s)dWs, (1.3)

that we call backward doubly stochastic Volterra integral equations (in short BDSVIEs).

Note that whenf andg do not depend ont, backward doubly stochastic Volterra inte-
gral equations (BDSVIEs) coincide with backward doubly stochastic differential equations
(BDSDEs) .

The present paper is organized as follows : in section 2, we deal with notations and set up
our framework assumptions and give the definition of adaptedsolutions to BDSVIEs. The
section 3 is concerned with the main result.

2 Preliminaries

2.1 Notations

The Euclidean norm of a vectorx ∈ R
k will be denote by|x|, and for an elementz ∈ R

d×k

considered as ad × k matrix, we define its Euclidean norm by||y|| =
√

Tr(zz∗) and<
z,y >= Tr(zy∗), wherey∗ is the transpose ofy.
Let (Ω,F ,P) be a probability space andT be a fixed final time. Throughout this paper
{Wt ;0≤ t ≤ T} and{Bt ;0≤ t ≤ T} will denote two mutually independent standard Brow-
nian motion processes, with valuesRd andRl, respectively, defined on(Ω,F ,P).
LetN denote the class ofP-null sets ofF . For each(t,s) ∈ [0,T ]2, we define

F t,s = F
W

t ∨F
B

s,T , F t = F t,t and F= {F t}t≥0,

where for any process{xt} ; F x
u,t = σ{xr− xu;u≤ r ≤ t}∨N , F x

t = F x
0,t .

Also, we setF·s = {F t,s}t≥0 andFt· = {F t,s}s≥0

For S ∈ [0,T ], setD S,T = [S,T ]2; D = D 0,T and denote byP the σ-algebra ofFT -
measurable subsets ofΩ×D .
For anyn∈N, letM 2(S,T,Rn) denote the set of (class ofdP⊗dt a.e. equal)n−dimensional
jointly measurable random processesϕ : Ω× [S,T ]→ R

n which satisfy:

(i) ||ϕ||2
M 2(S,T ) = E

(∫ T

S
| ϕ(t) |2 dt

)

< ∞

(ii) ϕ(t) is F t−measurable, for a.e.t ∈ [S,T ].

Similarly, we denote byM 2(D S,T ,R
n) the set of (class ofdP⊗ds⊗dt a.e. equal)n−dimensional

jointly measurable random processesψ : Ω×D S,T → R
n satisfying:
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(i) ||ψ||2
M 2(D S,T )

= E

(∫ T

S

∫ T

S
|ψ(t,s)|2dsdt

)

< ∞

(ii) ψ(t,s) is F s−measurable, for a.e.s ∈ [S,T ], and anyt ∈ [S,T ].

Finally, we set
H

2(D S,T ) =M
2(S,T,Rk)×M 2(D S,T ,R

k×d),

with the norm

||(y(.),z(., .))||2
H 2(D S,T )

= E

{∫ T

S
|y(t)|2dt +

∫ T

S

∫ T

S
|z(t,s)|2dsdt

}

< ∞.

Furthermore, let L2(Ω,FT ,P,R
k) be the set ofk-dimensionalFT -measurable random vector

ξ such that
E
(

|ξ|2
)

< ∞.

We will denote byB k the Borelσ-algebra ofRk.

2.2 Assumptions and definition

Let
f : Ω×D ×R

k×R
k×d→ R

k and g : Ω×D ×R
k×R

k×d→ R
k×l

be(P ⊗B k⊗B k×d / B k) resp.(P ⊗B k⊗B k×d / B k×l) -measurable functions such that for
any(y,z) ∈ R

k×R
k×d,

(H1)

f (., .,y,z) ∈M 2(D ,Rk) andg(., .,y,z) ∈M 2(D ,Rk×l).

We assume moreover that there exist constantsC > 0 and 0< α < 1 such that for any
(ω,(t,s)) ∈Ω×D and any(y1,z1),(y2,z2) ∈ R

k×R
k×d,

(H2)

| f (ω, t,s,y1,z1)− f (ω, t,s,y2,z2) |
2≤C(| y1− y2 |

2 + || z1− z2 ||
2)

| g(ω, t,s,y1,z1)−g(ω, t,s,y2,z2) |
2≤C | y1− y2 |

2 +α || z1− z2 ||
2

Furthermore, let
(H3)

ξ ∈ L2(Ω,FT ,P,R
k).

Now, we consider the following BDSVIE: 0≤ t ≤ T

Y (t) = ξ+
∫ T

t
f (t,s,Y (s),Z(t,s))ds+

∫ T

t
g(t,s,Y (s),Z(t,s))

←−
dBs−

∫ T

t
Z(t,s)dWs. (2.1)

Definition 2.1. A pair of processes(Y (.),Z(., .)) whereY : Ω× [0,T ]→R
k andZ : Ω×D →

R
k×d is called adapted solution of (2.1) if (Y (.),Z(., .)) ∈ H 2(D ) and satisfies (2.1).
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3 Existence and uniqueness of the adapted solution to BDSVIE

To reach the main result, we consider first the equation (2.1) where f andg do not depend
on y andz. That is

Y (t) = ξ+
∫ T

t
f (t,s)ds+

∫ T

t
g(t,s)

←−
dBs−

∫ T

t
Z(t,s)dWs, t ∈ [0,T ] (3.1)

Lemma 3.1. Let (H1), (H2) and (H3) hold. Then, BDSVIE (3.1) admits a unique adapted
solution(Y (.),Z(., .)) ∈ H 2(D ).

Moreover, the following estimate holds:

E

∫ T

S
|Y (t)|2dt +E

∫ T

S

∫ T

S
|Z(t,s)|2dsdt (3.2)

≤ 9(T −S)E|ξ|2+9
[

(T −S)∨1
]

E

∫ T

S

∫ T

S

(

| f (t,s)|2+ |g(t,s)|2
)

dsdt,

for any S ∈ [0,T ].

Proof. For anyt ∈ [0,T ], consider the processM(t, .) defined by:r ∈ [0,T ],

M(t,r) = E

(

ξ+
∫ T

0
f (t,s)ds+

∫ T

0
g(t,s)

←−
dBs | F r,0

)

.

The processM(t, .) as defined, isF·0−square integrable martingale. Therefore, by the ex-
tension of Itô’s martingale representation theorem, thereexists aF r,0−progressively mea-
surable processZ(t, .) with valued inRk×d such that

∫ T

0
|Z(t,s)|2ds < ∞

and

M(t,r) = M(t,0)+
∫ r

0
Z(t,s)dWs, ∀ r ∈ [0,T ].

Hence,

M(t,r) = M(t,T )−
∫ T

r
Z(t,s)dWs, ∀ r ∈ [0,T ]. (3.3)

By definition,M(t,T ) = ξ+
∫ T

0
f (t,s)ds+

∫ T

0
g(t,s)

←−
dBs and

M(t,r) = N(t,r)+
∫ r

0
f (t,s)ds+

∫ r

0
g(t,s)

←−
dBs,

where

N(t,r) = E

(

ξ+
∫ T

r
f (t,s)ds+

∫ T

r
g(t,s)

←−
dBs | F r,0

)

.
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Therefore

N(t,r) = ξ+
∫ T

r
f (t,s)ds+

∫ T

r
g(t,s)

←−
dBs−

∫ T

r
Z(t,s)dWs. (3.4)

Note thatF r,0 = F
W

r ∨F
B

0,T = F r ∨F
B

r . Then

N(t,r) = E
(

θ(ξ, t,r,T ) | F r ∨F
B

r

)

,

whereθ(ξ, t,r,T ) = ξ+
∫ T

r
f (t,s)ds +

∫ T

r
g(t,s)

←−
dBs is F W

T ∨ F
B

r,T−measurable. Conse-

quently,F B
r is independent ofF r ∨σ(θ(ξ, t,r,T )) and

N(t,r) = E(θ(ξ, t,r,T ) | F r) .

Define

Y (t) = N(t, t) = E

(

ξ+
∫ T

t
f (t,s)ds+

∫ T

t
g(t,s)

←−
dBs | F t

)

. (3.5)

Obviously,Y (.) is F−adapted and satisfies the following relation:

Y (t) = ξ+
∫ T

t
f (t,s)ds+

∫ T

t
g(t,s)

←−
dBs−

∫ T

t
Z(t,s)dWs, t ∈ [0,T ].

On the other hand, we know from above that, for anyt ∈ [0,T ], Z(t, .) is F·0−adapted and
satisfies equation (3.4), so

∫ T

r
Z(t,s)dWs = θ(ξ, t,r,T )−N(t,r), r ∈ [0,T ]. (3.6)

Since,θ(ξ, t,r,T ) (resp.N(t,r)) is F W
T ∨F

B
r,T− (resp.F W

r ∨F
B

r,T−) measurable, it follows

that
∫ T

r
Z(t,s)dWs is F W

T ∨F
B

r,T−measurable, for anyr ∈ [0,T ].

Hence, from Itô’s martingale representation theorem,{Z(t,s),r < s < T} is F·r−adapted.
Consequently,Z(t,s) is F W

s ∨F
B

r,T -measurable, for anyr < s < T . It follows thatZ(t,s) is∧
r<s

(F W
s ∨F

B
r,T )−measurable.

But, ∧
r<s

(F W
s ∨F

B
r,T ) = F

W
s ∨ (

∧
r<s

F
B

r,T ) = F
W

s ∨F
B

s,T .

Thus,Z(t,s) is F W
s ∨F

B
s,T−measurable, for any(t,s) ∈ D .

Now, let us prove that(Y (.),Z(., .)) ∈ H 2(D ).

To this end, we use the relations (3.5) and (3.6). Then, we obtain:

E

∫ T

0
|Y (t)|2dt ≤ 3E

(

T |ξ|2+
∫ T

0

∫ T

0

(

T | f (t,s)|2+ |g(t,s)|2
)

dsdt

)

.
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and

E

∫ T

0

∫ T

0
|Z(t,s)|2dsdt ≤ 6E

(

T |ξ|2+
∫ T

0

∫ T

0

(

T | f (t,s)|2+ |g(t,s)|2
)

dsdt

)

.

Hence, it follows from conditions(H1)-(H3), that(Y (.),Z(., .)) ∈ H 2(D ).

Therefore,(Y (.),Z(., .)) is an adapted solution to (2.1).

For the uniqueness, let us suppose that(Y ′(.),Z′(., .)) ∈ H 2(D ) is an other adapted
solution. Then we have,∀ t ∈ [0,T ]

Y (t)−Y ′(t)+
∫ T

t

[

Z(t,s)−Z′(t,s)
]

dWs = 0. (3.7)

TakingE[.|F t ] in (3.7), we get Y (t)−Y ′(t) = 0, ∀t ∈ [0,T ].

On the other hand, still using (3.7), we deduce

E

∫ T

0

∫ T

0
|Z(t,s)−Z′(t,s)|2dsdt = E

∫ T

0
|Y (t)−Y ′(t)|2dt = 0.

Our main result in this paper is the following Theorem.

Theorem 3.2. Let (H1), (H2) and (H3) hold. Then the BDSVIE (2.1) admits a unique
adapted solution (Y (.),Z(., .)) ∈ H 2(D ).

Proof. For simplicity of notations, we writeY for Y (.) and Z for Z(., .), throughout the
proof.

For any(y,z) ∈ H 2(D S,T ), we consider the following BDSVIE:t ∈ [S,T ]

Y (t) = ξ+
∫ T

t
f (t,s,y(s),z(t,s))ds+

∫ T

t
g(t,s,y(s),z(t,s))

←−
dBs −

∫ T

t
Z(t,s)dWs. (3.8)

Thus, by lemma3.1, Eq. (3.8) admits a unique adapted solution(Y,Z) ∈ H 2(D S,T ) and

E

∫ T

S
|Y (t)|2dt +E

∫ T

S

∫ T

S
|Z(t,s)|2dsdt

≤ 9(T −S)E|ξ|2+9
[

(T −S)∨1
]

E

∫ T

S

∫ T

S

(

| f (t,s,0,0)|2 + |g(t,s,0,0)|2
)

dsdt

+ 9C(T −S)
[

(T −S)+1
]

E

∫ T

S
|y(t)|2dt +9

[

(T −S)C+α
]

E

∫ T

S

∫ T

S
|z(t,s)|2dsdt

≤ 9(T −S)E|ξ|2+9
[

(T −S)∨1
]

E

∫ T

S

∫ T

S

(

| f (t,s,0,0)|2 + |g(t,s,0,0)|2
)

dsdt

+ ΓS,T

[

E

∫ T

S
|y(t)|2dt +E

∫ T

S

∫ T

S
|z(t,s)|2dsdt

]

,
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whereΓS,T = max
{

9C(T −S)
[

(T −S)+1
]

;9
[

(T −S)C+α
]}

.
Hence,

||(Y,Z)||2
H 2(D S,T )

≤ 9(T −S)E|ξ|2+9
[

(T −S)∨1
]

E

∫ T

S

∫ T

S

(

| f (t,s,0,0)|2 + |g(t,s,0,0)|2
)

dsdt

+ ΓS,T ||(y,z)||
2
H 2(D S,T )

.

Let us consider the mapΘ : H 2(D S,T )→ H
2(D S,T ) defined by

Θ(y,z) = (Y,Z), ∀ (y,z) ∈ H 2(D S,T ), (3.9)

where(Y,Z) ∈ H 2(D S,T ) is the adapted solution to BDSVIE (3.8).

The mapΘ, as defined, is a contraction whenT −S > 0 is small.

Indeed, let(y′,z′)∈H 2(D S,T ) and(Y ′,Z′)=Θ(y′,z′) the corresponding solution to BDSVIE
(3.8) on [S,T ].

Let now define:

Ȳ = Y −Y ′, Z̄ = Z−Z′ andȳ = y− y′, z̄ = z− z′.

Then,

Ȳt =

∫ T

t
F(t,s, ȳ(s), z̄(t,s))ds+

∫ T

t
G(t,s, ȳ(s), z̄(t,s))

←−
dBs−

∫ T

t
z̄(t,s)dWs, (3.10)

whereF andG are defined by

F(t,s,u,v) = f (t,s,u+ y′(t),v+ z′(t,s))− f (t,s,y′(t),z′(t,s))

G(t,s,u,v) = g(t,s,u+ y′(t),v+ z′(t,s))−g(t,s,y′(t),z′(t,s)).

It is easy to check thatF andG verify hypotheses(H1) and(H2) with

F(t,s,0,0) = 0 andg(t,s,0,0) = 0, for any(t,s) ∈ D .

Therefore, by lemma3.1, (Ȳ , Z̄) ∈M 2(S,T,Rk)×M 2(D S,T ,R
k×d) and

E

∫ T

S
|Ȳ (t)|2dt +E

∫ T

S

∫ T

S
|Z̄(t,s)|2dsdt ≤ ΓS,T

[

E

∫ T

S
|ȳ(t)|2dt +E

∫ T

S

∫ T

S
|z̄(t,s)|2dsdt

]

.

Hence,

||(Ȳ , Z̄)||2
H 2(D S,T )

≤ ΓS,T ||(ȳ, z̄)||
2
H 2(D S,T )

.

Consequently,

||Θ(y,z)−Θ(y′,z′)||2
H 2(D S,T )

≤ ΓS,T ||(y,z)− (y′,z′)||2
H 2(D S,T )

,

for any(y,z), (y′,z′) ∈ H 2(D S,T ).
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Thus, the mapΘ : H 2(D S,T )→ H
2(D S,T ) is a contraction whenS ∈ [0,T ] is chosen such

thatΓS,T < 1. Hence,Θ admits a unique fixed point(Y,Z) ∈ H 2(D S,T ) which is the unique
adapted solution of BDSVIE (2.1) on [S,T ].

To end the proof, letS′ ∈ [0,S].
From above, we have the existence of a unique adapted solution on [S,T ]. Therefore, there
exists a uniqueY (S).
Now, for anyt ∈ [S′,S], let us consider the following equation with terminal condition Y (S):

y(t) =Y (S)+
∫ S

t
f (t,s,y(s),z(t,s))ds+

∫ S

t
g(t,s,y(s),z(t,s))dBs −

∫ S

t
z(t,s)dWs. (3.11)

Using the same procedure as above, we conclude that the equation (3.11) admits a unique
adapted solution(y,z) ∈ H 2(D S′,S) on [S′,S]. Therefore, we can deduce by induction, the
existence and uniqueness of an adapted solution inH 2(D ) to BDSVIE (2.1) on [0,T ].
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