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Abstract

In this paper, we study backward doubly stochastic integggahtions of the Volterra
type ( BDSIEVs in short). Under uniform Lipschitz assumpgpWe establish an ex-
istence and uniqueness result.
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1 Introduction

Backward doubly stochastic differential equations (BDSD& short) are equations with
two different directions of stochastic integrals, i.eg #quations involve both a standard

(forward) stochastic integravw{ and a backward stochastic integcﬁt:

Y(t) :€+/tT f(sY(s),Z(s))ds+ /tT g(s,Y(s),Z(s))d%Bs—/tT Z(s)dWs. (1.1)

This kind of equation was introduced by Pardoux and Pehin[1994. They proved the
existence and uniqueness of solutions for BDSDEs undeopmumilipschitz conditions.
Many others investigations concerned BDSDEs were madewdtker conditions namely
by Zhou and al. ] in 2004 with non-Lipschitz assumptions witch in turn wereakened
by Han Baoyan and al. 3] in 2005 and recently by N’zi and Owa!] (2008). In [LO]
(2005), Shi and al. weaken the uniform Lipschitz assumptiorlinear growth and contin-
uous conditions by virtue of the comparison theorem thattisduced by themselves. They
obtain the existence of solutions to BDSDE but without ueitgss. Pursuing their inves-
tigations on BDSDESs, N’zi and Owa] (2009) obtained recently an existence result with
discontinuous conditions. Meanwhile, an other line of aeskes concerned with backward
stochastic integral equations of Volterra type (BSIEVsdioort) i.e., equations in form:

T T
Y(t):§+/t f(t,s,Y(s),Z(t,s))ds—/t Z(t,5)dWg, (1.2)



are lead by Lin§] in (2002 under global Lipschitz condition on the drift witch was retg
weakened by A. Aman and M. N'zi] in (2005) to local Lipschitz condition.
Recently, general case of BSIEVkY), has been studied by J. Yong[ &]] (2006).

The purpose of this paper is to generalize the theory of Maltequations to backward
doubly stochastic integral equations.
Thus, we consider the following equation:

Y(t) :E+/tT f(t,s,Y(s),Z(t,s))ds+/tTg(t,s,Y(s),Z(t,s))tT&—/tTZ(t,s)dWs, (1.3)

that we call backward doubly stochastic Volterra integrplaions (in short BDSVIES).

Note that whenf andg do not depend ot backward doubly stochastic Volterra inte-
gral equations (BDSVIESs) coincide with backward doublyckstic differential equations
(BDSDES) .

The present paper is organized as follows : in section 2, \@ewligh notations and set up
our framework assumptions and give the definition of adaptdations to BDSVIEs. The
section 3 is concerned with the main result.

2 Preliminaries

2.1 Notations

The Euclidean norm of a vectarc R will be denote byjx|, and for an elemertt € RI*K
considered as d x k matrix, we define its Euclidean norm Bly|| = \/Tr(zz*) and <
z,y >=Tr(zy"), wherey" is the transpose of.

Let (Q, F,P) be a probability space antl be a fixed final time. Throughout this paper
{W;0<t<T}and{B;;0<t<T} will denote two mutually independent standard Brow-
nian motion processes, with valuB§ andR!', respectively, defined of®, 7 ,P).

Let 2 denote the class &#-null sets of7 . For each(t,s) € [0, T]?, we define

Fis=F" VI, Ft=Fgand F={F}o,

where for any procesgx } ; Fjy = 0{% —Xu;Uu<T1 <t} Va(, 7= 755
Also, we seff'.s = { #t s}t>0 andF;. = { #i s}s>0

For Se [0,T], setost = [ST]? D = Dot and denote by the c-algebra offr-
measurable subsets @fx D.
Foranync N, letas 2(S T,R") denote the set of (class 0P® dt a.e. equalp—dimensional
jointly measurable random procesgesQ x [S T| — R" which satisfy:

i 2 T 2
O 101 2ar, =2 ( [ 160 Pat) <o
(i) ¢(t) is Fr—measurable, for a.¢.€ [ST|.

Similarly, we denote bys 2(pst,R") the set of (class afP® ds® dt a.e. equalp—dimensional
jointly measurable random processgsQ x Dst — R" satisfying:
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O 101Bsgyy = ([ 009 Peat) <o

(i) Y(t,s)is Fs—measurable, for a.e.c [ST], and anyt € [ST].
Finally, we set
}[Z(DS,T) = MZ(SaT,Rk) X MZ(DS,TaRkXd)’

with the norm

150). 2 DI Bz =E{ [Mwras [ |z(t,s)|2dsdt} <o

Furthermore, let B(Q, 71, P, R¥) be the set ok-dimensionalrr-measurable random vector
¢ such that
E(|&%) <

We will denote bys, the Borelo-algebra ofRk.

2.2 Assumptions and definition

Let
f:QxDxRExRY S RE and g: Q x 0 x RX x R**d 5 RK!

be (? ® Bk ® Bkxd / Bk) resp.(? ® Bk ® Bkxd / Bkxl) -measurable functions such that for
any (y,z) € RX x Rk<d,
(H1)

f(.,.,y,2) € & ?(p,R¥ andg(.,.,y,2) € ¢ %(D,R).
We assume moreover that there exist consté@nts 0 and 0< o < 1 such that for any
(w,(t,9) € Qx » and any(y1,2z1), (Y2, 22) € RK x Rk<d]
(H2)

| f(w?t’s’ylazl) - f(w?t’s’yZ,ZZ) |2§ C(| Y1—Y2 |2 + || -2 ||2)

‘ g(“%LSYLZl) _g(w7t7s7y2722) ’2§ C ‘ YI—YZ ’2 +a H -2 HZ
Furthermore, let
(Hs)
£ e L?(Q,7r,P,RY).

Now, we consider the following BDSVIE: €t <T

E+/ (t,s,Y(s),Z(t,9) ds+/ (t,s,Y(s), Z(t,s))fﬁs—/TZ(t,s)dWs. (2.1)
t

Definition 2.1. A pair of processegY (.),Z(.,.)) whereY : Q x [0,T] - RXandZ: Q x 0 —
R¥*d is called adapted solution a.(l) if (Y(.),Z(.,.)) € #?(») and satisfies21).



3 Existence and uniqueness of the adapted solution to BDSVIE

To reach the main result, we consider first the equatioi) (vhere f andg do not depend
onyandz Thatis

Y(t) :E+/tT f(t,s)ds+/tTg(t,s)<d_Bs—/tTZ(t,s)dWs, te[0,T] (3.1)

Lemma 3.1. Let (H1), (H2) and (Hs) hold. Then, BDSVIE (3.1) admits a unique adapted
solution(Y(.),Z(.,.)) € #?(D).

Moreover, the following estimate holds:
T T T
E/ ]Y(t)]zdt+E/ / 1Z(t,5)|2dsdt (3.2)
S S JS
T ,T
< 9(T—S)E|E|2+9[(T—S)v1]E/ / (|f(t,s)|2+|g(t,s)|2)dsdt,
s Js

for any S [0, T].

Proof. For anyt € [0, T], consider the proce$d(t,.) defined byr € [0, T],

M(t,r) = E (a + /OT f(t,s)ds+/0T g(t,s)dBs | m,) .

The procesd(t,.) as defined, i¥.o—square integrable martingale. Therefore, by the ex-
tension of 1td’s martingale representation theorem, tlesists af, o—progressively mea-
surable proces&(t, .) with valued inR**9 such that

/OT 1Z(t,5)2ds < e
and
M(t,r) = M(t,0)+/orZ(t,s)dWS, Vrel0,T].
Hence,

M(t,r):M(t,T)—/TZ(t,s)dWs, Vrelo,T]. (3.3)

T T —
Bydefinition,M(t,T):E+/ f(t,s)ds+/ g(t,s)dBs and
0 0

M(t,r) = N(t,r)+/0r f(t,s)ds+/0r gt 8)dBs,

where

N(t,r)=E <E+/T f(t,s)ds+ /T g(t,s)fj_Bs | ﬂo).
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Therefore

N(t,r) :z+/T f(t,s)ds+/Tg(t,s)a_s—/TZ(t,s)dWs. (3.4)

Note that#,o = FVV #r = # V £°. Then

N(t,r) =E (8(ELLT) | % V7P,

T T
where8(&,t,r,T) = E+/ f(t,s)ds+/ g(t,s)dHBs is 74" v 7,5 —measurable. Conse-
r r

quently, 7,8 is independent of;; v (8(E,t,r,T)) and

N(t,r) =E(B(&,t,r,T) | 7).
Define
Y(t)=N(tt)=E <E+/tT f(t,s)ds+ /tT g(t,s)fj_BS | ﬂ) . (3.5

Obviously,Y(.) is F—adapted and satisfies the following relation:
T T — T
Y(t) :z+/ f(t,s)ds+/ g(t,s)st—/ Z(t,5)dWe, t € [0,T].
t t t

On the other hand, we know from above that, for &ry[0,T], Z(t,.) is F.o—adapted and
satisfies equatior(4), so

/TZ(t,s)dWs: B(E,t,r, T) = N(t,r), r € [0,T]. (3.6)

Since,8(&,t,r,T) (resp.N(t,r)) is 7" v £,5 — (resp. 7V v .5 —) measurable, it follows
T

that/ Z(t,9)dWs is 7V v 7,5 —measurable, for anye [0, T].
; ,

Hence, from It&’s martingale representation theoré¢g(t,s),r < s< T} is F.,—adapted.

ConsequentlyZ(t,s) is 7V v fr%—measurable, forany<s< T. It follows thatZ(t,s) is

A (7 v 75 )—measurable.
r<s :

But,
/\(Tswvfrr,@r):TSW\/(/\Tr?I'):TSW\/T&%I"

r<s r<s

Thus,Z(t,s) is 74" v 5y —measurable, for anft,s) € o.
Now, let us prove thatY(.),Z(.,.)) € #?(D).

To this end, we use the relatiors§) and @.6). Then, we obtain:
T T T 2 2
E/ 1Y (t)|2dt < 3E (T!E]2+/ / (Tyf(t,s)y +g(t,s) >dsdt>.
0 0 JO
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and

IE/OT/OT|Z(t,s)|2dsdt < 6E <T|z|2+/OT/OT (TIF(t9)7+ lot 9 ?) dsdt).

Hence, it follows from conditiongHy )-(Hs), that(Y(.),Z(.,.)) € # ?(D).
Therefore,(Y(.),Z(.,.)) is an adapted solution t@ ().

For the uniqueness, let us suppose ¥t.),Z'(.,.)) € #?(?) is an other adapted
solution. Then we have;t € [0,T|

-Y'(t) +/ —Z'(t,9)|dWs = (3.7)

TakingE[.|#] in (3.7), we getY(t) —Y'(t) =0, vt € [0, T].
On the other hand, still usin@(7), we deduce

E//]Zts —Z'(t,s)|*dsdt = E/ Y (t) t)[2dt =

Our main result in this paper is the following Theorem.

Theorem 3.2. Let (H;), (H2) and (H3z) hold. Then the BDSVIE (2.1) admits a unique
adapted solution (Y(.),Z(.,.)) € #?(D).

Proof. For simplicity of notations, we writ& for Y(.) andZ for Z(.,.), throughout the

proof.
For any(y,z) € # ?(pst), we consider the following BDSVIE:€ [S T]

:E+/T f(t,s,y(s),z(t,s))ds+/Tg(t,s,y(s),z(t,s))(TBs—/TZ(t,s)dWS. (3.8)
t t t

Thus, by lemma.1, Eq. @.8) admits a unique adapted solutiéri Z) € # 2(ps7) and

T T T
E/ ]Y(t)]zdtHE/ / 1Z(t,9) dsclt
S S JS

9T — SE[E[2+9[(T—9) \/l]E/ST /ST (1f(t,5.0,0)2+[ait,5,0,0)? ) dsct

IN

N 9C(T—S)[(T—S)+1]E/ST yy(t)lzdt+9[(T_S)CJFG]E/ST/ST!Z(t’S)‘Zdet

IN

9(T—S)E]E]2+9[(T—S)\/1]E/ST/ST (1f(t,5,0,0)2+g(t,5.0,0)? ) dsct
+ Ter [E/ST |y(t)|2dt+E/ST/ST|z(t,s)|2dsdt],
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wherel st = max{9C(T -9 [(T -9 +1];9[(T —S)C+a] }.
Hence,

1021 2
< o -SEEP+olT-9valE [ [ (11500 + gt 50.0))dsat

+ rSTH(y’ Z)||§'[2(@ST)'

Let us consider the maP : # 2(Dgt) — H 2(Ds7) defined by

O(y.2) = (Y.2), V(y.2) €#*(DsT). (3.9)
where(Y,Z) € # ?(pg7) is the adapted solution to BDSVIB.§).

The mapo, as defined, is a contraction wh&n- S> 0 is small.

Indeed, lety’,Z) € #?(ps7) and(Y’,Z') = ©(y, Z) the corresponding solution to BDSVIE
(3.9 on[ST].

Let now define:
Y=Y-Y, Z=7Z-7 andy=y-Yy, z=z—7.

Then,

— T T _ ya— T

Y- [ Fltsyis.dte)ds+ | Gtsyls).ats)dB— [ Atss  (3.10)

t t t
whereF andG are defined by
F(t.suv) =f(t,su+y(t),v+Z(ts) - f(t,sy(t).Z(t.s))

G(t,s,u,v) =g(t,su+Yy(t),v+Z(t,s) —g(t,sY(t),Z(t,9)).
It is easy to check thdt andG verify hypothesegH;) and(H;) with
F(t,s,0,0) =0 andg(t,s,0,0) = 0O, for any(t,s) € D.
Therefore, by lemma.1, (Y,Z) € & 2(ST,R¥) x ar 2(ps7,R*Y) and

T _ T T _ T T T
IE/ |Y(t)|2dt+E/ / |Z(t,s)|2dsdtgl'3T[E/ |ﬂt)|2dt+E/ / At 9) Pasc]
S S JS S S JS

Hence,

1YV, D)1 2(nr) < TsTIE DI 201

Consequently,
||@(y, )/Z, ||9{2@ST <r3T||ya )/Z, ||}[2 (DsT)?

for any (y,z), (ylvzl) € HZ(DST)'



Thus, the ma® : # ?(Ds7) — # ?(Ds7) is a contraction whes € [0, T] is chosen such
thatl st < 1. Hence® admits a unique fixed poirfY, Z) € # ?(Ds7) which is the unique
adapted solution of BDSVIE2(1) on [ST].

To end the proof, le8 € [0, S.
From above, we have the existence of a unique adapted sotutis, T]. Therefore, there
exists a uniqu& ().
Now, for anyt € [S, g, let us consider the following equation with terminal cdri Y (S):

s s s
y(t):Y(S)Jr/t f(t,s,y(s),z(t,s))ds+/t g(t,s,y(s),z(t,s))st—/t Z(t,s)dWs. (3.11)

Using the same procedure as above, we conclude that thd@y(@fll) admits a unique
adapted solutionty, z) € # ?(Dgs) on[S,S. Therefore, we can deduce by induction, the
existence and uniqueness of an adapted solution4fp ) to BDSVIE (2.1) on[0,T]. O
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