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BACKWARD DOUBLY STOCHASTIC INTEGRAL EQUATIONS

OF THE VOLTERRA TYPE

JEAN-MARC OWO

Abstract. In this paper, we study backward doubly stochastic integral equa-
tions of the Volterra type ( BDSIEVs in short). Under uniform Lipschitz
assumptions, we establish an existence and uniqueness result.

1. Introduction

Backward doubly stochastic differential equations (BDSDEs for short) are equa-
tions with two different directions of stochastic integrals, i.e., the equations involve
both a standard (forward) stochastic integral dWt and a backward stochastic inte-
gral dBt:

Y (t) = ξ +

∫ T

t

f(s, Y (s), Z(s))ds +

∫ T

t

g(s, Y (s), Z(s))dBs −

∫ T

t

Z(s)dWs.

This kind of equation was introduced by Pardoux and Peng [2] in 1994. They proved
the existence and uniqueness of solutions for BDSDEs under uniform Lipschitz
conditions. Many others investigations concerned BDSDEs were made with weaker
conditions namely by Zhou and al. [9] in 2004 with non-Lipschitz assumptions
witch in turn were weakened by Han Baoyan and al. [3] in 2005 and recently by
N’zi and Owo [4] (2008). In [10] (2005) Shi and al. weaken the uniform Lipschitz
assumptions to linear growth and continuous conditions by virtue of the comparison
theorem that is introduced by themselves. They obtain the existence of solutions to
BDSDE but without uniqueness. Pursue their investigations on BDSDEs, N’zi and
Owo [5] (2009) obtained recently an existence result with discontinuous conditions.
Meanwhile, An other line of researches concerned with backward stochastic integral
equations of Volterra type (BSIEVs for short) i.e., equations in form:

Y (t) = ξ +

∫ T

t

f(t, s, Y (s), Z(t, s))ds −

∫ T

t

Z(t, s)dWs,(1.1)

are lead by Lin [6] in (2002) under global Lipschitz condition on the drift witch
was recently weakened by A. Aman and M. N’zi [1] in (2005) to local Lipschitz
condition.
Recently, general case of BSIEVs (1.1), has been studied by J. Yong [8], 2006 and
[8] (2008).

The purpose of this paper is to generalize the theory of Volterra equations to
backward doubly stochastic integral equations.

Key words and phrases. Volterra integrals, backward stochastic integral, backward doubly
stochastic Volterra integral equations.
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Thus, we consider the following equation:

Y (t) = ξ +

∫ T

t

f(t, s, Y (s), Z(t, s))ds +

∫ T

t

g(t, s, Y (s), Z(t, s))dBs(1.2)

−

∫ T

t

Z(t, s)dWs,

that we call backward doubly stochastic Volterra integral equations (in short BDSVIEs).
The present paper is organized as follows : in section 2, we deal with notations

and recall some preliminaries result concern to BDSDE, the section 3 deals with
the main result.

2. Preliminaries

2.1. Notations. The Euclidean norm of a vector x ∈ R
k will be denote by |x|, and

for an element z ∈ R
d×k considered as a d×k matrix, we define its Euclidean norm

by ||z|| =
√

Tr(zz∗) and < z, y >= Tr(zy∗), where y∗ is the transpose of y.
Let (Ω,F , P) be a probability space and T be a fixed final time. Throughout this
paper {Wt; 0 ≤ t ≤ T } and {Bt; 0 ≤ t ≤ T } will denote two mutually independent
standard Brownian motion processes, with values R

d and R
l, respectively, defined

on (Ω,F , P).
Let N denote the class of P -null sets of F . For each (t, s) ∈ [0, T ]2, we define

Ft = FW
t ∨ FB

t,T , and F = {Ft}t≥0

where for any process {xt} ; Fx
u,t = σ{xr − xu; u ≤ r ≤ t} ∨ N , Fx

t = Fx
0,t.

Define D = {(t, s) ∈ R
2
+ ; 0 ≤ t ≤ s ≤ T } and denote by P the σ-algebra of

Ft∨s-progressively measurable subsets of Ω ×D.
For any (k, d) ∈ N

∗2, let M2(t, T, R
k) (resp. M2(D, R

k×d)) be the set of R
k-

valued (resp. R
k×d-valued), Fs-progressively measurable processes ϕ(s) which are

square-integrable with respect to P ⊗ λ ⊗ λ (where λ denotes Lebesgue measure
over [0, T ]).
Denote by S2([t, T ], R

k) the set of R
k×d-valued, Fs-progressively measurable and

continuous processes ϕ(s) such that E
(

supt≤s≤T |ϕ(s)|2
)

< +∞.

For S ∈ [0, T ], set DS,T = {(t, s) ∈ R
2
+ ; S ≤ t ≤ s ≤ T } and

H2(DS,T ) = M2(S, T, Rk) ×M2(DS,T , Rk×d),

with the norm

||(y(.), z(., .))||2a,H2(DS,T ) = E

{

∫ T

S

eat|y(t)|2dt +

∫ T

S

∫ T

t

eas||z(t, s)||2dsdt

}

,

where a ∈ R
+ will be chosen suitable. For a = 0,

||(y(.), z(., .))||20,H2(DS,T ) = E

{

∫ T

S

|y(t)|2dt +

∫ T

S

∫ T

t

||z(t, s)||2dsdt

}

.

Note that for a > 0, ||(y(.), z(., .))||2
a,H2(DS,T ) and ||(y(.), z(., .))||20,H2(DS,T ) are

equivalent.
Let Bk be the Borel σ-algebra of R

k.



BACKWARD DOUBLY STOCHASTIC VOLTERRA INTEGRAL EQUATIONS 3

2.2. Existence and uniqueness solution of BDSDE. In this subsection, we
recall an existence and uniqueness result for adapted solutions to BDSDE.
Let us consider the following BDSDE: 0 ≤ t ≤ T,

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds +

∫ T

t

g(s, Ys, Zs)dBs −

∫ T

t

ZsdWs.(2.1)

Let us stand the following assumptions
(H1) the maps f, g : Ω×[0, T ]×R

k×R
k×d → R

k(Rk×l) are B([0, T ])⊗Bk⊗Bk×d×FT -
measurable such that f(., 0, 0) ∈ M2(0, T, Rk) and g(., 0, 0) ∈ M2(0, T, Rk×l).
(H2) there exists two constants C > 0 and 0 < α < 1 such that
∀(ω, t) ∈ Ω × [0, T ] and ∀(y1, z1), (y2, z2) ∈ R

k × R
k×d

| f(t, y1, z1) − f(t, y2, z2) |
2≤ C(| y1 − y2 |2 + || z1 − z2 ||2)

|| g(t, y1, z1) − g(t, y2, z2) ||
2≤ C | y1 − y2 |2 +α || z1 − z2 ||2

(H3) ξ is a square-integrable k-dimensional FT -measurable random vector.

Theorem 2.1 (Pardoux and Peng [2]). Under hypotheses (H1) and (H2), there ex-

ists a unique pair of process (Y, Z) ∈ S2([0, T ], Rk)×M2(0, T, Rk×d) which satisfies

equation (2.1).

3. Existence and uniqueness of the adapted solution to BDSVIE

In this section, we are concerned with solving the following BDSVIE

Y (t) = ξ +

∫ T

t

f(t, s, Y (s), Z(t, s))ds +

∫ T

t

g(t, s, Y (s), Z(t, s))dBs(3.1)

−

∫ T

t

Z(t, s)dWs,

for t ∈ [0, T ].

Definition 3.1. A pair of processes (Y (.), Z(., .)) ∈ L2
F(0, T ; Rk)×L2(0, T ; L2

F(0, T ; Rk×d))
is called adapted solution of (3.1) if it satisfies (3.1), with Y (.) being F-adapted,
and Z(t, .) being F-adapted for almost all t ∈ [0, T ].

Hypotheses. Let us stand the following assumptions (H):
(H ′

1) f : Ω × [0, T ] × [0, T ] × R
k × R

k×d × R
k×d → R

k is (P ⊗ Bk ⊗ Bk×d / Bk)-
measurable function satisfying:

(i) f(., ., 0, 0) ∈ M2(D, Rk)
(ii) there exists a constant C > 0 such that for all (ω, (t, s)) ∈ Ω×D and for

all (y1, z1), (y2, z2) ∈ R
k × R

k×d,

| f(ω, t, s, y1, z1) − f(ω, t, s, y2, z2) |
2≤ C(| y1 − y2 |2 + || z1 − z2 ||2)

(H ′
2) g : Ω ×D × R

k → R
k×l is (P ⊗ Bk / Bk×l)-measurable function such that

g(., ., 0) ∈ M2(D, Rk×l)

|| g(ω, t, s, y1, z1) − g(ω, t, s, y2, z2) ||2≤ C | y1 − y2 |2 +α || z1 − z2 ||2

for all (ω, (t, s)) ∈ Ω ×D and for all y1, y2 ∈ R
k and 0 < α < 1.

(H ′
3) ξ is a square-integrable k-dimensional FT -measurable random vector.
Our main result in this paper is the following Theorem.

Theorem 3.2. Let (H ′
1), (H ′

2) and (H ′
3) hold. Then the BDSVIE (3.1) admits a

unique adapted solution (Y (.), Z(., .)) ∈ H2[0, T ] on [0, T ].
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Before we start proving the theorem, let us establish the same result on [S, T ] for
any S ∈ [0, T ], in case f and g do not depend on y and z.

We consider the equation

Y (t) = ξ +

∫ T

t

f(t, s)ds +

∫ T

t

g(t, s)dBs −

∫ T

t

Z(t, s)dWs, t ∈ [S, T ](3.2)

Lemma 3.3. Let (H ′
1), (H ′

2) and (H ′
3) hold. Then, BDSVIE (3.2) admits a unique

adapted solution(Y (.), Z(., .)) ∈ L2
F(S, T ; Rk) × L2(S, T ; L2

F(S, T ; Rk×d)) for any

S ∈ [0, T ] and

E

∫ T

S

|Y (t)|2dt + E

∫ T

S

∫ T

t

|Z(t, s)|2dsdt

≤ 3(T − S)E|ξ|2 + 3
[

(T − S) ∨ 1
]

E

∫ T

S

∫ T

t

(

|f(t, s)|2 + |g(t, s)|2
)

dsdt

Proof. Let S ∈ [0, T ].
First, we consider the following family of BDSDEs parameterized by t ∈ [S, T ].

λt(r) = ξ +

∫ T

r

f(t, s)ds +

∫ T

r

g(t, s)dBs −

∫ T

r

µt(s)dWs, r ∈ [t, T ].(3.3)

For each fixed t ∈ [S, T ], by the theorem 2.1, the BDSDE (3.3) admits a unique
adapted solution (λt(.), µt(.)) ∈ S2([t, T ], Rk) ×M2(t, T, Rk×d) on [t, T ].
Moreover, if t 7→ f(t, s) and t 7→ g(t, s) are continous on [0, T ], then (t, s) 7→ λt(s)
is continuous on DS,T and t 7→ µt(.) is continuous on [0, T ].
Next, define

{

Y (t) = λt(t), t ∈ [S, T ]
Z(t, s) = µt(s), (t, s) ∈ DS,T

.

Then (3.3) reads :

Y (t) = ξ +

∫ T

t

f(t, s)ds +

∫ T

t

g(t, s)dBs −

∫ T

t

Z(t, s)dWs, t ∈ [S, T ].(3.4)

Thus, we prove the existence of adapted solution to BDSVIE (3.2) on [S, T ].
For the uniqueness, let us suppose that {(Y ′(t), Z ′(t, s))} ∈ M2(S, T, Rk) ×

M2(DS,T , Rk×d) is an other adapted solution. Then we have ∀t ∈ [S, T ]

Y (t) − Y ′(t) +

∫ T

t

[

Z(t, s) − Z ′(t, s)
]

dW (s) = 0.(3.5)

Taking E[.|Ft] in (3.5), we get Y (t) − Y ′(t) = 0, ∀t ∈ [S, T ].
Hence,

E

∫ T

S

∫ T

t

|Z(t, s) − Z ′(t, s)|2dsdt = E

∫ T

S

|Y (t) − Y ′(t)|2dt = 0.

�
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Proof of Theorem 3.2. For any {(y(t), z(t, s))} ∈ M2(S, T, Rk)×M2(DS,T , Rk×d),
we consider the following BDSVIE:

Y (t) = ξ +

∫ T

t

f(t, s, y(s), z(t, s))ds +

∫ T

t

g(t, s, y(s), z(t, s))dBs(3.6)

−

∫ T

t

Z(t, s)dWs, t ∈ [S, T ].

Thus, by lemma 3.3, BDSVIE (3.6) admits a unique adapted solution
{(Y (t), Z(t, s)); (t, s) ∈ DS,T } ∈ M2(S, T, Rk) ×M2(DS,T , Rk×d) and

E

∫ T

S

|Y (t)|2dt + E

∫ T

S

∫ T

t

|Z(t, s)|2dsdt

≤ 3(T − S)E|ξ|2 + 3
[

(T − S) ∨ 1
]

E

∫ T

S

∫ T

t

(

|f(t, s, 0, 0)|2 + |g(t, s, 0, 0)|2
)

dsdt

+ 3C(T − S)
[

(T − S) + 1
]

E

∫ T

S

|y(t)|2dt + 3
[

(T − S)C + α
]

E

∫ T

S

∫ T

t

|z(t, s)|2dsdt

≤ 3(T − S)E|ξ|2 + 3
[

(T − S) ∨ 1
]

E

∫ T

S

∫ T

t

(

|f(t, s, 0, 0)|2 + |g(t, s, 0, 0)|2
)

dsdt

+ M(S, T )
[

E

∫ T

S

|y(t)|2dt + E

∫ T

S

∫ T

t

|z(t, s)|2dsdt
]

,

where M(S, T ) = max
{

3C(T − S)
[

(T − S) + 1
]

; 3
[

(T − S)C + α
]}

.
Hence,

||(Y (.), Z(., .))||20,H2(DS,T )

≤ 3(T − S)E|ξ|2 + 3
[

(T − S) ∨ 1
]

E

∫ T

S

∫ T

t

(

|f(t, s, 0, 0)|2 + |g(t, s, 0, 0)|2
)

dsdt

+ M(S, T )||(y(.), z(., .))||20,H2(DS,T ).

Let us define a map Θ : H2(DS,T ) → H2(DS,T ) by

Θ(y(.), z(., .)) = (Y (.), Z(., .)), ∀ (y(.), z(., .)) ∈ H2(DS,T ),(3.7)

where (Y (.), Z(., .)) ∈ H2(DS,T ) is the adapted solution to BDSVIE (3.6).
The map Θ, as defined, is a contraction when T − S > 0 is small.

Indeed, let (y′(.), z′(., .)) ∈ H2(DS,T ) and (Y ′(.), Z ′(., .)) = Θ(y′(.), z′(., .)).
By lemma 3.3, we know that, for (y(.), z(., .)) ∈ H2(DS,T ), the adapted solution to
BDSVIE (3.6) on [S, T ] is defined by the unique form:

{

Y (t) = λt(t), t ∈ [S, T ]
Z(t, s) = µt(s), (t, s) ∈ DS,T

,(3.8)

where, for each t fixed in [S, T ] , (λt(.), µt(.)) is the unique adapted solution on
[t, T ] to the BDSDE:

λt(r) = ξ +

∫ T

r

f(t, s, y(s), z(t, s))ds +

∫ T

r

g(t, s, y(s), z(t, s))dBs −

∫ T

r

µt(s)dWs,
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for r ∈ [t, T ]. Similarly, for (y′(.), z′(., .)) ∈ H2(DS,T ), we can represent the solution
(Y ′(.), Z ′(., .)) by the form:

{

Y ′(t) = λ′t(t), t ∈ [S, T ]
Z ′(t, s) = µ′t(s), (t, s) ∈ DS,T

,(3.9)

where, for each t fixed in [S, T ] , (λ′t(.), µ′t(.)) is the unique adapted solution on
[t, T ] to the BDSDE:

λ′t(r) = ξ +

∫ T

r

f(t, s, y′(s), z′(t, s))ds +

∫ T

r

g(t, s, y′(s), z′(t, s))dBs −

∫ T

r

µ′t(s)dWs,

for r ∈ [t, T ].
Then for r ∈ [t, T ], we have

λt(r) − λ′t(r) =

∫ T

r

[

f(t, s, y(s), z(t, s)) − f(t, s, y′(s), z′(t, s))
]

ds

+

∫ T

r

[

g(t, s, y(s), z(t, s)) − g(t, s, y′(s), z′(t, s))
]

dBs

−

∫ T

r

[

µt(s) − µ′t(s)
]

dWs.(3.10)

Let a > 0 and θ > 0. Applying It’s formula to ear|λt(r) − λ′t(r)|2, we obtain

Eear|λt(r) − λ′t(r)|2 + E

∫ T

r

eas|µt(s) − µ′t(s)|2ds + aE

∫ T

r

eas|λt(s) − λ′t(s)|2ds

= 2E

∫ T

r

eas(λt(s) − λ′t(s))
[

f(t, s, y(s), z(t, s)) − f(t, s, y′(s), z′(t, s))
]

ds

+ E

∫ T

r

eas|g(t, s, y(s), z(t, s)) − g(t, s, y′(s), z′(t, s))|2ds

≤ θE

∫ T

r

eas|λt(s) − λ′t(s)|2ds +
1

θ
E

∫ T

r

eas|f(t, s, y(s), z(t, s)) − f(t, s, y′(s), z′(t, s))|2ds

+ E

∫ T

r

eas|g(t, s, y(s), z(t, s)) − g(t, s, y′(s), z′(t, s))|2ds.

Using assumptions (H ′
1) and (H ′

2), we have

Eear|λt(r) − λ′t(r)|2

+E

∫ T

r

eas|µt(s) − µ′t(s)|2ds + aE

∫ T

r

eas|λt(s) − λ′t(s)|2ds

≤ θE

∫ T

r

eas|λt(s) − λ′t(s)|2ds + C(
1

θ
+ 1)E

∫ T

r

eas|y(s) − y′(s)|2ds(3.11)

+ (
1

θ
C + α)E

∫ T

r

eas|z(t, s) − z′(t, s)|2ds.
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For fixed t ∈ [S, T ], taking r = t in (3.11) and using the representation (3.8) and
(3.9), we obtain

Eeat|Y (t) − Y ′(t)|2 + E

∫ T

t

eas|Z(t, s) − Z ′(t, s)|2ds + aE

∫ T

t

eas|λt(s) − λ′t(s)|2ds

≤ θE

∫ T

t

eas|λt(s) − λ′t(s)|2ds + C(
1

θ
+ 1)E

∫ T

t

eas|y(s) − y′(s)|2ds

+ (
1

θ
C + α)E

∫ T

t

eas|z(t, s) − z′(t, s)|2ds.

Thus, taking a > θ, we have for every t ∈ [S, T ]

Eeat|Y (t) − Y ′(t)|2 + E

∫ T

t

eas|Z(t, s) − Z ′(t, s)|2ds

≤ C(
1

θ
+ 1)E

∫ T

t

eas|y(s) − y′(s)|2ds(3.12)

+(
1

θ
C + α)E

∫ T

t

eas|z(t, s) − z′(t, s)|2ds.

By integrating (3.12) from S to T , yields

E

∫ T

S

eat|Y (t) − Y ′(t)|2dt + E

∫ T

S

∫ T

t

eas|Z(t, s) − Z ′(t, s)|2dsdt

≤ (T − S)C(
1

θ
+ 1)E

∫ T

S

eas|y(s) − y′(s)|2ds(3.13)

+ (
1

θ
C + α)E

∫ T

S

∫ T

t

eas|z(t, s) − z′(t, s)|2dsdt.

Consequently,

||Θ(y(.), z(., .)) − Θ(y′(.), z′(., .))||2a,H2(DS,T )

≡ ||(Y (.), Z(., .)) − (Y ′(.), Z ′(., .))||2a,H2(DS,T )

≡ E

{

∫ T

S

eat|Y (t) − Y ′(t)|2dt +

∫ T

S

∫ T

t

eas|Z(t, s) − Z ′(t, s)|2dsdt

}

≤ ΛE

{

∫ T

S

eas|y(s) − y′(s)|2ds +

∫ T

S

∫ T

t

eas|z(t, s) − z′(t, s)|2dsdt

}

(3.14)

≤ Λ||(y(.), z(., .)) − (y′(.), z′(., .))||2a,H2(DS,T ),

where Λ = Max((T − S)C(1
θ

+ 1); (1
θ
C + α))

It is easy to see that for θ > 0 and S ∈ [0, T ] such that C
1−α

< θ < a and

0 < T − S < θ
C(1+θ) , we have Λ < 1. Thus the map Θ : H2(DS,T ) → H2(DS,T ) is a

contraction. Hence, it admits a unique fixed point (Y (.), Z(., .)) ∈ H2(DS,T ) which
is the unique adapted solution of BDSVIE (3.1) for t ∈ [S, T ].

To end the proof, let S′ ∈ [0, S].
From the above proof, we know that when (t, s) ∈ DS,T i.e (t, s) ∈ [S, T ] × [t, T ],
there exists a unique adapted solution, therefore there exists unique Y (S).
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Now, we consider

Ȳ (t) = Y (S) +

∫ S

t

f(t, s, Ȳ (s), Z̄(t, s))ds +

∫ S

t

g(t, s, Ȳ (s), Z̄(t, s))dBs

−

∫ S

t

Z̄(t, s)dWs, t ∈ [S′, S].(3.15)

Using the above procedure, we conclude that the equation (3.15) admits a unique
adapted solution (Ȳ (.), Z̄(., .)) ∈ H2(DS′,S) for t ∈ [S′, S]. Therefore, we can
deduce by induction, the existence and uniqueness of an adapted solution in H2(D)
to BDSVIE (3.1) on D = D0,T �
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Université de Cocody, UFR de Mathématiques et Informatique: 22 BP 582 Abidjan,
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