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Abstract

This note completes the obtained results in [1]. It presents a full-order observers for linear systems
with unknown inputs in the state and in the measurement equations. It gives a more general approach
for the observers design than that presented in [1] and it shows that all the obtained results are
independent of the choice of the generalized inverses considered in the observers design . Continuous
and discrete time systems are considered.
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1 Introduction and preliminaries

The problem of observing the state vector of a deterministic linear time-invariant multivariable system
has been the object of numerous studies ever since the original work of Luenberger [4], [5] first appeared.
The Observers problem is to reconstruct (or to estimate) the state or a linear combination of the states
of the system using the input and output measurements. During the past decades Luenberger observer
has been extended to systems with unknown inputs. Many complete results on these observers can be
founded in the literature (see [1], [2], [7], [8], [9], [10], [11], [12], [13] and references therein). The problem
is of great importance in practice since there are many situations where the disturbances or partial
inputs are inaccessible. In these cases a conventional Luenberger observer cannot be applied. Others
applications of the unknown inputs observers are in the fault detection and isolation (FDI) problems [9],
[11]. This note completes and extends the approach developed in [1] to the observers design for general
linear systems for which the unknown input affect also the measurements. The results are related to the
strong* detectability developed in [2]. It is also shown that the observers design is invariant to the choice
of the generalized inverses. A straightforward algebraic method for the design of these observers is given.
Continuous-time as well as discrete-time systems are considered.

Consider the following dynamical system

σx = Ax + Fd (1a)

y = Cx + Gd (1b)

where σ denotes the time derivative d/dt for the continuous-time systems and a forward unit time shift
δ for the discrete-time systems, x ∈ IRn is the state vector, y ∈ IRp is the output vector and d ∈ IRm is
the unknown input. Matrices A, F , C, and G are known constant and of appropriate dimensions.

Now define the following sets: Dc = {λ ∈ C, Re(λ) ≥ 0}, D̄c = {λ ∈ C, Re(λ) < 0}, Dd = {λ ∈
C, |λ| > 1} and D̄d = {λ ∈ C, |λ| < 1}.

The following definitions and theorems are useful for the sequel (see reference [2]).

Definition 1. The system (1) or the quadruple (A, F, C, G) is strongly detectable if y(t) = 0 for t > 0
implies limt→∞ x(t) = 0 for all u(t) and x(0).



Definition 2. The system (1) or the quadruple (A, F, C, G) is strong* detectable if limt→∞ y(t) = 0
implies limt→∞ x(t) = 0 for all u(t) and x(0).

Theorem 1. The system (1) or the quadruple (A, F, C, G) is strongly detectable if and only if all its
zeros s satisfy s ∈ D̄c in the continuous case and s ∈ D̄d in the discrete time case or equivalently

rank

[
sI − A −F

C G

]
= n + rank

[
F

G

]
,∀s ∈ Dc for the continuous case (∀s ∈ Dd for the discrete case).

Theorem 2. The system (1) or the quadruple (A, F, C, G) is strong* detectable if and only if it is strongly
detectable and in addition

rank

[
CF G

G 0

]
= rankG + rank

[
F

G

]
(2)

Now define a generalized inverse of a matrix M as a matrix M+ such that MM+M = M . Then, the
following theorem gives the general solution X to equation MXM = M [3].

Theorem 3. Let M+ be a particular generalized inverse of the matrix M , then a general solution to
equation MXM = M is given by

X = M+ + Λ − M+MΛMM+

where Λ is an arbitrary matrix of appropriate dimension.

2 Full order unknown input observers design

Consider the linear time-invariant multivariable system described by

σx = Ax + Bu + Fd (3a)

y = Cx + Gd (3b)

where x ∈ IRn and y ∈ IRp are the state and the output vectors of the system, u ∈ IRm is the known
input and d ∈ IRq is the unknown input. Matrices A, F , C, and G are known constant and of appropriate
dimensions.

Our aim is to design an observer of the form

σζ = Nζ + Jy + Hu (4a)

x̂ = ζ − Ey (4b)

where x̂ ∈ IRn is the estimate of x. N , J , and E are constant matrices of appropriate dimensions to
be determined.

Remark 1 No assumption is made on the rank of the matrices F and G ❏

Define the following matrix
P = I + EC

The following proposition gives the conditions for system (4) to be a full order observer for system (3).

Proposition 1. The full-order observer (4) will estimate (asymptotically) x(t) if the following conditions
hold

1) N is a stability matrix
2) PA − NP − JC = 0
3) PF − NEG − JG = 0
4) EG = 0
5) H = PB
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Proof. Assume that condition 4) of is satisfied, then the observer reconstruction error is

e = x − x̂ = Px − ζ + EGd = Px − ζ (5)

then, the dynamic of this estimation error is given by the following equation

σe = Ne + (PA − NP − JC)x + (PB − H)u + (PF − NEG − JG)d

If conditions 1), 2), 3), and 5) are satisfied, then limt→∞ e(t) = 0 for any x(0), x̂(0), d(t), and u(t).
Hence x̂(t) in (4) is an estimate of x(t). This completes the proof.

From proposition 1, the design of the observer (4) is reduced to find the matrices N , J , E, and H so
that conditions 1) − 5) are satisfied.

Now using the definition of P , equations 2)-4) can be written as

N = A +
[
E K

] [
CA

C

]
(6)

[
E K

]
Σ = Θ (7)

where K = −J − NE, Σ =

[
CF G

G 0

]
and Θ =

[
−F 0

]
.

One can see that upon matrix E is determined, we can deduce the value of matrix H from equation
5) of proposition 1.

The necessary and sufficient condition for the existence of the solution of equation (7) can then be
given by the following lemma.

Lemma 1. The necessary and sufficient condition for the existence of the solution to (7) is given by (2).

Proof. From the general solution of linear matrix equations [3], there exists a solution to (7) if and only
if:

ΘΣ+Σ = Θ (8)

where Σ+ is any generalized inverse matrix of Σ satisfying ΣΣ+Σ = Σ. Equation (8) is also equivalent to

rank

[
Σ
Θ

]
= rank

[
Σ

]
(9)

or equivalently

rank




I 0 C

0 I 0
0 0 I




[
Σ
Θ

]
= rank




0 G

G 0
−F 0



 = rank
[
Σ

]

which proves the lemma.

From [3], under condition (2) the general solution of equation (7) is
[
E K

]
= ΘΣ+ − Z(I − ΣΣ+) (10)

where Z is an arbitrary matrix of appropriate dimension.
Inserting (10) into (6) yields

N = A1 − ZB1 (11)

where

A1 = A + ΘΣ+

[
CA

C

]
(12)

and

B1 = (I − ΣΣ+)

[
CA

C

]
(13)

The necessary and sufficient condition for the existence of the matrix parameter Z such that N is Hurwitz,
which guarantees that condition 1) of proposition 1 is satisfied, is given by the following lemma.
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Lemma 2. Under assumption (2), there exists a matrix Z such that the matrix N in (11) is Hurwitz if
and only if the quadruple (A, F, C, G) is strongly detectable.

Proof. From (10), the matrix N is Hurwitz if and only if the pair (B1,A1) is detectable or equivalently

rank

[
sI − A1

B1

]
= n,∀s ∈ Dc (s ∈ Dd for the discrete case).

Now, define the following regular matrices S1 =




I 0 0
C I −sI

0 0 I



 and S2 =




I 0

−Σ+

[
C

CA

]
I



 and the

full column rank matrix S3 =




I −ΘΣ+

0 I − ΣΣ+

0 ΣΣ+



, then we have

rank




sI − A Θ[

CA

C

]
Σ



 = rankS1




sI − A Θ[

CA

C

]
Σ



 = rank

[
sI − A −F

C G

]
+ rankG (14)

On the other hand

rank




sI − A Θ[

CA

C

]
Σ



 = rankS3




sI − A Θ[

CA

C

]
Σ



S2 = rank

[
sI − A1

B1

]
+ rank Σ (15)

by using (2) the lemma is proved.

The following lemma proves that the obtained results are independent of the choice of the generalized
inverse.

Lemma 3. Under assumption (2), the observer design is independent of the choice of the generalized
inverse.

Proof. From theorem 3, equation (10) and the fact that ΘΣΣ+ = Θ, the new matrix N̄ obtained for N ,
by using the general solution to equation ΣXΣ = Σ, is given by

N̄ = Ā − ZB̄

where Ā = A1 + ΘΛB1 and B̄ = (I − ΣΛ)B1. In this case one can see that the new matrix N̄ has the
same form as N . Then, there exists a matrix parameter Z such that N̄ is Hurwitz if and only if the pair
(B̄, Ā) is detectable.

Now, define the following full column rank matrices S̄2 =




I 0

−X

[
C

CA

]
I



, S̄3 =




I −ΘX

0 I − ΣX

0 ΣX



, where

X is the general solution to ΣXΣ given by Theorem 3. In this case by replacing S2 by S̄2 and S3 by S̄3

in (15) we obtain

rank




sI − A Θ[

CA

C

]
Σ



 = rank S̄3




sI − A Θ[

CA

C

]
Σ



 S̄2 = rank

[
sI − Ā

B̄

]
+ rank Σ

From (14) we can see that the pair (B̄, Ā) is detectable if and only if the quadruple (A, F, C, G) is strong*
detectable. The lemma is proved.

From the above results we have the following theorem.

Theorem 4. The full order observer (4) will estimate (asymptotically) x(t) if the quadruple (A, F, C, G)
is strong* detectable.

The design of the observer (4) can be obtained as follows:
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1) Verify the strong* detectability of the quadruple (A, F, C, D).
2) Compute A1 and B1 given by (12) and (13).
3) Find matrix Z by pole placement to determine N (11).
4) Compute K and E given by (10), then calculate J = K + NE and H = (I + EC)B.

Remark 2 If G = 0, conditions of theorem 1 or equivalently the strong* detectability of (A, F, C) reduce

to: rankCF = rankF and rank

[
sI − A −F

C 0

]
= rankF + n, which correspond to those obtained in [1]

when F is of full column rank. ❏

The following remark gives an intuitive interpretation of the above observer design.

Remark 3 First we can see that the observer (4) uses only the knowledge of the known inputs and
outputs.

Now let us consider system (1), from condition 4) of proposition 1, we note that EG = 0, then
Ey = ECx and Eσy = ECσx = ECAx + ECBu + ECFd.

Define the following variables ȳ =

[
σy

y

]
and d̄ =

[
d

α

]
, where α(t) is a fictive variable with the same

dimension as the variable d. Then by pre-multiplying ȳ by
[
E K

]
we obtain the following system

σx = Ax + Bu + Fd = Ax + Bu − Θd̄ (16a)

[
E K

]
ȳ =

[
E K

] [
ECA

C

]
x +

[
E K

] [
CB

0

]
u +

[
E K

]
Σd̄ (16b)

From equation (7) we have
[
E K

]
Σ = Θ, then from (16b) we obtain

Θd̄ =
[
E K

]
ȳ −

[
E K

] [
CA

C

]
x −

[
E K

] [
CB

0

]
u

Inserting this value into equation (16a) gives

σx = Nx + PBu −
[
E K

]
ȳ

where N = A+
[
E K

] [
CA

C

]
and P = I +

[
E K

] [
C

0

]
. Let x = ζ −Ey and J = −K −NE, we obtain

the following system

σζ = Nζ + PBu + Jy (17a)

x = ζ − Ey (17b)

which is the observer (4). ❏

3 Conclusion

In this note, we have presented a complement to the results obtained in [1] for the full-order observers
design for linear multivariable systems. The existence and stability conditions are given, and generlize
those adopted in [1].
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