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Rotor-stator interaction in turbomachinery

Why does it happen ?

◮ optimized designs, new materials, reduced operating tip

clearances

◮ performance improvements and increased vibratory stresses
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◮ optimized designs, new materials, reduced operating tip

clearances

◮ performance improvements and increased vibratory stresses

Contact occurrences

◮ normal operating conditions

◮ not only transient but also stationary phenomena

◮ instabilities

Analysis of stationary phenomena

◮ time integration

◮ frequency-domain approaches

Nonlinear modes

◮ non-smooth nonlinearities

◮ large-scale systems
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Contact modeling and constitutive equations

◮ Solid mechanics, small
perturbations assumption

b
u (x)

Ω

Γd

Γc

contact interface: Γc

no external forcing

no friction or dissipation
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◮ Solid mechanics, small
perturbations assumption

b
u (x)

Ω

Γd

Γc

contact interface: Γc

no external forcing

no friction or dissipation

◮ Gap function defined on the
contact interface:

g(u) = u(x) · n− g0(x)

n, outward normal vector

g0, initial gap

◮ Contact conditions

τN 6 0, g (u) 6 0, g (u)·τN = 0

τN = σ · n, contact pressure
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Strong formulation of the eigenvalue problem
◮ Boundary value problem (Dirichlet and Signorini conditions):

ρü− divσ(u) = 0 on Ω× R
+
∗

u = 0 on Γd × R
+
∗

g (u) 6 0, τN 6 0 et g (u) · τN = 0 on Γc × R
+
∗

◮ Displacement field in the frequency domain:

u(t) =
∑

n∈Z

ûnejnωt with ûn =
1

T

∫

T

u(t)e−jnωt
dt

◮ Eigenvalue problem:

Find {ω, û}, with û = {ûn, n ∈ Z} such as:

− divσ(ûn) = (nω)2ûn on Ω× Z

ûn = 0 on Γd × Z

g (û) 6 0, τN 6 0 et g (û) · τN = 0 on Γc × [0,T ]
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Rayleigh quotient

◮ Generalized Rayleigh quotient:

r (û) =
∑

n∈Z

k (ûn, ûn)

m (ûn, ûn)

with: m (u, v) =
∫

Ω
ρuv dx et k (u, v) =

∫

Ω
σ (u) : ǫ (v) dx

◮ Critical points û of this Rayleigh quotient are eigenvectors and
eigenvalues are: ω2 = r (û)

◮ Constrained minimization (Signorini conditions):

min
ûn∈V

r (û) with g (û) 6 0 on Γc ∀t ∈ [0,T ]
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Optimality conditions and variational formulation

◮ Optimality conditions: ∃λ(t) > 0 such as:

∇ûn
r (û) +

∫

T

〈λ(t),∇ûn
g (û)〉dt = 0 ∀n ∈ Z

λ(t) > 0 et 〈λ(t), g (û)〉 = 0 ∀t ∈ [0,T ]

◮ Variation formulation

Find {ûn, n ∈ Z} such as ∀v ∈ V

2 m (ûn, ûn)
−1 (

k (ûn, v)− n2ω2 (û) m (ûn, v)
)

+

∫

T

〈λ, v〉ejnωt
dt = 0 ∀n ∈ Z

λ > 0 and 〈λ, g (û)〉 = 0 ∀t ∈ [0,T ]
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Augmented Lagrangian
◮ Augmented Lagrangian:

Lκ (û,θ) = r (û) +
1

2

∫

T

‖
√
κ (g (û) + θ) ‖2

+ dt

◮ Optimality conditions:

∇ûn
Lκ (û,θ) = 0 ∀n ∈ Z

◮ Using the variational formulation:
Find {ûn, n ∈ Z} such as ∀v ∈ V

2 m (ûn, ûn)
−1 (k (ûn, v)− n2ω2 (û) m (ûn, v)

)

+

∫

T

〈κ (g (û) + θ)+ , v〉ejnωt
dt = 0

◮ Multiplier updates:

θ ← θ + max
x,t

(g (û) ,−θ)
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Numerical implementation
Discretization

◮ Time discretization: t = {tk = kT/m, k = 1, . . .,m}
◮ Fourier series and discrete Fourier transform:

ûn =
1

T

m
∑

k=1

ūke−j 2πkn

m and ūk =
N
∑

n=−N

ûne j 2πkn

m

◮ Gap function: g (U) = AU − g0

◮ Discretized eigenvalue problem:

2M−1
(

K− (nω)2M
)

Ûn+AT

m
∑

k=1

κ
(

g
(

Û
)

+ θk

)

+
ej 2πkn

m = 0 (∗)

General algorithm

1 continuation with respect to the modal amplitude q

2 calculate ω∗(q) with ûn(q) fixed

3 update û∗n(q) for ω∗(q)
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Augmented Lagrangian algorithm
Initialization

i = 0, imax, G (0) =∞
θ = θ(1), κ = κ(1)

α > 1, β > 1, ǫ > 0

Iterations
while G (i) > ǫ and i < imax do

Find {ûn}n=−N,...,N solution of (∗);
Evaluate {g(ūk)}k=1,...,m;
Define:

l = {l : |max (g(ūk),−θk) |>G (i)/α}
Ḡ = max |max (g (ūk) ,−θk)|

if Ḡ > G (i) then ∀l ∈ l, κk,l ← βκk,l and θk,l ← θk,l/β;
else

i ← i + 1 θ
(i)
k
← θk , κ

(i)
k
← κk and G (i) ← Ḡ ;

θk ← θ(i)k
+ max (g (ūk) ,−θk);

if G (i) > G (i−1)/α then ∀l∈l, κk,l←βκk,l ;
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Blade and contact interface modeling

~r

~z

casing

~r

~t

◮ Craig & Bampton reduced-order model
24 interface nodes and 40 normal modes

◮ contact in radial direction ~r
◮ uniform initial gap
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Nonlinear modes: modal parameters
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Effects of contact on mode shapes
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Concluding remarks

Summary:

◮ A method for nonlinear modal analysis of mechanical systems with
contact interfaces has been proposed.

◮ Based on a mixed time-frequency formulation of the eigenvalue
problem, a constrained minimization of a Rayleigh quotient is
defined, which is then solved using an augmented Lagrangian
approach.

◮ An application to a large-scale structure has been proposed.
Parametric studies have shown the effects of contact on modal
parameters.
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Summary:

◮ A method for nonlinear modal analysis of mechanical systems with
contact interfaces has been proposed.

◮ Based on a mixed time-frequency formulation of the eigenvalue
problem, a constrained minimization of a Rayleigh quotient is
defined, which is then solved using an augmented Lagrangian
approach.

◮ An application to a large-scale structure has been proposed.
Parametric studies have shown the effects of contact on modal
parameters.

Future works:

◮ Introduction of friction and use of complex modes formalism

◮ Stability and bifurcation analysis

◮ Application to bladed disks with flexible casing
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