Nonlinear Modal Analysis of Mechanical Systems with Frictionless Contact Interfaces

Denis Laxalde, Mathias Legrand and Christophe Pierre

Structural Dynamics and Vibration Laboratory Department of Mechanical Engineering, McGill University Montreal, Quebec, Canada

ASME IDETC/CIE 2009 - VIB 14

Outline

Background and overview

Nonlinear modes for contact systems

Contact analysis for compressor blades

Conclusions

Why does it happen ?

- optimized designs, new materials, reduced operating tip clearances
- performance improvements and increased vibratory stresses

Why does it happen ?

- optimized designs, new materials, reduced operating tip clearances
- performance improvements and increased vibratory stresses

Contact occurrences

- normal operating conditions
- not only transient but also stationary phenomena
- instabilities

Why does it happen ?

- optimized designs, new materials, reduced operating tip clearances
- performance improvements and increased vibratory stresses

Contact occurrences

- normal operating conditions
- not only transient but also stationary phenomena
- instabilities

Analysis of stationary phenomena

- time integration
- frequency-domain approaches

Why does it happen ?

- optimized designs, new materials, reduced operating tip clearances
- performance improvements and increased vibratory stresses

Contact occurrences

- normal operating conditions
- not only transient but also stationary phenomena
- instabilities

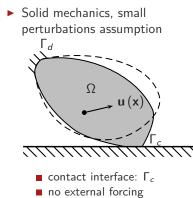
Analysis of stationary phenomena

- time integration
- frequency-domain approaches

Nonlinear modes

- non-smooth nonlinearities
- large-scale systems

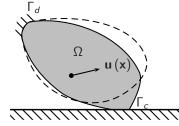
Contact modeling and constitutive equations



no friction or dissipation

Contact modeling and constitutive equations

 Solid mechanics, small perturbations assumption



- contact interface: Γ_c
 no external forcing
- no friction or dissipation

 Gap function defined on the contact interface:

$$\mathbf{g}(\mathbf{u}) = \mathbf{u}(\mathbf{x}) \cdot \mathbf{n} - \mathbf{g}_0(\mathbf{x})$$

- n, outward normal vector
 g₀, initial gap
- Contact conditions

 $au_{N}\leqslant0,\ \mathbf{g}\left(\mathbf{u}
ight)\leqslant0,\ \mathbf{g}\left(\mathbf{u}
ight){\cdot} au_{N}=0$

• $\tau_N = \sigma \cdot \mathbf{n}$, contact pressure

Strong formulation of the eigenvalue problem

Boundary value problem (Dirichlet and Signorini conditions):

$$\begin{split} \rho \ddot{\mathbf{u}} - \operatorname{div} \boldsymbol{\sigma}(\mathbf{u}) &= 0 \quad \text{on } \Omega \times \mathbb{R}^+_* \\ \mathbf{u} &= 0 \quad \text{on } \Gamma_d \times \mathbb{R}^+_* \\ \mathbf{g}(\mathbf{u}) &\leqslant 0, \quad \tau_N \leqslant 0 \quad \text{et } \mathbf{g}(\mathbf{u}) \cdot \tau_N &= 0 \quad \text{on } \Gamma_c \times \mathbb{R}^+_* \end{split}$$

Displacement field in the frequency domain:

$$\mathbf{u}(t) = \sum_{n \in \mathbb{Z}} \hat{\mathbf{u}}_n e^{jn\omega t} \text{ with } \hat{\mathbf{u}}_n = \frac{1}{T} \int_T \mathbf{u}(t) e^{-jn\omega t} dt$$

► Eigenvalue problem: Find $\{\omega, \hat{\mathbf{u}}\}$, with $\hat{\mathbf{u}} = \{\hat{\mathbf{u}}_n, n \in \mathbb{Z}\}$ such as:

$$\begin{aligned} -\operatorname{div} \boldsymbol{\sigma}(\mathbf{u}_n) &= (n\omega)^{-}\mathbf{u}_n \quad \text{on } \Omega \times \mathbb{Z} \\ \hat{\mathbf{u}}_n &= 0 \quad \text{on } \Gamma_d \times \mathbb{Z} \\ \mathbf{g}\left(\hat{\mathbf{u}}\right) &\leq 0, \quad \tau_N &\leq 0 \quad \text{et } \mathbf{g}\left(\hat{\mathbf{u}}\right) \cdot \tau_N &= 0 \quad \text{on } \Gamma_c \times [0, T] \end{aligned}$$

Rayleigh quotient

Generalized Rayleigh quotient:

$$r\left(\hat{\mathbf{u}}\right) = \sum_{n \in \mathbb{Z}} \frac{k\left(\hat{\mathbf{u}}_{n}, \hat{\mathbf{u}}_{n}\right)}{m\left(\hat{\mathbf{u}}_{n}, \hat{\mathbf{u}}_{n}\right)}$$

with: $m(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \rho \mathbf{u} \mathbf{v} \, \mathrm{d} \mathbf{x}$ et $k(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \sigma(\mathbf{u}) : \epsilon(\mathbf{v}) \, \mathrm{d} \mathbf{x}$

- Critical points û of this Rayleigh quotient are eigenvectors and eigenvalues are: ω² = r (û)
- Constrained minimization (Signorini conditions):

$$\min_{\hat{\mathbf{u}}_n \in V} r\left(\hat{\mathbf{u}}\right) \text{ with } \mathbf{g}\left(\hat{\mathbf{u}}\right) \leqslant 0 \text{ on } \Gamma_c \quad \forall t \in [0, T]$$

Optimality conditions and variational formulation

• Optimality conditions: $\exists \lambda(t) > 0$ such as:

Variation formulation

Find
$$\{\hat{\mathbf{u}}_n, n \in \mathbb{Z}\}\$$
 such as $\forall \mathbf{v} \in V$
 $2 \operatorname{m} (\hat{\mathbf{u}}_n, \hat{\mathbf{u}}_n)^{-1} (\operatorname{k} (\hat{\mathbf{u}}_n, \mathbf{v}) - n^2 \omega^2 (\hat{\mathbf{u}}) \operatorname{m} (\hat{\mathbf{u}}_n, \mathbf{v}))$
 $+ \int_T \langle \boldsymbol{\lambda}, \mathbf{v} \rangle e^{\operatorname{j} n \omega t} dt = 0 \quad \forall n \in \mathbb{Z}$
 $\boldsymbol{\lambda} > 0 \text{ and } \langle \boldsymbol{\lambda}, \mathbf{g} (\hat{\mathbf{u}}) \rangle = 0 \quad \forall t \in [0, T]$

Augmented Lagrangian

Augmented Lagrangian:

$$L_{\kappa}(\hat{\mathbf{u}}, \boldsymbol{\theta}) = \mathsf{r}(\hat{\mathbf{u}}) + \frac{1}{2} \int_{T} \|\sqrt{\kappa} \left(\mathbf{g}(\hat{\mathbf{u}}) + \boldsymbol{\theta} \right) \|_{+}^{2} \mathrm{d}t$$

Optimality conditions:

$$abla_{\hat{\mathbf{u}}_n} L_{\kappa} \left(\hat{\mathbf{u}}, \boldsymbol{\theta} \right) = 0 \quad \forall n \in \mathbb{Z}$$

► Using the variational formulation:
Find {
$$\hat{\mathbf{u}}_n$$
, $n \in \mathbb{Z}$ } such as $\forall \mathbf{v} \in V$
 $2 \operatorname{m}(\hat{\mathbf{u}}_n, \hat{\mathbf{u}}_n)^{-1} (\operatorname{k}(\hat{\mathbf{u}}_n, \mathbf{v}) - n^2 \omega^2(\hat{\mathbf{u}}) \operatorname{m}(\hat{\mathbf{u}}_n, \mathbf{v}))$
 $+ \int_T \langle \kappa (\mathbf{g}(\hat{\mathbf{u}}) + \theta)_+, \mathbf{v} \rangle e^{\operatorname{j} n \omega t} \mathrm{d}t = 0$

Multiplier updates:

$$oldsymbol{ heta} \leftarrow oldsymbol{ heta} + \max_{\mathbf{x},t} \left(\mathbf{g}\left(\hat{\mathbf{u}}
ight), -oldsymbol{ heta}
ight)$$

Laxalde, Legrand & Pierre (McGill)

Numerical implementation

Discretization

- Time discretization: $t = \{t_k = kT/m, k = 1, ..., m\}$
- ► Fourier series and discrete Fourier transform:

$$\hat{\mathbf{u}}_n = \frac{1}{T} \sum_{k=1}^m \bar{\mathbf{u}}_k e^{-j\frac{2\pi kn}{m}} \quad \text{and} \quad \bar{\mathbf{u}}_k = \sum_{n=-N}^N \hat{\mathbf{u}}_n e^{-j\frac{2\pi kn}{m}}$$

• Gap function: $\mathbf{g}(\mathbf{U}) = \mathbf{A}\mathbf{U} - \mathbf{g}_0$

Discretized eigenvalue problem:

$$2\mathbf{M}^{-1}\left(\mathbf{K}-(n\omega)^{2}\mathbf{M}\right)\hat{\mathbf{U}}_{n}+\mathbf{A}^{T}\sum_{k=1}^{m}\kappa\left(\mathbf{g}\left(\hat{\mathbf{U}}\right)+\boldsymbol{\theta}_{k}\right)_{+}e^{j\frac{2\pi kn}{m}}=0\qquad(*)$$

General algorithm

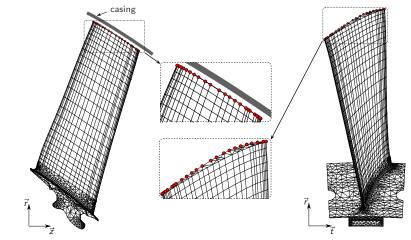
- 0 continuation with respect to the modal amplitude q
- 2 calculate $\omega^*(q)$ with $\hat{\mathbf{u}}_n(q)$ fixed
- **(a)** update $\hat{\mathbf{u}}_n^*(q)$ for $\omega^*(q)$

Augmented Lagrangian algorithm

 $i = 0, i_{max}, G^{(0)} = \infty$ $\boldsymbol{\theta} = \boldsymbol{\theta}^{(1)} \quad \kappa = \kappa^{(1)}$ $\alpha > 1$, $\beta > 1$, $\epsilon > 0$ **Iterations** while $G^{(i)} > \epsilon$ and $i < i_{max}$ do Find $\{\hat{\mathbf{u}}_n\}_{n=-N,...,N}$ solution of (*); Evaluate $\{\mathbf{g}(\bar{\mathbf{u}}_k)\}_{k=1,...,m}$; Define: $\mathbf{I} = \{I : |\max\left(\mathbf{g}(\bar{\mathbf{u}}_k), -\boldsymbol{\theta}_k\right)| \ge G^{(i)}/\alpha\}$ $\bar{G} = \max \left| \max \left(\mathbf{g} \left(\bar{\mathbf{u}}_k \right), -\boldsymbol{\theta}_k \right) \right|$ if $\bar{G} \ge G^{(i)}$ then $\forall l \in I$, $\kappa_{k,l} \leftarrow \beta \kappa_{k,l}$ and $\theta_{k,l} \leftarrow \theta_{k,l}/\beta$; else $\begin{bmatrix} i \leftarrow i + 1 \ \theta_k^{(i)} \leftarrow \theta_k, \ \kappa_k^{(i)} \leftarrow \kappa_k \ \text{and} \ G^{(i)} \leftarrow \bar{G}; \\ \theta_k \leftarrow \theta_k^{(i)} + \max(\mathbf{g}(\bar{\mathbf{u}}_k), -\theta_k); \\ \text{if} \ G^{(i)} \ge G^{(i-1)}/\alpha \ \text{then} \ \forall l \in \mathbf{I}, \ \kappa_{k,l} \leftarrow \beta \kappa_{k,l}; \end{bmatrix}$

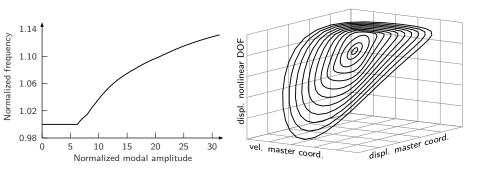
Initialization

Blade and contact interface modeling

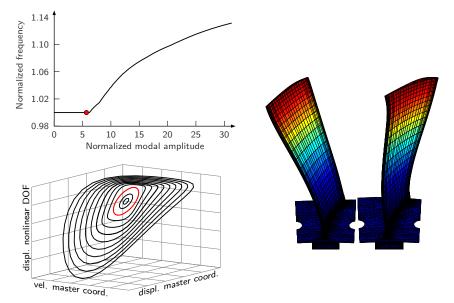


- Craig & Bampton reduced-order model
 - 24 interface nodes and 40 normal modes
- contact in radial direction \vec{r}
- uniform initial gap

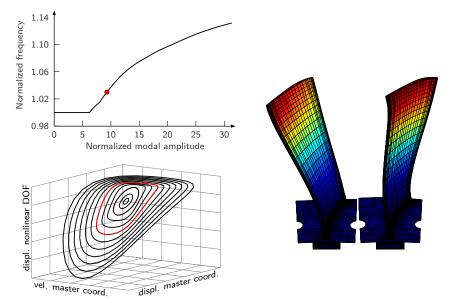
Nonlinear modes: modal parameters



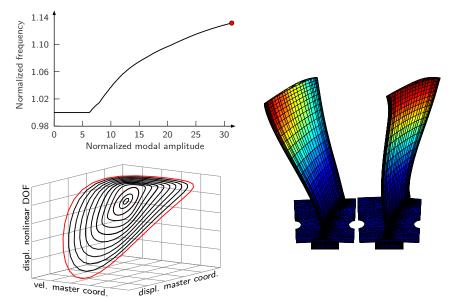
Effects of contact on mode shapes



Effects of contact on mode shapes



Effects of contact on mode shapes



Concluding remarks

Summary:

- ► A method for nonlinear modal analysis of mechanical systems with contact interfaces has been proposed.
- Based on a mixed time-frequency formulation of the eigenvalue problem, a constrained minimization of a Rayleigh quotient is defined, which is then solved using an augmented Lagrangian approach.
- An application to a large-scale structure has been proposed.
 Parametric studies have shown the effects of contact on modal parameters.

Concluding remarks

Summary:

- ► A method for nonlinear modal analysis of mechanical systems with contact interfaces has been proposed.
- Based on a mixed time-frequency formulation of the eigenvalue problem, a constrained minimization of a Rayleigh quotient is defined, which is then solved using an augmented Lagrangian approach.
- An application to a large-scale structure has been proposed. Parametric studies have shown the effects of contact on modal parameters.

Future works:

- Introduction of friction and use of complex modes formalism
- Stability and bifurcation analysis
- Application to bladed disks with flexible casing