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Abstract

This paper investigates the nonlinear analysis, in the form of nonlinear modes, of mechanical

systems undergoing unilateral frictionless contact. The nonlinear eigenproblem is introduced by a

Rayleigh quotient minimization with inequality constraints formulated in the frequency domain. An

augmented Lagrangian procedure is used for the calculation of the nonlinear contact forces. The

efficiency of the proposed method for large-scale mechanical systems involving non-smooth nonlinear

terms is shown. An industrial application consisting of a compressor blade in contact with a rigid

casing is proposed. Sensitivity of the nonlinear modal parameters to contact is illustrated.

1 Introduction

The concept of nonlinear modes is now commonly accepted as a relevant approach for the analysis of
nonlinear dynamical systems [1]. While the variety of analytical methods developed during the past
decades have contributed to strengthen the theoretical background on nonlinear modes, new challenges
appear when it comes to applying this tool to large scale systems [2]. An encouraging perspective is
however brought by numerical methods such as invariant manifold approach [3], asymptotic-numerical
methods [4], shooting and continuation [5] or Fourier methods [6].

Dealing with non-smooth nonlinearities yields other challenges both on numerical analysis and phe-
nomenological aspects. Concerning contact nonlinearities, difficulties come from their essential non-
smooth nature. As contact is defined by a multi-valued law which takes the form of inequality constraints,
solution methods are often related to optimization [7, 8]. Dual formulations then provide physical sense
to Lagrange multipliers. When it comes to numerical formulations, a popular and robust approach to
deal with contact constraints is to introduce augmented Lagrangian functionals [9–11].

In contact dynamics, most integrated approaches are based on time integration and alternatives are
unfortunately seldom explored [12, 13]. Thus, considering analysis of contact dynamics in the frame-
work of nonlinear modes seems an interesting yet challenging approach. In this paper, we investigate
the dynamics of linear elastic and autonomous flexible structures with contact interfaces. The target
application concerns rotating components in turbomachinery which can be subject to intermittent con-
tacts (or impacts) with surrounding stationary structures. Complex phenomena often occurs in such
applications [14–16] and a modal approach appears interesting in order to describe their essential nature
in particular.

The proposed approach is first described in a continuum mechanics formalism in which the problem of
finding eigensolutions can be regarded as a mixed frequency-time boundary value problem. The solution
is sought in the form of a Fourier series and the eigenvalue problem reduces to finding critical values of
a generalized Rayleigh quotient. An inequality constrained optimization problem then arises which is
solved using an augmented Lagrangian approach. Then, approximations for numerical treatments and
algorithm are described.

A numerical application is proposed in which the first nonlinear mode of a turbomachinery compressor
blade with contact occurring at its tip edge is explored. Effects of contact on modal parameters are
investigated.

∗Address all correspondence to this author.
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2 Theoretical formulation

A flexible structure in intermittent contact with a rigid foundation is investigated. Since attention is
given to eigensolutions of the nonlinear problem [1], no external forces are applied such as the final
system of equations is autonomous. Usual linear damping is neglected as well as friction.

Two main difficulties arise. First, the non-differentiability of the non-smooth contact conditions
with respect to the displacement field, makes any linearization impossible. Second, as in every modal
formulation, displacements and frequency of the motion are to be determined.

2.1 Unilateral frictionless contact formulation

A flexible component in contact with a rigid foundation is considered as illustrated in Fig. 1. Contact

b

u (x)

Ω

Γd

Γc

Figure 1: Notations for contact formulation

forces acting on interface Γc are defined according to a continuous gap function separating the possibly
contacting bodies:

g(u) = u(x)·n− g0(x) (1)

where g0(x) represents the initial positive gap, n, the outward normal to Γc, and u = (u1, u2, u3) the
displacement field of a material point x = (x1, x2, x3). Contact conditions [17], referred to as Kuhn-
Tucker optimality conditions are such that for all x ∈ Γc:

τN ≤ 0, g (u) ≤ 0, g (u) · τN = 0 (2)

where τN = σ · n stands for the contact pressure acting on Γc.

2.2 Boundary value problem

The linearized strain tensor mapping displacements to deformations is defined as ǫkl = 1
2 (∂uk/∂xl + ∂ul/∂xk)

and the constitutive linear Hooke law, as σij = λδijǫkk + 2µǫij. The strong formulation of the problem
with Dirichlet and Signorini boundary conditions takes the following form:

ρü− div σ(u) = 0 on Ω× R
+
∗

(3a)

u = 0 on Γd × R
+
∗

(3b)

g (u) ≤ 0, τN ≤ 0 and g (u) · τN = 0 on Γc × R
+
∗

(3c)

Since the subsequent developments involve variational forms, we introduce the space of admissible
displacement fields:

V =
{

u = (u1, u2, u3) , ui∈H1 (Ω) , u = 0 on Γd

}

(4)

equipped with a classical inner product (denoted 〈., .〉 in the following), and the usual linear forms on
V×V :

m(u,v) =

∫

Ω

ρuv dx (5a)

k (u,v) =

∫

Ω

σ (u) : ǫ (v) dx (5b)
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2.3 Mixed frequency-time eigenvalue problem

We are interested in finding periodic and non-trivial solutions of problem (3). As periodic but not
necessarily , it seems natural to expand the displacement field in the frequency-domain using Fourier
series:

u(t) =
∑

n∈Z

ûnejnωt with ûn =
1

T

∫

T

u(t)e−jnωt dt (6)

in which ω = 2π/T is the fundamental eigenfrequency of the motion to be determined.
The eigenvalue problem consists in finding {ω, û}, with û = {ûn, n ∈ Z} such as,

− div σ(ûn) = (nω)2ρûn on Ω× Z (7a)

ûn = 0 on Γd × Z (7b)

g (û) ≤ 0, τN ≤ 0 and g (û) · τN = 0 on Γc × [0, T ] (7c)

in which the gap function is now expressed using Eq. (6) as:

g (û) =
∑

n∈Z

ûn · n ejnωt − g0 (8)

Note that while Eqs. (7a) and (7b) are formulated using frequency-domain fields, Eq. (7c) involves
time-domain fields only. Thus Problem (7) can be regarded as a mixed time-frequency domains boundary
value problem.

2.4 Rayleigh quotient and optimization

Based on the previous eigenvalue problem and using the linear forms defined in Eqs. (5), we introduce
the following generalized Rayleigh quotient:

r (û) =
∑

n∈Z

k (ûn, ûn)

m (ûn, ûn)
(9)

An eigenvector û is a critical point of this Rayleigh quotient and the associated eigenvalue is such that
ω2 = r (û). Here, due to the Signorini conditions, critical points of the Rayleigh quotient are solutions
of a constrained minimization problem:

min
ûn∈V

r (û) s.t. g (û) ≤ 0 on Γc ∀t ∈ [0, T ] (10)

Optimality conditions for this constrained minimization problem imply that there exists a Lagrange
multiplier time-function λ(t) > 0 such that:

∇ûn
r (û) +

∫

T

〈λ(t),∇ûn
g (û)〉dt = 0 ∀n ∈ Z (11a)

λ(t) > 0 and 〈λ(t),g (û)〉 = 0 ∀t ∈ [0, T ] (11b)

The constraint g (u)≤0 has been transferred to the Lagrange multiplier λ(t) and the integral in Eq. (11a)
can be regarded as a continuous equivalent to traditional weighted sum of individual constraints by the
Lagrange multipliers.

Expanding Eqs. (11) leads to a variational formulation:

Find {ûn, n ∈ Z} such as ∀v ∈ V

2 m (ûn, ûn)
−1 (

k (ûn,v)− n2ω2 (û)m (ûn,v)
)

+

∫

T

〈λ,v〉ejnωt dt = 0 ∀n ∈ Z (12a)

λ > 0 and 〈λ,g (û)〉 = 0 ∀t ∈ [0, T ] (12b)
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2.5 Augmented Lagrangian

The technique of augmented Lagrange multipliers converts an initially constrained minimization prob-
lem into a saddle point problem for which the addition of penalty terms improves convergence and
benefits computationally due to subsequent convex properties. The respective Uzawa-like solution algo-
rithm performs descent on the primal displacement variable and ascent on the dual Lagrange multipliers
(coinciding with contact forces when convergence is reached).

For problem (10), an augmented Lagrangian can be defined as [18]:

Lκ (û, θ) = r (û) +
1

2

∫

T

‖
√

κ (g (û) + θ) ‖2+ dt (13)

in which κθ represents a Lagrange multiplier and κ, a diagonal matrix of positive penalty parameters.
During an iteration along the primal variable, the solution algorithm holds estimated values of dual

parameters θ and κ and searches for û (θ, κ) that minimizes the augmented Lagrange functional (13)
such as:

∇ûn
Lκ (û, θ) = 0 ∀n ∈ Z (14)

or, equivalently:

Find {ûn, n ∈ Z} such as ∀v ∈ V

2 m (ûn, ûn)
−1 (

k (ûn,v)− n2ω2 (û) m (ûn,v)
)

+

∫

T

〈κ (g (û) + θ)+ ,v〉ejnωt dt = 0 (15)

Parameter θ is then adjusted as follows:

θ ← θ + max
x,t

(g (û) ,−θ) (16)

while the penalty coefficient κ can be updated if condition (16) did not improve the constraints.

2.6 Mode normalization

Since the frequency of the periodic motion is an unknown of the eigenvalue problem, Eq. (15) has
more unknowns than equations. This under-determination can be overcome by conducting a mode
normalization through one (since the system is conservative) master coordinate which amplitude defines
the modal amplitude and which governs all remaining dependent variables. This amplitude is denoted
by q and modal parameters ûn(q) and ω(q) are now fully defined by its value.

3 Numerical approximations and algorithm

In the framework of finite-element method, we consider a discretized displacement field U together with
consistent mass M and stiffness K structural matrices based on (5). Contact constraints (1) can be
re-written as:

g (U) = AU − g0 (17)

where rectangular matrix A restricts the displacement vector U to contact degrees-of-freedom.
Furthermore, a uniform time discretization is introduced:

t = {tk = kT/m, k = 1, . . ., m} (18)

such as ūk = u (tk) are discrete time values of u and the Fourier series of Eq. (6) is truncated up to N -th
order. Hence, frequency-domain and time-domain variables are now related to each other in a discrete
form:

ûn =
1

T

m
∑

k=1

ūke−j 2πkn

m and ūk =

N
∑

n=−N

ûne j 2πkn

m (19)

In practical applications, it is usually required to have N significantly smaller than m.
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The final eigenvalue problem is obtained from Eq. (15) in which space, time and frequency approxi-
mations are introduced and then reduces to 2N + 1 coupled sub-problems:

2M−1
(

K− (nω)2M
)

Ûn + AT

m
∑

k=1

κ
(

g
(

Û
)

+ θk

)

+
ej 2πkn

m = 0 (20)

The proposed algorithm 1 based on the one detailed in [19] also features Powell’s measure of convergence:

G = max
dof

∣

∣

∣

∣

max
k

(g (ūk) ,−θk)

∣

∣

∣

∣

(21)

and an adaptive procedure for updating penalty parameters and Lagrange multipliers.

Algorithm 1 Frequency-time domain augmented Lagrangian

Set i = 0, imax, G(0) =∞, θ = θ(1), κ = κ(1)

Choose α > 1, β > 1, ǫ > 0
while i < imax do

Find {ûn}n=−N,...,N solution of Eq. (20)
Evaluate {g(ūk)}k=1,...,m

Set L = {l : |max (g(ūk),−θk) |≥G(i)/α}
Set Ḡ = maxdof |maxk (g (ūk) ,−θk)|
if Ḡ ≥ G(i) then

∀l ∈ L, κk,l←βκk,l and θk,l←θk,l/β
else

i←i + 1
θ
(i)
k ←θk, κ

(i)
k ←κk and G(i)←Ḡ

if G(i) ≤ ǫ then

break
end if

θk←θ
(i)
k + max (g (ūk) ,−θk)

if G(i) ≥ G(i−1)/α then

∀l ∈ L, κk,l ← βκk,l

end if

end if

end while

4 Analysis of contact in compressor blades

As an illustration of the proposed technique, we consider a turbomachinery compressor blade with a rigid
contact interface at its tip edge. The finite element model of this blade is shown in Fig. 2; nodes in red
define the contact interface. This model is reduced by means of a Craig-Bampton procedure composed of
72 constraints modes associated with displacements of 24 retained nodes belonging to contact interface
and 40 component normal modes. Contact occurs in the radial direction only and a uniform initial gap
is assumed. In the sequel, all displacements and velocities are normalized with respect to this initial gap
and nonlinear frequencies are normalized with respect to the first linear frequency of the blade.

Figs. 3 display modal parameters of the first nonlinear mode (associated with first bending mode of
the blade). In Fig. 3a, which represents the evolution of eigenfrequency as function of modal amplitude,
two particular regions with distinct dynamical behaviors can be distinguished. The first refers to modal
amplitude values such as the gap is always open and is characterized by a linear dynamics and constant
frequency. The second, when the modal amplitude is such that the contact can occur at the interface,
is highly nonlinear. The frequency-dependent amplitude phenomenon with stiffening effects is retrieved.
Fig. 3b shows a manifold for this mode, that is the displacement of one nonlinear coordinate plotted
versus the displacement and velocity of a linear one (the master coordinate here). The effect of contact,
which limits the amplitude of the nonlinear coordinate, is noticeable.
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Figure 2: Blade model and details of the contact interface
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Figure 3: Modal parameters of the first nonlinear mode: (a) eigen-frequency / modal amplitude curve
and (b) manifold.

In order to investigate in more details the effects of contact on modal parameters, Figs. 4 display
the evolution of radial displacements of all edge nodes as function of time (one period) and for three
selected values of the modal amplitude (with respect to Fig. 3a). Note that contact occurs when the
radial displacements reach a unit value due to the chosen normalization. In Fig. 4a, the modal amplitude
has not reached the limit contact amplitude yet and no contact occurs. For the amplitude considered
in Fig. 4b, contact occurs on the two last two nodes of the edge and during about 15% of time in one
period. In the largest modal amplitude depicted Fig. 4c, contact occurs on the last 4 nodes and also on
the first 5 nodes of the edge and these two contact region are out of phase. These observations bring
further explanations to the stiffening effects of contact which was noticed on Fig. 3a. Indeed, stiffening
is related to both the size of the actual contact interface (i.e. the number of nodes for which contact
occurs) and the duration of contact.

Finally, Figs. 5 display the mode shapes on the finite element mesh for the three previous modal
amplitude values. The changes in shape due to contact are substantial in particular during initial times
of the period and can result in stress concentrations.

5 Conclusions

A methodology for modal analysis of elastic structures with contact interfaces was proposed. Based
on the definition of nonlinear modes as periodic solutions of the autonomous dynamical system, the
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Figure 4: Radial displacements of edge nodes for three modal amplitudes: (a) 5.7, (b) 9.3 and (c) 31.3

eigenvalue problem is defined in a continuum mechanics framework with Signorini boundary conditions.
A generalized Rayleigh quotient functional is introduced, which minimization under constraints is for-
mulated using Lagrange multipliers and solved using an augmented Lagrangian approach. Numerical
approximations in space, time and frequency are then introduced for the sake of numerical treatments.

As an application, a turbomachinery compressor blade in contact with a rigid casing is considered.
The first nonlinear mode is studied using the proposed approach and the influence of contact (which
depends on the amplitude of the motion) is investigated on modal parameters such as frequency and
shapes.

Based on these encouraging developments, future works will focus on further investigations on nonlin-
ear dynamics to include stability and bifurcations analysis and also more complex systems which include
several deformable bodies in respective contacts. This tool can be used to predict dangerous interactions
zones between blades and surrounding casings. In the future, friction effects and as well as wear of
contact interfaces can also be studied.
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Figure 5: Mode shapes for three modal amplitudes: (a) 5.7, (b) 9.3 and (c) 31.3 and at t = 0 and
t = T/2.
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