Didier A Girard 
  
Asymptotic near-efficiency of the "Gibbs-energy (GE) and empirical-variance" estimating functions for fitting Matérn models -II: Accounting for measurement errors via "conditional GE mean" *

Consider one realization of a continuous-time Gaussian process Z which belongs to the Matérn family with known "regularity" index ν > 0. For estimating the autocorrelationrange and the variance of Z from n observations on a fine grid, we studied in Girard (2016) the GE-EV method which simply retains the empirical variance (EV) and equates it to a candidate "Gibbs energy (GE)", i.e. the quadratic form z T R -1 z/n where z is the vector of observations and R is the autocorrelation matrix for z associated with a candidate range. The present study considers the case where the observation is z plus a Gaussian white noise whose variance is known. We propose to simply bias-correct EV and to replace GE by its conditional mean given the observation. We show that the ratio of the large-n mean squared error of the resulting CGEM-EV estimate of the range-parameter to the one of its maximum likelihood estimate, and the analog ratio for the variance-parameter, have the same behavior than in the no-noise case: they both converge, when the grid-step tends to 0, toward a constant, only function of ν, surprisingly close to 1 provided ν is not too large. We also obtain, for all ν, convergence to 1 of the analog ratio for the microergodic-parameter.

Introduction

We consider time-series of length n obtained by observing, at n equispaced times, a continuoustime process Z which is Gaussian, has mean zero and an autocorrelation function which belongs to the Matérn family with "regularity" index ν > 0. See the Introduction of [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF] and the references therein for comments on this popular family. We just recall, for notational completeness, that a Matérn processes on R can be specified by its spectral density over (-∞, +∞) where θ designates the so-called "(inverse) range parameter":

f * ν,b,θ (ω) = τ 2 g * ν,θ (ω), with g * ν,θ (ω) := C ν θ 2ν (θ 2 + ω 2 ) ν+ 1 2 where C ν = Γ ν + 1 2 √ πΓ(ν) .
(1.1) * The previous version (version 2) considered both the case with measurement errors (also called "nugget-effect" or simply "noise") and the no-noise case. The no-noise case is now in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF] with more detailed proofs and two additional (w.r.t. version 2) results: a consistency result is proved and the restriction ν ≥ 1/2 is eliminated. This version 3 is devoted to the case with measurement errors, and also gives the analogs of these two additional results.
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In this paper τ 2 is the variance of Z(t) (it is easily checked that ∞ -∞ g * ν,θ (ω)dω = 1). As in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF], we are concerned here with "dense" grid for the observation times (or "locations") in the sense that the sampling period δ > 0 is "small" enough. Stein (1999, Chapter 3) shows that a standard (i.e. fixed δ > 0) large-n asymptotic analysis followed by a less standard small-δ analysis yields useful theoretical insights. This is precisely the asymptotic framework we use here.

But, we assume now that there are Gaussian i.i.d. measurement errors, or, equivalently for the parametric inference point of view we take here, there is a geostatistical "nugget effect", with known variance σ 2 N . And we assume that ν is known. That is, given known ν > 0, δ > 0 and σ N > 0, one observes only a vector of size n which, after scaling by σ N , has a distribution satisfying the model:

y σ N ∼ N (0, b 0 R θ0 + I n ) where b 0 = τ 2 0 σ 2 N
(1.2) with I n denoting the identity matrix and R θ the Toeplitz matrix of coefficients

[R θ ] j,k = K ν,θ (δ|j -k|), j, k = 1, • • • , n, with K ν,θ (t) = ∞ -∞ g * ν,θ ( 
ω)e iωt dω (see e.g. Stein (1999, Section 2.5) for expressions for these autocorrelation functions K ν,θ (•)). We can thus call b 0 the true signal-to-noise ratio (SNR). Notice that one may already expect that the results of our present study for the particular case b 0 ≫ 1 and, say, σ 2 N = 1, will approximately coincide with those of the "no-noise" situation of [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF] (where b 0 designated the true variance of Z).

The CGEM-EV method, introduced in the first arXiv version of [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance[END_REF] and that we study here, is an extension of GE-EV (which was studied in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF]) to the case of noisy observations (or nugget-effect) of known variance, that we consider as a "natural" extension. Indeed, recalling that, firstly GE-EV reverses the roles played by the variance and the rangeparameter in the well known hybrid method of [START_REF] Zhang | Hybrid estimation of semivariogram parameters[END_REF] (where a "rough" estimate of the range is used) and uses the "rough" empirical variance, it seems natural to merely correct this naive, yet near-efficient (in the sense stated by [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF], estimator of τ 2 0 , by its known bias. Thus we define (1.

3)

The second ingredient of CGEM-EV consists of replacing the maximization of the likelihood (ML) w.r.t. θ by the following estimating equation in θ: denoting by A b,θ the "signal extraction" matrix (see Section 2)

A b,θ := bR θ (I n + bR θ ) -1 , find, with b fixed at bEV|σN a root θ of CGEM(b, θ) -bσ 2 N with CGEM(b, θ) := 1 n y T A b,θ R θ -1 A b,θ y + b n tr(I n -A b,θ ) σ 2 N . (1.4)
Recall that, if the un-noisy discretely sampled process, say z, were observed, the second ingredient of the GE-EV method (the equation which replaces (1.4)) would consist of finding the matching between the variance τ 2 and n -1 z T R θ -1 z, a quantity we call the candidate "Gibbs energy" (GE, in short) of z. On the other hand, by classic manipulations, one can check that CGEM(b, θ) is the conditional mean of this GE given y, σ N and the candidate (b, θ). Let us now combine a well known result about the use of likelihood scores in case of incomplete data (e.g. Heyde, Section 7.4.1), and the remark recalled in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF] that n -1 z T R θ -1 z-τ 2 is, up to a strictly positive deterministic factor, the derivative of the log-likelihood of z w.r.t. b. We thus deduce that the proposal (1.4) is, in fact, (and still up to a (> 0) factor) the likelihood score w.r.t. b (and not θ !) when only y is observed. Thus the first heuristic justification in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF] could be repeated here, except that the analog of the constrained ML b-estimator function (i.e., in the nototation of [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF], θ bML (θ); recall that the heuristic given there, was that adjusting θ so that this function be matched to a rough estimate b 1 for the variance is a useful idea, at least in the infill framework) is no more explicit, and the score equation may be unsufficiant to define such a function (note also that the theoretical result of [START_REF] Kaufman | The role of the range parameter for estimation and prediction in geostatistics[END_REF] only deals with the no-noise case).

In the following, we denote by θGEV|σN this range-parameter estimate (in practice, for a reason suggested at the third paragraph of Section 4, we chose the smallest root in case of multiple roots).

Note that, b being fixed at bEV|σN , computing CGEM(b, θ) at candidate θ does not require to apply R θ -1 (since, obviously

A b,θ R θ -1 A b,θ = bR θ (I n + bR θ ) -1
) and it is thus the condition number of R θ + b -1 I n , not of R θ (as it was the case for GE-EV), which controls the numerical stability of the computation. Numerical experiments by [START_REF] Lim | Numerical instability of calculating inverse of spatial covariance matrices[END_REF] provide a detailed analysis of this condition-number for the Matérn covariance. Thus, as it was already known from experiments in kriging or ML computations, numerical instability can be alleviated by adding in the model an, even small, nugget effect. That is, even for un-noisy observations, it may be useful (and sometimes mandatory) to use CGEM-EV, instead of GE-EV, with a small a priori fixed σ 2 N (the impact of such a prior value is studied in the last experiment of [START_REF] Girard | Efficiently estimating some common geostatistical models by 'energy-variance matching' or its randomized 'conditional-mean' versions[END_REF]). Let us add that in the latter paper, other comments are given (especially in its Secttion 2.3) about computational aspects of CGEM-EV as an alternative to ML when σ 2 N is known. In this article, we shall provide an asymptotic justification for CGEM-EV, as compared to ML, identical to that already obtained for GE-EV in the no-noise case, except we do not give a precise meaning of the "small-ness" of δ which is sufficient for guaranteeing an asymptotic consistency of θGEV|σN . Recall that the "ν not too-far from 1/2" condition is required to obtain appealing near-efficiency results (more precisely, e.g., 0 < ν ≤ 3 implies a mean-squared-error inefficiency less than 1.33 in the asymptotic framework we use). In practice, ν > 3 is rarely used, see e.g. [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF], [START_REF] Gaetan | Spatial Statistics and Modeling[END_REF]).

We hope that the theoretical justification obtained here can be extended to more computationally complex settings. Indeed, this approach is clearly not limited to observations on a one dimensional lattice, and is potentially not limited to regular grids (a weighted version, with Riemann-sum type coefficients, of the empirical variance may then be useful). Successful experiments with CGEM-EV and its Riemann-sum version, with various simulated two-dimensional Matérn random fields, are described in [START_REF] Girard | Efficiently estimating some common geostatistical models by 'energy-variance matching' or its randomized 'conditional-mean' versions[END_REF]. See also the Mathematica Demo [START_REF] Girard | Estimating a Centered Ornstein-Uhlenbeck Process under Measurement Errors[END_REF] we produced so that any one can easily assess CGEM-EV for the case ν = 1/2.

The rest of this article is structured exactly as [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF], except that, in addition, the infill framework is somewhat discussed at the end of Section 4.
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Further notations and some properties of the spectral densities for Matérn time-series

Let us recall that, as in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF], we choose the vocabulary here (i.e. "time" in place of "space") since we use in numerous places of the paper the now classical time-series theory. Set-up (1.2) is equivalent to assuming that only a Gaussian time-series Z δ , defined by Z δ (i) := Z(δi), perturbed by a Gaussian white noise, independant of Z, is observed at i = 1, 2, • • • , n. From the well known aliasing formula (e.g. Section 3.6 of [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF]), the spectral density on (-π, π] of the observed series is

f δ ν,b,θ,σN = σ 2 N b g δ ν,θ + 1 2π with g δ ν,θ (•) := 1 δ ∞ k=-∞ g * ν,θ • + 2kπ δ . (2.1)
Recall that, when ν-1/2 is an integer, then g δ ν,θ coincide with particular ARMA spectral densities with a constrained vector of parameters.

In order to simplify the statement of the results here (and their proofs), it is convenient to introduce the following weight function a δ b,θ (•) over (-π, π], that we call the candidate filter for given (b, θ)

a δ b,θ (•) := g δ ν,θ (•) g δ ν,θ (•) + (2πb) -1 . (2.2)
Indeed, as is well known from the signal extraction literature, a δ b,θ is the frequency response of the "optimal (if b, θ were the true parameters)" convolution of the perturbed series if it were observed over Z; see e.g. Section 4.11 of Shumway and Stoffer 2006 for details, and Girard (2012) also for related well known "best extracting" properties of applying the matrix A b,θ .

A function which will play an important role in this article (as it was the case in Girard ( 2016)) is the derivative of log(g δ ν,θ (•)) w.r.t. θ; we just recall that it has the following useful expression:

h δ ν,θ = 2ν θ 1 - g δ ν+1,θ g δ ν,θ
, where

h δ ν,θ := ∂ log(g δ ν,θ )/∂θ. (2.3) For any f : [-π, π] → R, s.t. π -π w(λ)f (λ)dλ = 0, where w(•) > 0 is a weight function (we, in fact, only use w := [a δ b,θ ] 2 ) we define the weighted coefficient of variation of f by J w (f ) :=            1 w w f - 1 w wf 2            1 w wf 2 = 1 w wf 2 1 w wf 2 -1 . (2.4)
Above and throughout this paper, " " will denote integrals over [-π, π]. Omitting the indexes δ and ν, we will also use the notation g 0 (resp. h 0 ) for the function g δ ν,θ (resp. h δ ν,θ ) when θ = θ 0 . B (resp. Θ) will denote any compact interval not containing 0 and such that b 0 (resp. θ 0 ) is in the interior of B (resp. Θ) .

We now collect in the following lemmas (whose proof are postponed to an Appendix) small-δ equivalences which will be used to prove the results of the following Sections; they might be of interest also for other studies of the Matérn time-series plus white noise model: Lemma 2.1. For any b > 0, θ > 0, ν > 0 and k ∈ {1, 2}, we have as δ ↓ 0:

g δ ν,θ a δ b,θ 2 ∼ g δ ν,θ 2 ∼ c 1,ν δθ , [a δ b,θ ] 2 g δ ν+1,θ g δ ν,θ k ∼ g δ ν+1,θ g δ ν,θ k ∼ 2π c 2,ν k δθ
where the constants c 1,ν , c 2,ν are given in Lemma 2.1 of [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF].

Lemma 2.2. For any b > 0, θ > 0, ν > 0, k ∈ {1, 2} and with C ν defined in (1.1), we have as δ ↓ 0:

a δ b,θ (λ) k dλ ∼ 2δ
Now from the fact that δ 2ν 2ν+1 dominates δ for any ν > 0, and the expression (2.3) of h δ ν,θ , the following corollary is easily obtained (by proving the third stated equivalence before the first one):

Corollary 2.3. For any b > 0, θ > 0, ν > 0 and k ∈ {1, 2}, we have as δ ↓ 0, for the weight function w = [a δ b,θ ] 2 :

J w h δ ν,θ ∼ 1 [a δ b,θ ] 2 g δ ν+1,θ g δ ν,θ 2 , J w g δ ν,θ [a δ b,θ ] 2 ∼ [a δ b,θ ] 2 g δ ν,θ 2 and [a δ b,θ ] 2 h δ ν,θ k ∼ 2ν θ k [a δ b,θ ] 2 .

Consistency

Of course, at fixed δ, bEV|σN is a consistent estimator of b 0 (see also (4.1)). We first state asymptotic properties of the (normalized) estimating equation CGEM(b, θ) -bσ 2 N = 0 and its partial derivatives, in particular for δ "small", whose proof only requires classical techniques and the third equivalence of Corollary 2.3 (see the comments below):

Theorem 3.1. 1) We have the following three convergences in probability, uniform over B × Θ, as n → ∞ :

σ -2 N CGEM(b, θ) -b (n -1 trA b,θ ) b = y T A b,θ (I -A b,θ )y σ 2 N trA b,θ -1 → 1 π -π a δ b,θ (λ) π -π [a δ b,θ (λ)] 2 b 0 g δ ν,θ0 (λ) bg δ ν,θ (λ) -1 dλ =: φ(δ, b, θ, b 0 , θ 0 ), say, ∂ ∂b CGEM(b, θ) σ 2 N -b → -1 2π π -π [a δ b,θ (λ)] 2 dλ -2 π -π [a δ b,θ (λ)] 2 -[a δ b,θ (λ)] 3 b 0 g 0 (λ) bg δ ν,θ (λ) -1 dλ , ∂ ∂θ CGEM(b, θ) σ 2 N → -b 2π π -π [a δ b,θ (λ)] 2 h δ ν,θ (λ)dλ + π -π 2[a δ b,θ (λ)] 3 -[a δ b,θ (λ)] 2 h δ ν,θ (λ) b 0 g 0 (λ) bg δ ν,θ (λ) -1 dλ .
2) When δ ↓ 0, we have

φ(δ, b, θ, b 0 , θ 0 ) → 2ν(2ν + 1) -1 b 0 θ 2ν 0 bθ 2ν -1 .
3) There exists a strictly positive function δ(ν, b 0 , θ 0 ) such that 0 < δ ≤ δ(ν, b 0 , θ 0 ) implies that the large-n limit in probability of ∂ ∂θ CGEM(b, θ) evaluated at (b 0 , θ 0 ) is stricly negative.

As it was the case for Part 1 of Theorem 3.1 of [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF], the first part here is in fact not restricted to the Matérn family. Indeed, it only requires regularity conditions on g δ ν,θ (•), and its strict positivity, which are well fulfilled; and the three limits of 1) can directly be obtained, albeit more tediously than in the no-noise case, from classical large-n theoretical results about quadratic forms constructed from a product of powers, possibly negative, of Toeplitz matrices (e.g. [START_REF] Azencott | Series of Irregular Observations: Forecasting and Model Building[END_REF]).

The second part of Theorem 3.1 is, on the contrary, a consequence of specific properties of the Matérn family, and, in fact, it can be proved by the same techniques as those used in Section 3 of [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF]. Let us comment this small-δ equivalent associated with the first p-limit of 1). Firstly, by examining the analog previous results in the no-noise case, we see that the first of these previous results is well a "particular case" of the first limit above by setting a δ b,θ to 1, which is well in agreement with the guess that the no-noise case corresponds to a δ b,θ = 1 (notice that a similar remark can be made for the terms of the Jacobian given in Proof of Part 1 of Theorem 4.1 of [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF] which are seen as particular case of the second and third limits above with a δ b,θ set to 1). Secondly, always compared to the no-noise case, the small-δ limit of the p-limit (after normalization) of the equation σ -2 N CGEM(b, θ) = b to be solved in θ, is unchanged except for a constant factor (in fact this factor could have been eliminated if we had normalized by (n -1 trA 2 b,θ )b in place of (n -1 trA b,θ )b, but this is unimportant and it seems more natural to choose trA b,θ since it yields a simple expression for the left-hand term of the first result in Theorem 3.1 (expression given in parentheses)).

Let us thus recall that, if b is fixed at any value b 1 , then the unique root θ 1 of this smallδ-large-n equivalent equation will satisfy b 1 θ 2ν 1 = b 0 θ 2ν 0 . This indeed gives some support to the extension to CGEM-EV of the first heuristic for GE-EV in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF], as is discussed in the Introduction.

As to the third part of Theorem 3.1, the existence of such a function δ(ν, b 0 , θ 0 ) is of course a consequence of the third equivalence of Corollary 2.3 and the strict positivity of a δ b,θ (consequence of its definition), since, from the third result of Part 1, the limit in probability of ∂ ∂θ CGEM(b, θ) evaluated at (b 0 , θ 0 ) clearly reduces to -b 0 σ 2 N (2π) -1 a 2 0 h 0 (indeed the second integral vanishes).

Remark 3.2. Since we do not give an explicit form for the upper-bound δ(ν, b 0 , θ 0 ), this is not a result as strong as the analog Part 3 in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF]. Anyway, we believe that even the result in the no-noise case could be improved and we conjecture that the "local well-posedness" of the estimating-equation around θ 0 (namely a garantee that this derivative at (b 0 , θ 0 ) converges in probability toward a non-zero value, as n → ∞) does not requires that δ be small.

A Cramer-type consistency can now be proved (as detailed in the Appendix) by using [START_REF] Kessler | Statistical Methods for Stochastic Differential Equations[END_REF] (where a survey of general asymptotic results for estimating equations is given, see their Section 1.10); precisely: Theorem 3.3. Assume that δ is not greater than δ(ν, b 0 , θ 0 ), then there exists a sequence of roots θGEV|σN of the CGEM-EV equation (i.e. (1.4) with b fixed at bEV|σN ), as n increases, which converges in probability to θ 0 .

Mean squared error inefficiencies of CGEM-EV to ML for the variance, range and microergodic parameters

As is common in classical (in the sense that the sampling period δ is fixed) time-series theory, the term "asymptotic variance of an estimator", denoted avar(•), will designate in this paper the variance of the limiting distribution of √ n times the error of this estimator; the large-n mean squared error (MSE) of this estimator will refer to n -1 times its asymptotic variance. As noticed in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF], we could consider a size of ⌊n/δ⌋ for the n-th data set : this would only multiply all the asymptotic variances by δ and the following near-efficiency statements would be inchanged (see e.g. [START_REF] Brockwell | Continuous-time Gaussian autoregression[END_REF]).

Consider first a simplified setting: the case where the microergodic parameter c 0 = b 0 θ 2ν 0 is assumed to be known. (Note that it might be more natural to call "microergodic parameter" the product τ 2 0 θ 2ν 0 since one may prefer that this parameter does not change with σ N ; however since σ N is assumed known, choosing between these two definitions will have no impact on the properties of considered estimators, identical up a known factor).

This assumption of a known c 0 is of course restrictive and the following Theorem 4.0 may be thought of as one of weak practical interest. However it is known that "reasonably accurate", even if not fully efficient, estimates of c 0 can be computed by less expensive approaches than ML in numerous contexts, and one could thus condition the model with such a "reasonable" value of c 0 plugged-in. Recall that one of these possibly reasonable approaches is to fix θ at a prior choice θ 1 , and to maximize the likelihood only with respect to b: in certain common settings, this furnishes reasonable estimates of c 0 provided the a priori chosen range (i.e. θ -1 1 ) is "fixed at something larger than the true value (θ -1 0 )", as said in the Section 3.1 of [START_REF] Kaufman | The role of the range parameter for estimation and prediction in geostatistics[END_REF] where an empirical study well demonstrates this, in the no-noise case; and it is expected that this still hold under a noise of known variance, for which case this approach can be straightfuly extended.

In this simplified setting, one can equivalently focus either on the estimation of b 0 by the nonparametric estimate bEV|σN defined by (1.4), or that of θ 0 by c 0 / bEV|σN 1/(2ν)

. Let us choose the former since the asymptotic limiting law of bEV|σN has a simple expression (see e.g. Azencott and Dacunha-Castelle ( 1986)), for δ fixed :

n 1/2 bEV|σN -b 0 D -→ N (0, 4πv 1 ) as n → ∞, where v 1 := b 2 0 a -2 0 g 2 0 . (4.1)
Note that the variance v 1 used in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF] does not designate the v 1 used above, but this previous v 1 is clearly a "particular case" by substituting 1 for a 0 (•). In fact, the ratio of the present v 1 to the previous one, decreases to 1 as b 0 → ∞, because, at each λ, the filter function a 0 (λ) obviously increases toward its limit 1, as b 0 → ∞. Now, by considering the spectral density model f (b, θ) : λ σ N 2 bg δ ν,θ (λ) + (2π) -1 with bθ 2ν = c 0 , as a function of only b, easily establishing that ∂ log(f (c0/θ 2ν ,θ)) ∂θ = a δ b,θ (h δ ν,θ -2νθ -1 ) where b = c 0 /θ 2ν and using that ∂(c0/b) 1/(2ν) ∂b = (2ν)

-1 (θ/b) where θ = (c 0 /b) 1/(2ν) , the asymptotic Fisher information w.r.t. b is deduced and is seen to be > 0 (from the expression (2.3) of h 0 and the fact a δ b,θ > 0). Thus, by an application (similar, but easier here, to the way of establishing (4.3) below) of now classical time-series theory (e.g. Azencott and Dacunha-Castelle (1986)) one obtains for the ML maximizer over B under bθ 2ν = c 0 , now denoted bML|c0,σN , as n → ∞:

n 1/2 bML|c0,σN -b 0 D -→ N 0, avar( bML|c0,σN ) ,
where avar( bML|c0,σN

) := 4πb 2 0 2νθ -1 0 2 a 2 0 h 0 -2νθ -1 0 2 -1 . (4.2)
Now by using, in (4.2), the expression (2.3) of h 0 , and the first and second equivalences of Lemma 2.1, one obtains:

Theorem 4.0. The large-n MSE inefficiency of bEV|σN relative to the ML estimator of the SNR b 0 , when c 0 = b 0 θ 2ν 0 is known, i.e. I 0 δ,b0,θ0 := 4πv 1 /avar( bML|c0,σN ), satisfies (with C ν defined in (1.1)):

I 0 δ,b0,θ0 → C ν+1 2 C 2ν+1/2 C 3/2 = √ π 2 Γ (ν + 3/2) Γ (ν + 1) 2 Γ (2ν + 1) Γ (2ν + 1/2) =: ineff(ν) as δ ↓ 0.
It is important to notice that this definition of the constant ineff(ν) coincides with the one used in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF] for the no-noise case. In the particular case ν = 1/2, then ineff(1/2) = 1. (Note there was a typographical error in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF] in the second expression of ineff(ν): precisely the big fraction slash was omitted; however Table 4.1 of [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF] which displayed numerical values of ineff(ν) for certain values of ν is exact.) The Table 4.1 of Girard ( 2016) is not repeated here. We only wish to emphasize that the departure from 1 of ineff(ν) as ν increases, is rather slow.

A second good news it that this inefficiency is not function of the true range θ 0 or the SNR b 0 . Since it could be expected that these small-δ-large-n-inefficiencies become close to those obtained in the no-noise case only under b 0 ≫ 1, the result that b 0 has no impact on ineff(ν) may be thought as rather surprising. Recall that the asymptotic inefficiencies in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF] show the absence of any impact of θ 0 in the no-noise case; this was less surprising because this was already known in the case ν = 1/2 from the efficiency result of [START_REF] Kessler | Simple and explicit estimating functions for a discretely observed diffusion process[END_REF] concerning the naive empirical variance. Thus Theorem 4.0 is a neat extension of the efficiency result of [START_REF] Kessler | Simple and explicit estimating functions for a discretely observed diffusion process[END_REF] to the case of measurement noise (after natural bias-correction of this empirical variance by subtracting σ 2 N ), and a "near-extension" when ν does not depart too much from 1/2 in the sense that ineff(ν) stays close to 1, whatever b 0 may be. Now let us return to the case b 0 and θ 0 unknown. Let ( bML|σN , θML|σN ) be a maximizer of the likelihood function over B ×Θ when σ N is known. One can use arguments similar to those used in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF] where the asymptotic behavior of the ML estimator was described in the no-noise case: the derivation of the asymptotic information matrix (see Theorem 4.3 of Chapter XIII of [START_REF] Azencott | Series of Irregular Observations: Forecasting and Model Building[END_REF]) is classic, albeit more tedious; and the final expressions are relatively simple modifications, by merely adding in appropriate places the weight function a 2 0 , precisely: ( bML|σN , θML|σN ) is a.s. consistent and satisfies, as n → ∞:

n 1/2 bML|σN θML|σN - b 0 θ 0 D -→ N 0 0 , 4π σ 2 1 σ 12 σ 12 σ 2 2 , with   σ 2 1 σ 12 σ 2 2   := a 2 0 h 0 -2 J a 2 0 (h 0 ) -1   b 2 0 a 2 0 h 2 0 -b 0 a 2 0 h 0 a 2 0   . (4.3)
Again note that the components of the vector (σ 2 1 , σ 12 , σ 2 2 ) used in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF] and those of (σ 2 1 , σ 12 , σ 2 2 ) used above, are asymptotic equivalents as b 0 → ∞, because in addition to a 0 ≈ 1, the functional J a 2 0 (•) also becomes close, for large SNR, to the simpler functional J(•) used in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF].

Concerning CGEM-EV, we claim: Theorem 4.1. Assuming δ < δ(ν, b 0 , θ 0 ), let θGEV|σN be a consistent root of the CGEM-EV equation (i.e. (1.4) with b fixed at bEV|σN and σ 2 N is the true noise variance).

1) As n → ∞ n 1/2 θGEV|σN -θ 0 D -→ N (0, 4πv 2 ) where v 2 = a 2 0 h 0 -2 J a 2 0 (g 0 /a 2 0 ) a 2 0 .
2) The large-n MSE inefficiency of CGEM-EV to ML for b 0 (resp. for θ 0 ) being defined by I 1 δ,b0,θ0 := v 1 /σ 2 1 (resp. I 2 δ,b0,θ0 := v 2 /σ 2 2 = J a 2 0 (g 0 /a 2 0 )J a 2 0 (h 0 )), these two inefficiencies have the following common limit (with ineff(•) as in Theorem 4.0):

I i δ,b0,θ0 → ineff(ν) as δ ↓ 0, for i ∈ {1, 2}.
Proof: Part 1 is proved in the Appendix. The limit of both I 1 δ,b0,θ0 and I 2 δ,b0,θ0 is directly deduced from the equivalences stated in Lemma 2.1 and Corollary 2.3.

Again, as noticed for σ 2 2 above, the v 2 used in Girard ( 2016) is the limit value of the v 2 defined in Part 1 above as b 0 → ∞ for fixed δ.

Thus, as in the case c 0 known, the CGEM-EV estimates of b 0 and θ 0 are asymptotically nearly efficient provided ν is not too large, asymptotic full-efficiency being reached for ν close to 1/2. Notice it is rather surprising that these small-δ large-n inefficiencies are not function of the underlying θ 0 or of the underlying b 0 .

The remark claimed in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF] that the knowledge of c 0 does not improve (in terms of small-δ-large-n MSE) the performance of ML estimation of θ 0 or the performance of the alternative to ML we have introduced, can be also claimed in the present setting of known error variance (this extension is still also easily checked).

Let us now consider the estimation of the microergodic parameter c 0 . By the classical deltamethod, one directly infer from (4.3) that the asymptotic variance of ĉML|σN := bML|σN θ2ν

ML|σN is 4πc 2 0 a 2 0 h 0 -2 J a 2 0 (h 0 ) -1 a 0 h 0 -2νθ -1
0 2 (note that there was a typographical error in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF] : " " must be replaced by " " for the related variance with a 0 ≡ 1 there).

On the other hand, a similar derivation (albeit more tedious than in the no-noise case) can be done for ĉGEV|σN starting from the asymptotic covariance matrix (detailed in the Appendix) of the vector ( bEV|σN , θGEV|σN ) and this gives v 3 below. Now one can easily deduce (still using the expression (2.3) of h δ ν,θ , Lemma 2.1 and Corollary 2.3) that, this time, full-efficiency holds for any ν > 0, more precisely:

Theorem 4.2. Assuming δ < δ(ν, b 0 , θ 0 ), let ĉGEV|σN := bEV|σN θ2ν
GEV|σN where bEV|σN and θGEV|σN are defined as in Theorem 4.1, we have, with

c 0 = b 0 θ 2ν 0 : 1) as n → ∞ n 1/2 ĉGEV|σN -c 0 D -→ N (0, 4πv 3 ) where v 3 = c 2 0 ∫ a 2 0 |∫ a 2 0 h 0 | 2 J b0,θ0 (g 0 ) a 2 0 h 0 -2νθ -1 0 2 + a 2 0 h 0 2 .
2) The large-n MSE inefficiency of CGEM-EV to ML for c 0 is I 3 δ,b0,θ0 := 4πv 3 /avar(ĉ ML|σN ) and it holds that I 3 δ,b0,θ0 → 1 as δ ↓ 0; more precisely,

4πv 3 ∼ avar(ĉ ML|σN ) ∼ 2c 2 0 (2π) -1 a 2 0 ∼ 2πc 2 0 (2πC ν c 0 ) -1 2ν+1 Γ 2 -1 2ν+1 Γ 1 + 1 2ν+1 δ -2ν
2ν+1 as δ ↓ 0. (4.4)

Again, the variance v 3 used in Girard ( 2016) is clearly obtained from the v 3 here by substituting 1 for a 0 (•). As we remarked for the no-noise case, this full-efficiency of CGEM-EV concerning c 0 , even for large ν, may again be thought of as a less surprising result than Part 2 of Theorem 4.1. Indeed this full-efficiency is suggested by the infill-asymptotic efficiency, mentionned as a heuristical partial justification in the Introduction, of our "proposed" estimator of c 0 /b 1 , with b fixed at "any" b 1 (we use here quotation marks, only for reminding the sobering fact that the strategy of using an arbitrarily fixed b 1 may provide poor estimates in practice, and thus we do not actually propose it).

Remark 4.3. One can make incidental remarks for the "case" δ = 1/n. For the particular case ν = 1/2, notice that n -1 times the right-hand expression of this small-δ equivalent (4.4) is identical, by setting δ := 1/n, to 4 √ 2c 0 3/2 n -1/2 , that is, well coincides with the variance, established in the infill asymptotic framework by [START_REF] Chen | Infill asymptotics for a stochastic process model with measurement error[END_REF], of the normal approximation of the law of the ML estimator of c 0 . See also [START_REF] Zhang | Toward reconciling two asymptotic frameworks in spatial statistics[END_REF] for a detailed rigorous study of this "reconciliation" between the two asymptotic frameworks. Naturally one can thus conjecture that a such coincidence still holds beyond the case ν = 1/2, namely, that n -1 times the right-hand expression of (4.4), with 1/n substituted for δ, furnishes the infill asymptotic variance for both the ML or the CGEM-EV estimator of c 0 for any ν > 0. For instance, this would furnish a variance of (16/3)c 7/4 0 n -1/4 for ν = 3/2. Notice that this latter variance also coincides with a related variance for the integrated Brownian motion plus white noise model, which could be deduced form the Fisher information given by Theorem 2.3 of Kou (2004) (take r = 2, s = 0 using his notation and use that Γ 2 -(2ν + 1)

-1 Γ 1 + (2ν + 1)

-1 = (2ν + 1) B r -(2ν + 1) -1 , s + (2ν + 1) -1
where B(•, •) is the Beta function, see e.g. [START_REF] Weisstein | From MathWorld-A Wolfram Web Resource[END_REF]).

Remark 4.4. Since the framework of [START_REF] Zhang | Toward reconciling two asymptotic frameworks in spatial statistics[END_REF] actually does not imposes that σ N be known, their results compared with (4.4) (where σ N is known) show that by estimating σ N (which is often more easy to estimate than c 0 ; see [START_REF] Chen | Infill asymptotics for a stochastic process model with measurement error[END_REF] for the meaning of such a claim in the infill framework), by the ML principe, one adds no further error, at least in the small-δ-large-n framework, to the ML estimator of c 0 . Is is naturally expected that this still holds beyond the case ν = 1/2. An extension of CGEM-EV to the case σ N unknown, is commented in the following Discussion.

Discussion

CGEM-EV is thus a natural extension of GE-EV to the case with measurement errors of known variance, via bias-correction of the naive empirical variance and replacement of the unobserved GE function by the conditional GE mean function. We have proved here that identical nearefficiency results still hold, not only in the particular case b 0 ≫ 1 for which such a similarity could be expected. One may be surprised by the fact that these efficiency results hold for any fixed SNR b 0 , even small. However, one must keep in mind that these results deal only with large-n asymptotics at δ fixed, always followed by a small-δ analysis: one may guess that for b 0 too small, very large n may be required to "see" the stated asymptotic behaviors, and even increasingly large as δ decreases. Recall also that, even in the no-noise case, when δ decreases to 0, larger data sizes are required to be able to accurately approximate the actual law of any one of these estimates of θ 0 (or b 0 ) by its asymptotic form (indeed this is well known for ML estimates in the case ν = 1/2 thoroughly studied by [START_REF] Zhang | Toward reconciling two asymptotic frameworks in spatial statistics[END_REF]). An asymptotic comparison of CGEM-EV to ML deserves thus a futur study also in the finite-δ case.

way, the inequality w(2πbc 1 δ 2ν ) ≤ a * b,δθ (λ) is a consequence of the first inequality in Part 1; it suffice then to use δ < 1 in w(2πbc 1 δ 2ν ) = 2πbc 1 δ 2ν / 2πbc 1 δ 2ν + 1 to obtain the lower bound c 2 δ 2ν . So let us prove Part 1. The first inequality and the second one are easily checked. Let us prove the third one. Letting α = δθ, by arguments identitcal to those used in a step of the proof of Lemma 2.1 in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF], we can obtain that λ > -π implies that, for any k ≥ 1,

g * ν,α (λ + 2πk) ≤ g * ν,α (2π(k -1/2)) ≤ (C ν /(2π) 2ν+1 ) α 2ν /(k -1/2) 2ν+1
; and summing these terms over k = 1, 2, • • • , thus gives a term O(δ 2ν ) (notice that O(δ 2ν+1 ) was obtained in the mentioned step since we considered there g * ν,θ (•/δ) which can be easily checked to be δg * ν,α (•)). This is shown similarly (except we use λ < π) for the sum over k = -1, -2, • • • . Combining these two results gives the claimed bound for g

δ ν,θ (λ) -g * ν,α (λ) = k =0 g * ν,α (λ + 2πk).
Proof of Lemma 2.1 Note that the concise expression c k 2,ν results from C 3/2 = 2πC 1/2 2 . The first equivalence of Lemma 2.1 is trivial by develloping

g δ ν,θ /a δ b,θ 2 = b -2 bg δ ν,θ + 1/(2π) 2 = g δ ν,θ 2 
+ 1/(πb) g δ ν,θ + 1/(2πb) 2 and recalling that g δ ν,θ = 1. As to the second equivalence, let us examine the Proof of Lemma 2.1 of [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF]. We make here the same change of variable ω = λ/δ (note a typographical error: the fraction slash was omitted in Girard ( 2016)). The integrand is now modified only by the factor a δ b,θ (δω). Since this factor is < 1, the fact that Lebesgue dominated convergence theorem is applicable has not to be re-proved, and:

δ -1 π -π a δ b,θ (λ) g δ ν+1,θ (λ) g δ ν,θ (λ) 2 dλ = π/δ -π/δ a δ b,θ (δω) 2 ∞ k=-∞ g * ν+1,θ (ω + 2kπ/δ) 2 ∞ k=-∞ g * ν,θ (ω + 2kπ/δ) 2 dω → ∞ -∞
g * ν+1,θ (ω) g * ν,θ (ω) The claimed equivalents are now obtained from a known expression, for k ∈ {1, 2}, of the latter classic integral.

Proof of Theorem 3.3. It is convenient to apply Theorem 1.58 of [START_REF] Kessler | Statistical Methods for Stochastic Differential Equations[END_REF] which is a general asymptotic-consistency result for estimating equation. In fact, our Theorem 3.1 exactly states that the conditions required to apply their Theorem 1.58 are well fulfilled for, in their notations (except we set here θ := (b, θ) T ), the two-component estimating equation G a 2 0 can be deduced from classic time-series results (e.g. in [START_REF] Azencott | Series of Irregular Observations: Forecasting and Model Building[END_REF]) since the required regularity conditions are well fulfilled (as discussed in Section 3 and in Girard (2016))). Then Theorem 1.60 of [START_REF] Kessler | Statistical Methods for Stochastic Differential Equations[END_REF] is applicable and it gives (after direct, albeit tedious, algebraic manipulations) that the asymptotic covariance matrix of ( bEV|σN , θGEV|σN ) is 4π

   b 2 0 a -2 0 g 2 0 b 0 1-( a 2 0 a -2 0 g 2 0 ) a 2 0 h0 b 0 1-( a 2 0 a -2 0 g 2 0 ) a 2 0 h0 a 2 0 ( a 2 0 a -2 0 g 2 0 )-1 | a 2 0 h0| 2    .

  a consequence of a δ b,θ (δω) → 1 (which can directly be seen from δg δ ν,θ (δω)g * ν,θ (ω) → 0 as δ → 0, this difference being shown in fact O(δ 2ν ) in the Proof of Lemma 2.1 of Girard (2016)).Proof of Lemma 2.2.By Lemma A.1, since a δ b,θ (λ) k -a * b,δθ (λ) k < k a δ b,θ (λ) -a * b,δθ (λ) = O(δ 2ν) one can replace, with an accuracy which will be sufficient since 2ν > 2ν 2ν+1 , the filter by its un-aliased version in a δ b,θ (λ) k dλ. On the other hand, by the change of variable s = λ/(δθ)2ν 2ν+1and an application of the dominated convergence theorem, one can find that (δθ) -2πC ν b) -1 s 2ν+1 ) -k ds = (2πC ν b) s 2ν+1 ) -k ds.

TD

  n θ := (σ -2 N y T y/n -b -1, σ -2 N CGEM(b, θ) -b) T .Precisely, in their notations, the required conditions (i) and (ii) (resp. (iii)) are immediate consequence of Part 1 (resp. Part 3) of Theorem 3.1.Proof of Part 1 of Theorem 4.1. We shall apply Theorem 1.60 of[START_REF] Kessler | Statistical Methods for Stochastic Differential Equations[END_REF] to the two-component equation G n θ defined above. It is clear, form the high differientiabily regularity, already mentioned, of g δ ν,θ and its strict positivity, that G n is continuously differentiable over B × Θ. Denoting by ∂ ∂θ T G n (b, θ) the Jacobian matrix, letting M δ,b0,θ0 (b, θ) G n (b, θ) → M δ,b0,θ0 (b, θ), uniformly over B × Θ and M δ,b0,θ0 (b 0 , θ 0 ) is invertible. Furthermore, n 1/2 G n θ 0

2ν 2ν+1 (2πC ν c) 1 2ν+1 Γ k -1 2ν + 1 Γ 1 + 1 2ν + 1where c = bθ 2ν .

Concerning the problem of estimating multidimensional stationary Matérn fields observed on a lattice under i.i.d. noise, as already noticed for GE-EV in [START_REF] Girard | Asymptotic near-efficiency of the "Gibbs-energy and empirical-variance" estimating functions for fitting Matérn models -I: Densely sampled processes[END_REF] in the no-noise case, the CGEM-EV approach is directly applicable, in theory, provided θ remains a scalar parameter, e.g. for isotropic autocorrelations. We refer to [START_REF] Girard | Efficiently estimating some common geostatistical models by 'energy-variance matching' or its randomized 'conditional-mean' versions[END_REF] for a rather extensive empirical comparison of CGEM-EV to ML in the two-dimensional case, with randomized-traces used instead of the exact traces of (1.4). There, it is noticed, in particular, that difficulties appear in case of "too small" SNRs and "too smooth" fields (for example ν ≥ 3/2) both for CGEM-EV and ML. The application of CGEM-EV can be practical for very large lattice sizes, even with missing data, as soon as computing analogues of

y for candidate R θ , can be done by fast iterative algorithms; indeed each iteration can be fast since applying R θ to a vector can reduce to three multidimensional discrete (inverse) Fourier transforms. Thus extensions of the asymptotic results of this paper to multidimensional fitting problems clearly deserves a detailed study. And a comparison of CGEM-EV with the classical (tapered) Whittle-likelihood maximization for such multidimensional fitting problems should be of interest.

CGEM-EV might be extended to the important case of unknown noise variance, via, at least, two simple ways which are described and experimented in [START_REF] Girard | Estimators of a Noisy Centered Ornstein-Uhlenbeck Process and Its Noise Variance[END_REF]. One of these two ways is to add, as a second simple estimating equation, the first derivative of the likelihood w.r.t. σ 2 N for given b and θ equated to zero. Simulations in [START_REF] Girard | Estimators of a Noisy Centered Ornstein-Uhlenbeck Process and Its Noise Variance[END_REF] demonstrate rather good performance of these two approaches, which thus warrants further exploration.

APPENDIX

Let us prove Lemma 2.2 before Lemma 2.1. This can be done by substituting for a δ b,θ an "un-aliased" version defined below. So we first establish the following Lemma which states the order of the differences between exact and un-aliased versions: Lemma A.1. For any λ ∈ [-π, π], any (b, θ) ∈ B × Θ, assuming δ bounded, e.g. < 1, there exists constants c 1 , c 2 > 0, c1 , c2 < ∞ only functions of ν, such that:

Proof. Part 2 of Lemma A.1 is a direct consequence of its Part 1 (the second and the third inequalities of Part 2 are immediate consequences after noticing that, for the function w : x 1/ 1 + x -1 , we have that 0 < x 1 < x 2 implies 0 < w(x 2 ) -w(x 1 ) < x 2 -x 1 in the same