Adaptive density estimation for stationary processes - Archive ouverte HAL
Article Dans Une Revue Mathematical Methods of Statistics Année : 2009

Adaptive density estimation for stationary processes

Résumé

We propose an algorithm to estimate the common density $s$ of a stationary process $X_1,...,X_n$. We suppose that the process is either $\beta$ or $\tau$-mixing. We provide a model selection procedure based on a generalization of Mallows' $C_p$ and we prove oracle inequalities for the selected estimator under a few prior assumptions on the collection of models and on the mixing coefficients. We prove that our estimator is adaptive over a class of Besov spaces, namely, we prove that it achieves the same rates of convergence as in the i.i.d framework.
Fichier principal
Vignette du fichier
TauMix.pdf (307.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00413692 , version 1 (04-09-2009)

Identifiants

Citer

Matthieu Lerasle. Adaptive density estimation for stationary processes. Mathematical Methods of Statistics, 2009, 18 (1), pp.59--83. ⟨10.3103/S1066530709010049⟩. ⟨hal-00413692⟩
131 Consultations
82 Téléchargements

Altmetric

Partager

More