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We propose an algorithm to estimate the common density s of a stationary process X 1 , ..., X n . We suppose that the process is either β or τ -mixing. We provide a model selection procedure based on a generalization of Mallows' C p and we prove oracle inequalities for the selected estimator under a few prior assumptions on the collection of models and on the mixing coefficients. We prove that our estimator is adaptive over a class of Besov spaces, namely, we prove that it achieves the same rates of convergence as in the i.i.d framework.

Introduction

We consider the problem of estimating the unknown density s of P , the law of a random variable X, based on the observation of n (possibly) dependent data X 1 , ..., X n with common law P . We assume that X is real valued, that s belongs to L 2 (µ) where µ denotes the Lebesgue measure on R and that s is compactly supported, say in [0, 1]. Throughout the chapter, we consider least-squares estimators ŝm of s on a collection (S m ) m∈Mn of linear subspaces of L 2 (µ). Our final estimator is chosen through a model selection algorithm. Model selection has received much interest in the last decades. When its final goal is prediction, it can be seen more generally as the question of choosing between the outcomes of several prediction algorithms. With such a general formulation, a very natural answer is the following. First, estimate the prediction error for each model, that is sŝm Then, select the model which minimizes this estimate. It is natural to think of the empirical risk as an estimator of the prediction error. This can fail dramatically, because it uses the same data for building predictors and for comparing them, making these estimates strongly biased for models involving a number of parameters growing with the sample size. In order to correct this drawback, penalization's methods state that a good choice can be made by minimizing the sum of the empirical risk (how do algorithms fit the data) and some complexity measure of the algorithms (called the penalty). This method was first developped in the work of Akaike [START_REF] Akaike | Statistical predictor identification[END_REF] and [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF] and Mallows [START_REF] Mallows | Some comments on c p[END_REF]. In the context of density estimation, with independent data, Birgé & Massart [START_REF] Birgé | From model selection to adaptive estimation[END_REF] used penalties of order L n D m /n, where D m denotes the dimension of S m and L n is a constant depending on the complexity of the collection M n . They used Talagrand's inequality (see for example Talagrand [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF] for an overview) to prove that this penalization procedure is efficient i.e. the integrated quadratic risk of the selected estimator is asymptotically equivalent to the risk of the oracle (see Section 2 for a precise definition). They also proved that the selected estimator achieves adaptive rates of convergence over a large class of Besov spaces. Moreover, they showed that some methods of adaptive density estimation like the unbiased cross validation (Rudemo [START_REF] Rudemo | Empirical choice of histograms and kernel density estimators[END_REF]) or the hard thresholded estimator of Donoho et al. [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF] can be viewed as special instances of penalized projection estimators. More recently, Arlot [START_REF] Arlot | Model selection by resampling penalization[END_REF] introduced new measures of the quality of penalized least-squares estimators (PLSE). He proved pathwise oracle inequalities, that is deviation bounds for the PLSE that are harder to prove but more informative from a practical point of view (see also Section 2 for details). When the process (X i ) i=1,...,n is β-mixing (Rozanov & Volkonskii [START_REF] Volkonskiȋ | Some limit theorems for random functions[END_REF] and Section 2), Talagrand's inequality can not be used directly. Baraud et al. [6] used Berbee's coupling lemma (see Berbee ( [START_REF] Henry | Random walks with stationary increments and renewal theory[END_REF]) and Viennet's covariance inequality (Viennet [25]) to overcome this problem and build model selection procedure in the regression problem. Then Comte & Merlevède [START_REF] Comte | Adaptive estimation of the stationary density of discrete and continuous time mixing processes[END_REF] used this algorithm to investigate the problem of density estimation for a β-mixing process. They proved that under reasonable assumptions on the collection M n and on the coefficients β, one can recover the results of Birgé & Massart [START_REF] Birgé | From model selection to adaptive estimation[END_REF] in the i.i.d. framework. The main drawback of those results is that many processes, even simple Markov chains are not β-mixing. For instance, if (ǫ i ) i≥1 is iid with marginal B(1/2), then the stationary solution (X i ) i≥0 of the equation

X n = 1 2 (X n-1 + ǫ n ), X 0 independent of (ǫ i ) i≥1 (1) 
is not β-mixing (Andrews [START_REF] Donald | Nonstrong mixing autoregressive processes[END_REF]). More recently, Dedecker & Prieur [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF] introduced new mixing-coefficients, in particular the coefficients τ , φ and β and proved that many processes like [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF] happen to be τ , φ and β-mixing. They proved a coupling lemma for the coefficient τ and covariance inequalities for φ and β. Gannaz & Wintenberger [START_REF] Gannaz | Adaptive density estimation under dependence[END_REF] used the covariance inequality to extend the result of Donoho et al. [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF] for the wavelet thresholded estimator to the case of φ-mixing processes. They recovered (up to a log(n) factor) the adaptive rates of convergence over Besov spaces.

In this article, we first investigate the case of β-mixing processes. We prove a pathwise oracle inequality for the PLSE. We extend the result of Comte & Merlevède [START_REF] Comte | Adaptive estimation of the stationary density of discrete and continuous time mixing processes[END_REF] under weaker assumptions on the mixing coefficients. Then, we consider τ -mixing processes. The problem is that the coupling result is weaker for the coefficient τ than for β. Moreover, in order to control the empirical process we use a covariance inequality that is harder to handle. Hence, the generalization of the procedure of Baraud et al. [START_REF] Baraud | Adaptive estimation in autoregression or β-mixing regression via model selection[END_REF] to the framework of τ -mixing processes is not straightforward. We recover the optimal adaptive rates of convergence over Besov spaces (that is the same as in the independent framework) for τ -mixing processes, which is new as far as we know.

The chapter is organized as follows. In Section 2, we give the basic material that we will use throughout the chapter. We recall the definition of some mixing coefficients and we state their properties. We define the penalized least-squares estimator (PLSE). Sections 3 and 4 are devoted to the statement of the main results, respectively in the β-mixing case and in the τ -mixing case. In Section 5, we derive the adaptive properties of the PLSE. Finally, Section 6 is devoted to the proofs. Some additional material has been reported in the Appendix in Section 7.

Preliminaries

2.1 Notation.

Let (Ω, A, P) be a probability space. Let µ be the Lebesgue measure on R, let . p be the usual norm on L p (µ) for 1 ≤ p ≤ ∞. For all y ∈ R l , let |y| l = l i=1 |y i |. Denote by λ κ the set of κ-Lipschitz functions, i.e. the functions t from (R l , |.| l ) to R such that Lip(t) ≤ κ where

Lip(t) = sup |t(x) -t(y)| |x -y| l , x, y ∈ R l , x = y ≤ κ.
Let BV and BV 1 be the set of functions t supported on R satisfying respectively t BV < ∞ and t BV ≤ 1 where

t BV = sup n∈N * sup -∞<a 1 <...<an<∞ |t(a i+1 ) -t(a i )|.
2.2 Some measures of dependence.

Definitions and assumptions

Let Y = (Y 1 , ..., Y l ) be a random variable defined on (Ω, A,

P) with values in (R l , |.| l ). Let M be a σ-algebra of A. Let P Y |M , P Y 1 |M be conditional distributions of Y and Y 1 given M, let P Y , P Y 1 be the distribution of Y and Y 1 and let F Y 1 |M , F Y 1 be distribution functions of P Y 1 |M and P Y 1 . Let B be the Borel σ-algebra on (R l , |.| l ). Define now β(M, σ(Y )) = E sup A∈B |P Y |M (A) -P Y (A)| , β(M, Y 1 ) = E sup x∈R F Y 1 |M (x) -F Y 1 (x) ,
and if

E(|Y |) < ∞, τ (M, Y ) = E sup t∈λ 1 |P Y |M (t) -P Y (t)| .
The coefficient β(M, σ(Y )) is the mixing coefficient introduced by Rozanov & Volkonskii [START_REF] Volkonskiȋ | Some limit theorems for random functions[END_REF]. The coefficients β(M, Y 1 ) and τ (M, Y ) have been introduced by Dedecker & Prieur [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF]. Let (X k ) k∈Z be a stationary sequence of real valued random variables defined on (Ω, A, P). For all k ∈ N * , the coefficients β k , βk and τ k are defined by

β k = β(σ(X i , i ≤ 0), σ(X i , i ≥ k)), βk = sup j≥k { β(σ(X p , p ≤ 0), X j )}. If E(|X 1 |) < ∞, for all k ∈ N * and all r ∈ N * , let τ k,r = max 1≤l≤r 1 l sup k≤i 1 <..<i l {τ (σ(X p , p ≤ 0), (X i 1 , ..., X i l ))}, τ k = sup r∈N * τ k,r .
Moreover, we set β 0 = 1. In the sequel, the processes of interest are either β-mixing or τ -mixing, meaning that, for γ = β or τ , the γ-mixing coefficients γ k → 0 as k → +∞. For p ∈ {1, 2}, we define κ p as:

κ p = p ∞ l=0 l p-1 β l , (2) 
where 0 0 = 1, when the series are convergent. Besides, we consider two kinds of rates of convergence to 0 of the mixing coefficients, that is for γ = β or τ , [AR] arithmetical γ-mixing with rate θ if there exists some θ > 0 such that 1+θ) for all k in N,

γ k ≤ (1 + k) -(
[GEO] geometrical γ-mixing with rate θ if there exists some θ > 0 such that γ k ≤ e -θk for all k in N.

Properties

Coupling

Let X be an R l -valued random variable defined on (Ω, A, P) and let M be a σ-algebra.

Assume that there exists a random variable U uniformly distributed on [0, 1] and independent of M ∨ σ(X). There exist two M ∨ σ(X) ∨ σ(U )-measurable random variables X * 1 and X * 2 distributed as X and independent of M such that β(M, σ(X)) = P(X = X * 1 ) and ( 3)

τ (M, X) = E (|X -X * 2 | l ) . (4) 
Equality (3) has been established by Berbee [START_REF] Henry | Random walks with stationary increments and renewal theory[END_REF], Equality (4) has been established in Dedecker & Prieur [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF], Section 7.1.

Covariance inequalities

Let X, Y be two real valued random variables and let f, h be two measurable functions from R to C. Then, there exist two measurable functions b 1 : R → R and b

2 : R → R with E (b 1 (X)) = E(b 2 (Y )) = β(σ(X), σ(Y )
) such that, for any conjugate p, q ≥ 1 (see Viennet [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF] Lemma 4.1)

|Cov(f (X), h(Y ))| ≤ 2E 1/p (|f (X)| p b 1 (X)) E 1/q (|h(Y )| q b 2 (Y )).
There exists a random variable b(σ(X), Y ) such that E(b(σ(X), Y )) = β(σ(X), Y ) and such that, for all Lipschitz functions f and all h in BV (Dedecker & Prieur [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF] Proposition 1)

|Cov(f (X), h(Y ))| ≤ h BV E (|f (X)|b(σ(X), Y )) ≤ h BV f ∞ β(σ(X), Y ). (5)

Comparison results

Let (X k ) k∈Z be a sequence of identically distributed real random variables. If the marginal distribution satisfies a concentration's condition |F X (x) -F X (y)| ≤ K|x -y| a with a ≤ 1, K > 0, then (Dedecker et al. [START_REF] Dedecker | Weak dependence: with examples and applications[END_REF] Remark 5.1 p 104)

βk ≤ 2K 1/(1+a) τ a/(a+1) k,1 ≤ 2K 1/(1+a) τ a/(a+1) k .
In particular, if P X has a density s with respect to the Lebesgue measure µ and if s ∈ L 2 (µ), we have from Cauchy-Schwarz inequality

|F X (x) -F X (y)| = | 1 [x,y] sdµ| ≤ s 2 1 [x,y] dµ 1/2 = s 2 |x -y| 1/2 , thus βk ≤ 2 s 2/3 2 τ 1/3
k . In particular, for any arithmetically [AR] τ -mixing process with rate θ > 2, we have

βk ≤ 2 s 2/3 2 (1 + k) -(1+θ)/3 . (6) 

Examples

Examples of β-mixing and τ -mixing sequences are well known, we refer to the books of Doukhan [17] and Bradley [START_REF] Bradley | Introduction to strong mixing conditions[END_REF] for examples of β-mixing processes and to the book of Dedecker et. al [START_REF] Dedecker | Weak dependence: with examples and applications[END_REF] or the articles of Dedecker & Prieur [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF], Prieur [START_REF] Prieur | Change point estimation by local linear smoothing under a weak dependence condition[END_REF], and Comte et. al [START_REF] Comte | Adaptive density deconvolution with dependent inputs[END_REF] for examples of τ -mixing sequences. One of the most important example is the following: a stationary, irreducible, aperiodic and positively recurent Markov chain (X i ) i≥1 is β-mixing. However, many simple Markov chains are not β-mixing but are τmixing. For instance, it is known for a long time that if (ǫ i ) i≥1 are i.i.d Bernoulli B(1/2), then a stationary solution (X i ) i≥0 of the equation 

X n = 1 2 (X n-1 + ǫ n ), X 0 independent of (ǫ i ) i≥1 is not β-mixing since β k = 1 for any k ≥ 1 whereas τ k ≤ 2 -k (

Collections of models

We observe n identically distributed real valued random variables X 1 , ..., X n with common density s with respect to the Lebesgue measure µ. We assume that s belongs to the Hilbert space L 2 (µ) endowed with norm . 2 . We consider an orthonormal system {ψ j,k } (j,k)∈Λ of L 2 (µ) and a collection of models (S m ) m∈Mn indexed by subsets m ⊂ Λ for which we assume that the following assumptions are fulfilled:

[M 1 ] for all m ∈ M n , S m is the linear span of {ψ j,k } (j,k)∈m with finite dimension D m = |m| ≥ 2 and N n = max m∈Mn D m satisfies N n ≤ n; [M 2 ] there exists a constant Φ such that ∀m, m ′ ∈ M n , ∀t ∈ S m , ∀t ′ ∈ S m ′ , t + t ′ ∞ ≤ Φ dim(S m + S m ′ ) t + t ′ 2 ; [M 3 ] D m ≤ D m ′ implies that m ⊂ m ′ and so S m ⊂ S m ′ .
As a consequence of Cauchy-Schwarz inequality, we have

(j,k)∈m∪m ′ ψ 2 j,k ∞ = sup t∈Sm+S m ′ ,t =0 t 2 ∞ t 2 2 (7) 
see Birgé & Massart [8] p 58. Three examples are usually developed as fulfilling this set of assumptions:

[T] trigonometric spaces: ψ 0,0 (x) = 1 and for all j ∈ N * , ψ j,1 (x) = cos(2πjx), ψ j,2 (x) = sin(2πjx). m = {(0, 0), (j, 1), (j ′ , 2), 1 ≤ j, j ′ ≤ J m } and D m = 2J m + 1;

[P] regular piecewise polynomial spaces: S m is generated by r polynomials ψ j,k of degree k = 0, ..., r -1 on each subinterval [(j -1)/J m , j/J m ] for j = 1, ..., J m , D m = rJ m , M n = {m = {(j, k), j = 1, ..., J m , k = 0, ..., r -1}, 1 ≤ J m ≤ [n/r]};

[W] spaces generated by dyadic wavelet with regularity r as described in Section 4.

For a precise description of those spaces and their properties, we refer to Birgé & Massart [START_REF] Birgé | From model selection to adaptive estimation[END_REF].

The estimator

Let (X n ) n∈Z be a real valued stationary process and let P denote the law of X 0 . Assume that P has a density s with respect to the Lebesgue measure µ and that s ∈ L 2 (µ).

Let (S m ) m∈Mn be a collection of models satisfying assumptions [M 1 ]-[M 3 ]. We define S n = ∪ m∈Mn S m , s m and s n the orthogonal projections of s onto S m and S n respectively, let P be the joint distribution of the observations (X n ) n∈Z and let E be the corresponding expectation. We define the operators P n , P and ν n on L 2 (µ) by

P n t = 1 n n i=1
t(X i ), P t = t(x)s(x)dµ(x), ν n (t) = (P n -P )t.

All the real numbers that we shall introduce and which are not indexed by m or n are fixed constants. In order to define the penalized least-squares estimator, let us consider on R×S n the contrast function γ(x, t) = -2t(x) + t 2 2 and its empirical version γ n (t) = P n γ(., t). Minimizing γ n (t) over S m leads to the classical projection estimator ŝm on S m . Let ŝn be the projection estimator on S n . Since {ψ j,k } (j,k)∈m is an orthonormal basis of S m one gets ŝm = (j,k)∈m

(P n ψ j,k )ψ j,k and γ n (ŝ m ) = - (j,k)∈m (P n ψ j,k ) 2 .
Now, given a penalty function pen : M n → R + , we define a selected model m as any element m ∈ arg min

m∈Mn (γ n (ŝ m ) + pen(m)) (8) 
and a PLSE is defined as any s ∈ S m ⊂ S n such that

γ n (s) + pen( m) = inf m∈Mn (γ n (ŝ m ) + pen(m)) . (9) 

Oracle inequalities

An ideal procedure for estimation chooses an oracle

m o ∈ Arg min m∈Mn { s -ŝm 2 }.
An oracle depends on the unknown s and on the data so that it is unknown in practice.

In order to validate our procedure, we try to prove: -non asymptotic oracle inequalities for the PLSE:

E s -s 2 2 ≤ L inf m∈Mn {E s -ŝm 2 2 + R(m, n) }, (10) 
for some constant L ≥ 1 (as close to 1 as possible) and a remainder term R(m, n) ≥ 0 possibly random, and small compared to E ss 2 2 if possible. This inequality compares the risk of the PLSE with the best deterministic choice of m. Since m is random, we prefer to prove a stronger form of oracle inequality :

E s -s 2 2 ≤ LE inf m∈Mn { s -ŝm 2 2 + R(m, n)} , (11) 
or, when it is possible, deviation bounds for the PLSE:

P s -s 2 2 > L inf m∈Mn s -ŝm 2 2 + R(m, n) ≤ c n , (12) 
where typically c n ≤ C/n 1+γ for some γ > 0. Inequality [START_REF] Comte | Adaptive density deconvolution with dependent inputs[END_REF] proves that, asymptotically, the risk ss 2 2 is almost surely the one of the oracle. Let

Ω = s -s 2 2 > L inf m∈Mn s -ŝm 2 2 + R(m, n) .
We have

E s -s 2 2 = E s -s 2 2 1 Ω + E s -s 2 2 1 Ω c . It is clear that E s -s 2 2 1 Ω c ≤ LE inf m∈Mn s -ŝm 2 2 + R(m, n) . Moreover, we have s -s 2 = s -s m 2 + s m -s 2 ≤ s 2 + Φ 2 D m ≤ s 2 + Φ 2 n, thus, when (12) holds, we have E s -s 2 2 1 Ω c ≤ ( s 2 + Φ 2 n)c n ≤ C n γ . Therefore, inequality (12) implies E s -s 2 2 ≤ E inf m∈Mn { s -ŝm 2 2 + R(m, n)} + C n γ .
We can derive from these inequalities adaptive rates of convergence of the PLSE on Besov spaces (see Birgé & Massart [8] for example). In order to achieve this goal, we only have to prove a weaker form of oracle inequality where the remainder term R(m, n) ≤ LD m /n for some constant L, for all the models m with sufficiently large dimension. This will be detailed in Section 5.

Results for β-mixing processes

From now on, the letters κ, L and K, with various sub-or supscripts, will denote some constants which may vary from line to line. One shall use L . to indicate more precisely the dependence on various quantities, especially those which are related to the unknown s.

In this section, we give the following theorem for β-mixing sequences. It can be seen as a pathwise version of Theorem 3.1 in Comte & Merlevède [START_REF] Comte | Adaptive estimation of the stationary density of discrete and continuous time mixing processes[END_REF].

Theorem 3.1 Consider a collection of models satisfying [M 1 ], [M 2 ] and [M 3 ]
. Assume that the process (X n ) n∈Z is strictly stationary and arithmetically [AR] β-mixing with mixing rate θ > 2 and that its marginal distribution admits a density s with respect to the Lebesgue measure µ, with s ∈ L 2 (µ). Let κ 1 be the constant defined in (2) and let s be the PLSE defined by [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] with

pen(m) = KΦ 2 κ 1 D m n , where K > 4.
Then, for all κ > 2 there exist c 0 > 0, L s > 0, γ 1 > 0 and a sequence ǫ n → 0, such that

P s -s 2 2 > (1 + ǫ n ) inf m∈Mn,Dm≥c 0 (log n) γ 1 s -s m 2 2 + pen(m) ≤ L s (log n) (θ+2)κ n θ/2 . ( 13 
)
Remark: The term KΦ 2 κ 1 is the same as in Theorem 3.1 of Comte & Merlevède [START_REF] Comte | Adaptive estimation of the stationary density of discrete and continuous time mixing processes[END_REF] but with a constant K > 4 instead of 320. The main drawback of this result is that the penalty term involves the constant κ 1 which is unknown in practice. However, Theorem 3.1 ensures that penalties proportional to the linear dimension of S m lead to efficient model selection procedures. Thus we can use this information to apply the slope heuristic algorithm introduced by Birgé & Massart [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] in a Gaussian regression context and generalized by Arlot & Massart [START_REF] Arlot | Data-driven calibration of penalties for least squares regression[END_REF] to more general M-estimation frameworks. This algorithm calibrates the constant in front of the penalty term when the shape of an ideal penalty is available. The result of Arlot & Massart is proven for independent sequences, in a regression framework, but it can be generalized to the density estimation framework, for independent as well as for β or τ dependent data. This result is beyond the scope of this chapter and will be proved in chapter 4.

We have to consider the infimum in equation ( 13) over the models with sufficiently large dimensions. However, as noted by Arlot [START_REF] Arlot | Model selection by resampling penalization[END_REF] (Remark 9 p 43), we can take the infimum over all the models in ( 13) if we add an extra term in [START_REF] Comte | Adaptive estimation of the stationary density of discrete and continuous time mixing processes[END_REF]. More precisely, we can prove that, with probability larger than 1

-L s (log n) (θ+2)κ /n θ/2 s -s 2 2 ≤ (1 + ǫ n ) inf m∈Mn s -ŝm 2 2 + pen(m) + L (log n) γ 2 n , (14) 
where L > 0 and γ 2 > 0.

Remark : The main improvement of Theorem 3.1 is that it gives an oracle inequality in probability, with a deviation bound of order o(1/n) as soon as θ > 2 instead of θ > 3 in Comte & Merlevède [START_REF] Comte | Adaptive estimation of the stationary density of discrete and continuous time mixing processes[END_REF]. Moreover, we do not require s to be bounded to prove our result.

Remark: When the data are independent, the proof of Theorem 3.1 can be used to obtain that the estimator s chosen with a penalty term of order KΦD m /n satisfy an oracle inequality as [START_REF] Comte | Adaptive estimation of the stationary density of discrete and continuous time mixing processes[END_REF]. The main difference would be that κ 1 = 1, thus it can be used without a slope heuristic (even if this algorithm can be used also in this context to optimize the constant K) and the control of the probability would be L s e -ln(n) 2 /Cs for some constants L s , C s instead of L s (log n) (θ+2) κn -θ/2 in our theorem.

Results for τ -mixing sequences

In order to deal with τ -mixing sequences, we need to specify the basis (ψ j,k ) (j,k)∈Λ .

Wavelet basis

Throughout this section, r is a real number, r ≥ 1 and we work with an r-regular orthonormal multiresolution analysis of L 2 (µ), associated with a compactly supported scaling function φ and a compactly supported mother wavelet ψ. Without loss of generality, we suppose that the support of the functions φ and

ψ is an interval [A 1 , A 2 ) where A 1 and A 2 are integers such that A 2 -A 1 = A ≥ 1.
Let us recall that φ and ψ generate an orthonormal basis by dilatations and translations. For all k ∈ Z and j ∈ N * , let ψ 0,k : x → √ 2φ(2x -k) and ψ j,k : x → 2 j/2 ψ(2 j x -k). The family {(ψ j,k ) j≥0,k∈Z } is an orthonormal basis of L 2 (µ). Let us recall the following inequalities: for all p ≥ 1, let

K p = ( √ 2 φ p ) ∨ ψ p , K L = (2 √ 2Lip(φ)) ∨ Lip(ψ), K BV = AK L . Then for all j ≥ 0, we have ψ j,k ∞ ≤ K ∞ 2 j/2 , k∈Z |ψ j,k | ∞ ≤ AK ∞ 2 j/2 (15) Lip(ψ j,k ) ≤ K L 2 3j/2 , ( 16 
)
ψ j,k BV ≤ K BV 2 j/2 . ( 17 
)
We assume that our collection (S m ) m∈Mn satisfies the following assumption:

[W] dyadic wavelet generated spaces: let J n = [log(n/2(A + 1))/ log [START_REF] Akaike | Statistical predictor identification[END_REF]] and for all J m = 1, ..., J n , let

m = {(0, k), -A 2 < k < 2 -A 1 } ∪ {(j, k), 1 ≤ j ≤ J m , -A 2 < k < -A 1 + 2 j }
and S m the linear span of {ψ j,k } (j,k)∈m . In particular, we have

D m = (A-1)(J m +1)+2 Jm+1 and thus 2 Jm+1 ≤ D m ≤ (A -1)(J m + 1) + 2 Jm+1 ≤ A2 Jm+1 .

The τ -mixing case

The following result proves that we keep the same rate of convergence for the PLSE based on τ -mixing processes.

Theorem 4.1 Consider the collection of models [W]. Assume that (X n ) n∈Z is strictly stationary and arithmetically [AR] τ -mixing with mixing rate θ > 5 and that its marginal distribution admits a density s with respect to the Lebesgue measure µ. Let s be the PLSE defined by [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] with

pen(m) = KAK ∞ K BV ∞ l=0 βl D m n , where K ≥ 8.
Then there exist constants c 0 > 0, γ 1 > 0 and a sequence ǫ n → 0 such that

E s -s 2 2 ≤ (1 + ǫ n ) inf m∈Mn, Dm≥c 0 (log n) γ 1 s -s m 2 2 + pen(m) . (18) 
Remark : As in Theorem 3.1, the penalty term involves an unknown constant and we have a condition on the dimension of the models in [START_REF] Gannaz | Adaptive density estimation under dependence[END_REF]. However, the slope heuristic can also be used in this context to calibrate the constant and a careful look at the proof shows that we can take the infimum over all models m ∈ M n provided that we increase the constant K in front of the penalty term. Our result allows to derive rates of convergence in Besov spaces for the PLSE that correspond to the rates in the i.i.d. framework (see Proposition 5.2). Remark : Theorem 4.1 gives an oracle inequality for the PLSE built on τ -mixing sequences. This inequality is not pathwise and the constants involved in the penalty term are not optimal. This is due to technical reasons, mainly because we use the coupling result (4) instead of (3). However, we recover the same kind of oracle inequality as in the i.i.d. framework (Birgé and Massart [START_REF] Birgé | From model selection to adaptive estimation[END_REF]) under weak assumptions on the mixing coefficients since we only require arithmetical [AR] τ -mixing assumptions on the process (X n ) n∈Z . This is the first result for these processes up to our knowledge. Let us mention here Theorem 4.1 in Comte & Merlevède [START_REF] Comte | Adaptive estimation of the stationary density of discrete and continuous time mixing processes[END_REF]. They consider α-mixing processes (for a definition of the coefficient α and its properties, we refer to Rio [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF]). They make geometrical [GEO] α-mixing assumptions on the processes and consider penalties of order L log(n)D m /n to get an oracle inequality. This leads to a logarithmic loss in the rates of convergence. They get the optimal rate under an extra assumption (namely Assumption [Lip] in Section 3.2). There exist random processes that are τ -mixing and not α-mixing (see Dedecker & Prieur [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF]), however, the comparison of these coefficients is difficult in general and our method can not be applied in this context. The constants c 0 , γ 1 , n o are given in the end of the proof.

Remark : Inequality (2.6) can be improved under stronger assumptions on s. For example, when s is bounded, we have βk ≤ C √ τ k . Under this assumption and θ > 3, we can prove that the estimator s satisfies the inequality

E s -s 2 2 ≤ (1 + ǫ n ) inf m∈Mn, Dm≥c 0 (log n) γ 1 s -s m 2 2 + pen(m) + (log n) κ(θ+1) n (θ-3)/2 .
When θ < 5, the extra term (log n) κ(θ+1) /n (θ-3)/2 may be larger than the main term inf m∈Mn, Dm≥c 0 (log n) γ 1 s -s m 2 2 + pen(m). In this case, we don't know if our control remains optimal. On the other hand, Proposition 5.2 ensures that s is adaptive over the class of Besov balls when θ ≥ 5.

Minimax results

Approximation results on Besov spaces

Besov balls. Throughout this section, Λ = {(j, k), j ∈ N, k ∈ Z} and {ψ j,k , (j, k) ∈ Λ} denotes an r-regular wavelet basis as introduced in Section 4.1. Let α, p be two positive numbers such that α + 1/2 -1/p > 0. For all functions t ∈ L 2 (µ), t = (j,k)∈Λ t j,k ψ j,k , we say that t belongs to the Besov ball B α,p,∞ (M 1 ) on the real line if t α,p,∞ ≤ M 1 where

t α,p,∞ = sup j∈N 2 j(α+1/2-1/p) k∈Z |t j,k | p 1/p . It is easy to check that if p ≥ 2 B α,p,∞ (M 1 ) ⊂ B α,2,∞ (M 1
) so that upper bounds on B α,2,∞ (M 1 ) yield upper bounds on B α,p,∞ (M 1 ). Approximation results on Besov spaces. We have the following result (Birgé & Massart [8] Section 4.7.1). Suppose that the support of s equals [0, 1] and that s belongs to the Besov ball B α,2,∞ (1), then whenever r > α -1,

s -s m 2 2 ≤ s 2 α,2,∞ 4(4 α -1) 2 -2Jmα ≤ (2A) 2α s 2 α,2,∞ 4(4 α -1) D -2α m (19)

Minimax rates of convergence for the PLSE

We can derive from Theorems 3.1 and 4.1 adaptation results to unknown smoothness over Besov Balls.

Proposition 5.1 Assume that the process (X n ) n∈Z is stricly stationary and arithmetically [AR] β-mixing with mixing rate θ > 2 and that its marginal distribution admits a density s with respect to the Lebesgue measure µ, that s is supported in [0, 1] and that s ∈ L 2 (µ). For all α, M 1 > 0, the PLSE s defined in Theorem 3.1 for the collection of models

[W] satisfies ∀κ > 2, sup s∈B α,2,∞ (M 1 ) P s -s 2 2 > L M 1 ,α,θ n -2α/(2α+1) ≤ L M 1 (log n) (θ+2)κ n θ/2 .
Proposition 5.2 Assume that the process (X n ) n∈Z is stricly stationary and arithmetically [AR] τ -mixing with mixing rate θ > 5 and that its marginal distribution admits a density s with respect to the Lebesgue measure µ, that s is supported in [0, 1] and that s ∈ L 2 (µ). For all α, M 1 > 0, the PLSE s defined in Theorem 4.1 satisfies

sup s∈B α,2,∞ (M 1 ) E s -s 2 2 ≤ L M 1 ,α,θ n -2α/(2α+1) .
Remark: Proposition 5.2 can be compared to Theorem 3.1 in Gannaz & Wintenberger [START_REF] Gannaz | Adaptive density estimation under dependence[END_REF]. They prove near minimax results for the thresholded wavelet estimator introduced by Donoho et al. [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF] in a φ-dependent setting (for a definition of the coefficient φ, we refer to Dedecker & Prieur [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF]). Basically, with our notations, their result can be stated as follows: if (X n ) n∈Z is φ-mixing with φ1 (r) ≤ Ce -ar b for some constants C, a, b, then the thresholded wavelet estimator ŝ of s satisfies

∀α > 0, ∀p > 1, sup s∈Bα,p,∞(M 1 )∩L ∞ (M ) E ŝ -s 2 2 ≤ L M,M 1 ,α,p log n n 2α/(2α+1)
.

The main advantage of their result is that they can deal with Besov balls with regularity 1 < p < 2. However, in the regular case, when p ≥ 2, we have been able to remove the extra log n factor. Moreover, our result only requires arithmetical [AR] rates of convergence for the mixing coefficients and we do not have to suppose that s is bounded.

6 Proofs.

6.1 Proofs of the minimax results.

Proof of Proposition 5.1: Let α > 0 and M 1 > 0 and assume that s ∈ B α,2,∞ (M 1 ). Let Mn = {m ∈ M n , D m > c 0 (log n) γ 1 }. By Theorem 3.1, there exists a constant L θ > 0 such that

P s -s 2 2 > L θ inf m∈ Mn s -s m 2 2 + D m n ≤ L s (log n) (θ+2)κ n θ/2 . ( 20 
)
It appears from the proof of Theorem 3.1 that the constant L s depends only on s 2 and that it is a nondecreasing function of s 2 so that L s can be uniformly bounded over B α,2,∞ (M 1 ) by a constant L M 1 so that, by ( 20)

P s -s 2 2 > L θ inf m∈ Mn s -s m 2 2 + D m n ≤ L M 1 (log n) (θ+2)κ n θ/2 .
In particular, for a model m in M n with dimension D m such that

c 0 (log n) γ 1 ≤ L 1 n 1/(2α+1) ≤ D m ≤ L 2 n 1/(2α+1) ,
we have

P s -s 2 2 > L θ s -s m 2 2 + D m n ≤ L M 1 (log n) (θ+2)κ n θ/2 .
Since s belongs to B α,2,∞ (M 1 ), we can use Inequality [START_REF] Mallows | Some comments on c p[END_REF] to get

s -s m 2 2 ≤ L α,M 1 D -2α m .
Thus we obtain

P s -s 2 2 > L M 1 ,α,θ n -2α/(2α+1) ≤ L M 1 (log n) (θ+2)κ n θ/2 .

Proof of Proposition 5.2:

Let α > 0 and M 1 > 0 and assume that s ∈ B α,2,∞ (M 1 ). By Theorem 4.1, we have

E s -s 2 2 ≤ L θ inf m∈ Mn { s -s m 2 2 + D m n } . Inequality (19) leads to s -s m 2 2 ≤ L α,M 1 D -2α
m , so that for a model m in Mn with dimension D m such that

c 0 (log n) γ 1 ≤ L 1 n 1/(2α+1) ≤ D m ≤ L 2 n 1/(2α+1) , we find E s -s 2 2 ≤ L θ,α,M 1 n -2α/(2α+1) .

Proof of Theorem 3.1:

For all m o in M n , we have, by definition of m

γ n (s) + pen( m) ≤ γ n (ŝ mo ) + pen(m o ) P γ(s) + ν n γ(s) + pen( m) ≤ P γ(ŝ mo ) + ν n γ(ŝ mo ) + pen(m o ) P γ(s) -P γ(s) -2ν n s + pen( m) ≤ P γ(ŝ mo ) -P γ(s) -2ν n ŝmo + pen(m o ) Since for all t ∈ L 2 (µ), P γ(t) -P γ(s) = t -s 2 2 , we have s -s 2 2 ≤ s -ŝmo 2 2 + pen(m o ) -V (m o ) -(pen( m) -V ( m)) -2ν n (s mo -s m), (21) where 
, for all m ∈ M n V (m) = 2ν n (ŝ m -s m ) = 2 (j,k)∈m ν 2 n (ψ j,k ).
This decomposition is different from the one used in Birgé & Massart [START_REF] Birgé | From model selection to adaptive estimation[END_REF] and in Comte & Merlevède [START_REF] Comte | Adaptive estimation of the stationary density of discrete and continuous time mixing processes[END_REF]. It allows to improve the constant in the oracle inequality in the β-mixing case. Moreover, we choose to prove an oracle inequality of the form (12) for β-mixing sequences, which allows to assume only θ > 2 instead of θ > 3. Let us now give a sketch of the proof:

1. we build an event Ω C with P(Ω c C ) ≤ pβ q such that, on Ω C , ν n = ν * n , where ν * n is built with independent data. A suitable choice of the integers p and q leads to pβ q ≤ C(ln n) r n -θ/2 .

2. We use the concentration's inequality (7.4) of Birgé & Massart [START_REF] Birgé | From model selection to adaptive estimation[END_REF] for χ 2 -type statistics, derived from Talagrand's inequality. This allows us to find p 1 (m) such that on an event Ω 1 with

P(Ω c 1 ∩ Ω C ) ≤ L 1,s c n sup m∈Mn {V (m) -p 1 (m)} ≤ 0.
c n < C(ln n) r n -θ/2 and L 1,s is some constant depending on s.

3. From Bernstein's inequality, we prove that, for all m, m ′ ∈ M n , there exists p 2 (m, m ′ ) such that, for all η > 0, on an event Ω 2 with

P(Ω c 2 ∩ Ω C ) ≤ L 2,s c n , sup m,m ′ ∈Mn ν n (s m -s m ′ ) - η 2 p 2 (m, m ′ ) - s m -s m ′ 2 2 2η ≤ 0. Moreover, for all m, m ′ ∈ M n , p 2 (m, m ′ ) ≤ p 2 (m, m) + p 2 (m ′ , m ′ ). 4. We have s m -s mo 2 2 ≤ s m -s 2 2 + s -s mo 2 
2 because s m -s mo is either the projection of s m -s onto S mo or the projection of s -s mo onto S m. Take pen(m) ≥ p 1 (m) + ηp 2 (m, m), we have, on 22)

Ω 1 ∩ Ω 2 ∩ Ω C s -s 2 2 ≤ s -ŝmo 2 2 - V mo 2 + pen(m o ) - V mo 2 (
-(pen( m) -p 1 ( m)) -(p 1 ( m) -V ( m)) -2ν n (s mo -s m) ≤ s -s mo 2 2 + pen(m o ) - V (m o ) 2 -ηp 2 ( m, m) +ηp 2 ( m, m o ) + s mo -s m 2 2 η (23) 1 - 1 η s -s 2 2 ≤ (1 + 1 η ) s -s mo 2 2 + pen(m o ) + ηp 2 (m o , m o ). (24) 
In ( 23), we used that V (m o ) = 2 s moŝmo 2 2 ≥ 0. In [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF], we used that V mo ≥ 0. Pythagoras Theorem gives

s -ŝmo 2 2 - V (m o ) 2 = s -s mo 2 2 and ; s -s m 2 2 ≤ s -s 2 2 .
Finally, we prove that we can choose η = (log n) γ , with γ > 0 such that ηp 2 (m o , m o ) = o(pen(m o )) and we conclude the proof of (3.1) from the previous inequalities.

We decompose the proof in several claims corresponding to the previous steps. Claim 1 : For all l = 0, ..., p -1, let us define A l = (X 2lq+1 , ..., X (2l+1)q ) and B l = (X (2l+1)q+1 , ..., X (2l+2)q ). There exist random vectors A * l = (X * 2lq+1 , ..., X * (2l+1)q ) and B * l = (X * (2l+1)q+1 , ..., X * (2l+2)q ) such that for all l = 0, ..., p -1 :

1. A * l and A l have the same law, 2. A * l is independent of A 0 , ..., A l-1 , A * 0 ..., A * l-1

P(A

l = A * l ) ≤ β q
the same being true for the variables B l .

Proof of Claim 1 :

The proof is derived from Berbee's lemma, we refer to Proposition 5.1 in Viennet [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF] for further details about this construction.

Hereafter, we assume that, for some κ > 2,

√ n(log n) κ /2 ≤ p ≤ √ n(log n) κ and for the sake of simplicity that pq = n/2, the modifications needed to handle the extra term when q = [n/(2p)] being straightforward. Let Ω C = {∀l = 0, ..., p -1 A l = A * l , B l = B * l }. We have

P(Ω c C ) ≤ 2pβ q ≤ 2 2+θ (log n) (θ+2)κ n θ/2 .
Let us first deal with the quadratic term V (m). Claim 2 : Under the assumptions of Theorem 3.1, let ǫ > 0, 1 < γ < κ/2. We define

L 2 1 = 2Φ 2 κ 1 , L 2 2 = 8Φ 3/2 √ κ 2 , L 3 = 2Φκ(ǫ) and L 1,m = 4 (1 + ǫ)L 1 + L 2 (log n) γ D 1/4 m + L 3 (log n) κ-γ 2 . ( 25 
)
Then, we have

P sup m∈Mn V (m) - L 1,m D m n ≥ 0 ∩ Ω C ≤ L s,γ exp - (log n) γ s 2 .
where

L s,γ = 2 ∞ D=1 exp(-(log D) γ / s 1/ 2 
2 ). In particular, for all r > 0, there exists a constant L ′ s,r depending on s 2 , such that

P sup m∈Mn V (m) - L 1,m D m n ≥ 0 ∩ Ω C ≤ L ′ s,r n r . Remark : When (L 2 /L 1 ) 8 (log n) 4(2κ-γ) ≤ D m ≤ n, we have L 1,m ≤ 1 + ǫ + 1 + √ 2κ(ǫ) √ κ 1 (log n) -(κ-γ) 2 4L 2 1 .

Proof of Claim 2 :

Let P * n (t) = n i=1 t(X * i )/n and ν * n (t) = (P * n -P )t, we have

V (m)1 Ω C = 2 (j,k)∈m (ν * n ) 2 (ψ j,k )1 Ω C . Let B 1 (S m ) = {t ∈ S m ; t 2 ≤ 1}. ∀t ∈ B 1 (S m
), let t(x 1 , ..., x q ) = q i=1 t(x i )/2q and for all functions g : R q → R let

P * A,p g = 1 p p-1 j=0 g(A * j ), P * B,p g = 1 p p-1 j=0
g(B * j ), P g = gP A (dµ), and νA,p g = (P * A,p -P )g, νB,p g = (P * B,p -P )g. Now we have

(j,k)∈m (ν * n ) 2 (ψ j,k ) ≤ 2 (j,k)∈m ν2 A,p ψj,k + 2 (j,k)∈m ν2 B,p ψj,k .
In order to handle these terms, we use Proposition 7.4 which is stated in Section 7. Taking

B 2 m = (j,k)∈m Var( ψj,k (A 1 )), V 2 m = sup t∈B 1 (Sm)
Var( t(A 1 )), and

H 2 m = (j,k)∈m ( ψj,k ) 2 ∞ , we have ∀x > 0, P   (j,k)∈m ν2 A,p ψj,k ≥ (1 + ǫ) √ p B m + V m 2x p + κ(ǫ) H m x p   ≤ e -x . (26) 
In order to evaluate B m , V m and H m , we use Viennet's inequality (54). There exists a function b such that, for all p = 1, 2, P |b| p ≤ κ p where κ p is defined in ( 2) and for all functions t ∈ L 2 ( P ),

Var( t(A 1 )) ≤ 1 q P bt 2 . Thus B 2 m = (j,k)∈m Var( ψj,k (A 1 )) ≤ 1 q (j,k)∈m P bψ 2 j,k ≤ (j,k)∈m ψ 2 j,k ∞ κ 1 q . From Assumption [M 2 ], (j,k)∈m ψ 2 j,k ∞ ≤ Φ 2 D m , thus, B 2 m ≤ Φ 2 κ 1 D m q . ( 27 
)
From Viennet's and Cauchy-Schwarz inequalities

V 2 m = sup t∈B 1 (Sm) Var( t(A 1 )) ≤ sup t∈B 1 (Sm) P bt 2 q ≤ sup t∈B 1 (Sm) t ∞ (P t 2 ) 1/2 (P b 2 ) 1/2 q .
Since t ∈ B 1 (S m ), we have by Cauchy-Schwarz inequality

(P t 2 ) 1/2 ≤ ( t ∞ t 2 s 2 ) 1/2 ≤ ( t ∞ s 2 ) 1/2 .
From Assumption [M 2 ], we have t ∞ ≤ Φ √ D m , and from Viennet's inequality P b 2 ≤ κ 2 < ∞, thus we obtain

V 2 m ≤ Φ 3/2 ( s 2 κ 2 ) 1/2 D 3/4 m q . ( 28 
)
Finally, from Assumption [M 2 ], we have, using Cauchy-Schwarz inequality

H 2 m = (j,k)∈m ψ2 j,k ∞ ≤ 1 4 (j,k)∈m ψ 2 j,k ∞ ≤ Φ 2 D m 4 . ( 29 
)
Let y n > 0. We define

L m = (1 + ǫ)L 1 + L 2 (log D m ) γ + y n 2D 1/4 m + L 3 (log D m ) γ + y n 2(log n) κ 2 .
We apply Inequality [START_REF] Volkonskiȋ | Some limit theorems for random functions[END_REF] 

with x = ((log D m ) γ + y n )/ s 1/2 2
and the evaluations ( 27), ( 28) and (29). Recalling that 1/p ≤ 2/( √ n(log n) κ ), this leads to

P   (j,k)∈m ν2 A,p ψj,k ≥ L m D m n   ≤ exp - (log D m ) γ s 2 exp(- y n s 2 ).
In order to give an upper bound on H m x, we used that the support of s in included in

[0, 1], thus 1 = s 1 ≤ s 2 .
The result follows by taking

y n = (log n) γ ≥ (log D m ) γ .
Claim 3. We keep the notations κ/2 > γ > 1, L 2 of the proof of Claim 2. For all m, m ′ ∈ M n we take

L m,m ′ = 4 L 2 (log n) γ (D m ∨ D m ′ ) 1/4 + 4Φ 3(log n) κ-γ 2 , ( 30 
)
we have, for all η > 0,

P sup m,m ′ ∈Mn ν * n (s m -s m ′ ) - s m -s m ′ 2 2 2η - η 2 L m,m ′ (D m ∨ D m ′ ) n > 0 ≤ L s,γ e -(log n) γ s 1/2 2 with L s,γ = 2 m,m ′ ∈Mn e - (log(Dm∨D m ′ )) γ s 1/2 2
. Remark : The constant L s,γ is finite since for all x, y > 0, (log

(x ∨ y)) γ ≥ ((log x) γ + (log y) γ )/2. As in Claim 2, when (L 2 /L 1 ) 8 (log n) 4(2κ-γ) ≤ D m ≤ n, we have L m,m ′ ≤ 1 + 2 3/2 3 √ κ 1 2 (log n) -2(κ-2γ) 4L 2 1 .
Proof of Claim 3.

We keep the notations of the proof of Claim 2 and for m, m

′ ∈ M n , let t m,m ′ = (s m -s m ′ )/ s m -m ′ 2 . We use the inequality 2ab ≤ a 2 η -1 + b 2 η, which holds for all a, b ∈ R, η > 0. This leads to ν * n (s m -s m ′ ) = s m -s m ′ 2 ν * n (t m,m ′ ) ≤ s m -s m ′ 2 2 2η + η 2 ν * n (t m,m ′ ) 2 = s m -s m ′ 2 2 2η + η 2 νA,p ( tm,m ′ ) + νB,p ( tm,m ′ ) 2 ≤ s m -s m ′ 2 2 2η + η(ν A,p ( tm,m ′ )) 2 + η(ν B,p ( tm,m ′ )) 2 .
Now from Bernstein's inequality (see Section 7), we have

∀x > 0, P   νA,p ( tm,m ′ ) > 2Var( tm,m ′ (A 1 ))x p + tm,m ′ ∞ x 3p   ≤ e -x . (31) 
From Viennet's and Cauchy-Schwarz inequalities, we have

Var( tm,m ′ (A 1 )) ≤ P bt 2 m,m ′ q ≤ t m,m ′ ∞ P b 2 P t 2 m,m ′ q . Moreover P b 2 ≤ κ 2 , P t 2 m,m ′ ≤ t m,m ′ ∞ t m,m ′ 2 s 2 . Since t m,m ′ ∈ S m ∪ S m ′ and t m,m ′ 2 = 1, we have, from Assumption [M 2 ] t m,m ′ ∞ ≤ Φ √ D m ∨ D m ′ . Let y n > 0. We apply Inequality (31) with x = [(log(D m ∨ D m ′ )) γ + y n ]/ s 1/2 2 . We define L ′ m,m ′ 4 = L 2 (log(D m ∨ D m ′ )) γ + y n 2(D m ∨ D m ′ ) 1/4 + 4Φ [(log(D m ∨ D m ′ )) γ + y n ] 6(log n) κ 2 ,
we have

P   νA,p ( tm,m ′ ) > L ′ m,m ′ (D m ∨ D m ′ ) 4n   ≤ exp - (log(D m ∨ D m ′ )) γ s 1/2 2 e -yn/ s 1/2 2 .
The result follows by taking y n = (log n) γ and using 2 ≤ D m ≤ n.

Conclusion of the proof:

Let η > 0 and pen ′ (m) ≥ (L 1,m + ηL m,m )D m /n where L 1,m and L m,m are defined respectively by ( 25) and (30). From Claims 1, 2 and 3 and ( 24), we obtain that, for all m o and with probability larger than L s,θ (log n)

(θ+2)κ n -θ/2 (1 - 1 η ) s -s 2 2 ≤ (1 + 1 η ) s -s mo 2 2 + pen ′ o ) + ηL(m o , m o ) D mo n . (32) 
Assume that D m ≥ (L 2 /L 1 ) 8 (log n) 4(2κ-γ) , then we have from remarks 6.2 and 6.2

L 1,m ≤ 1 + ǫ + 1 + 2κ(ǫ) √ κ 1 (log n) -(κ-2γ) 2 4L 2 1 and L m,m ≤ 1 + 2 3/2 3 √ κ 1 2 (log n) -2(κ-γ) 4L 2 1 . Take η = (log n) κ-γ , we have (L 1,mo + ηL mo,mo )D mo /n ≤ Cpen(m o ). Fix ǫ > 0 such that [1 + ǫ] 2 < K/4. Since κ > γ, for n ≥ n o , we have L 1,m + ηL m,m ≤ KL 2 1
, thus, inequality (13) follows follows from (32) as soon as n > n o . We remove the condition n > n o by improving the constant L s in (13) if necessary.

Proof of Theorem 4.1.

The proof follows the previous one, the main difference is that the coupling lemma (Claim 1) as well as the covariance inequalities are much harder to handle in the τ -mixing case. This leads to more technical computations to recover the results obtained in the β-mixing case (see Claims 2, 3 and the proof of inequality (45)). We start with the decomposition [START_REF] Prieur | Change point estimation by local linear smoothing under a weak dependence condition[END_REF]. As in the previous proof, the decomposition of the risk given in Birgé & Massart [START_REF] Birgé | From model selection to adaptive estimation[END_REF] or in Comte & Merlevède [START_REF] Comte | Adaptive estimation of the stationary density of discrete and continuous time mixing processes[END_REF] could be used. This leads to a loss in the constant in front of the main term in [START_REF] Gannaz | Adaptive density estimation under dependence[END_REF] without avoiding any of the main difficulties. We divide the proof in four claims. Claim 1 : For all l = 0, ..., p -1, let us denote by A l = (X 2lq+1 , ..., X (2l+1)q ) and B l = (X (2l+1)q+1 , ..., X (2l+2)q ). There exist random vectors A * l = (X * 2lq+1 , ..., X * (2l+1)q ) and B * l = (X * (2l+1)q+1 , ..., X * (2l+2)q ) such that for all l = 0, ..., p -1 :

• A * l and A l have the same law, • A * l is independent of A 0 , ..., A l-1 , A * 0 ..., A * l-1 • E(|A l -A * l | q ) ≤
qτ q the same being true for the variables B l .

Proof of Claim 1 :

We use the same recursive construction as Viennet [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF]. Let (δ j ) 0≤j≤p-1 be a sequence of independent random variables uniformly distributed over [0, 1] and independent of the sequence (A j ) 0≤j≤p-1 . Let A * 0 = (X * 1 , ..., X * q ) be the random variable given by equality (4) for M = σ(X i , i ≤ -q), A 0 and δ 0 . Now suppose that we have built the variables A * l for l < l ′ . From equality (4) applied to the σ-algebra σ(A l , A * l , l < l ′ ), A l ′ and δ l ′ , there exists a random variable A * l ′ satisfying the hypotheses of Claim 1. We build in the same way the variables B * l for all l = 0, ..., p -1.

We keep the notations ν * n , νA,p , νB,p , t and B 1 (S m ) that we introduced in the proof of Theorem 3.1. As in the proof of Theorem 3.1, we assume that, for some κ > 2, √ n(log n) κ /2 ≤ p ≤ √ n(log n) κ and for the sake of simplicity that pq = n/2, the modifications needed to handle the extra term when q = [n/(2p)] being straightforward. We have

V ( m) = (j,k)∈ m ν 2 n (ψ j,k ) ≤ 2 (j,k)∈ m(P n -P * n ) 2 (ψ j,k + 2 (j,k)∈ m(ν * n ) 2 (ψ j,k ) (33)
Claim 2 : There exists a constant L = L A,K L ,K∞,κ,θ such that

E   j,k∈ m ((P n -P * n )(ψ j,k )) 2   ≤ L (log n) κ(θ+1) n (θ-3)/2 . ( 34 
)
Proof of Claim 2 :

E   (j,k)∈ m(P n -P * n ) 2 (ψ j,k )   ≤ E   sup m∈Mn (j,k)∈m (P n -P * n ) 2 (ψ j,k )   ≤ m∈Mn (j,k)∈m E (P n -P * n ) 2 (ψ j,k ) ≤ 2 p 2 m∈Mn p l,l ′ =1 (g A,m (j, k, l, l ′ ) + g B,m (j, k, l, l ′ )) with g m,A (j, k, l, l ′ ) = E   (j,k)∈m ψj,k (A l ) -ψj,k (A * l ) ψj,k (A l ′ ) -ψj,k (A * l ′ )   .
We develop this last term and we get, since

ψj,k (x) -ψj,k (y) ≤ K L 2 3j/2 |x -y| q 2q g A,m (j, k, l, l ′ ) ≤ E   (j,k)∈m ψj,k (A l ) -ψj,k (A * l ) ψj,k (A l ′ ) -ψj,k (A * l ′ )   ≤ E   (j,k)∈m ψj,k (A l ) -ψj,k (A * l ) K L 2 3j/2 A l ′ -A * l ′ q 2q   ≤ K L τ q 2 sup x,y∈R q    (j,k)∈m 2 3j/2 ψj,k (x) -ψj,k (y)    ≤ K L τ q 4 Jm j=0 2 3j/2 sup x,y∈R k∈Z |ψ j,k (x) -ψ j,k (y)| ≤ 2 3 AK L K ∞ 2 2Jm τ q since k∈Z |ψ j,k | ∞ ≤ AK ∞ 2 j/2
We can do the same computations for the term g B,m (j, k, l, l ′ ) and we obtain

E   j,k∈ m ((P n -P * n )(ψ j,k )) 2   ≤ Lτ q m∈Mn 2 2Jm ≤ Lτ q 2 2Jn ≤ L (log n) κ(θ+1) n (θ-3)/2 .
The last inequality comes from q ≥ √ n/(2(log n) 

L 2 1 = AK ∞ K BV ∞ l=0 βl , L 2 2 = 2ΦK u BV ∞ k=0 βu k , L 3 = κ(ǫ)Φ and L 1,m = 4(1 + ǫ) (1 + ǫ)L 1 + L 2 (log D m ) γ D 1/2-u m + L 3 (log D m ) γ (log n) κ 2 , ( 35 
)
There exists a constant L s such that

E   sup m∈Mn    (j,k)∈m (ν * n ) 2 (ψ j,k ) - L 1,m D m n      ≤ L s n .
Remark : The series ∞ l=0 βl and ∞ k=0 βu k are convergent under our hypotheses on the coefficients τ . Since s ∈ L 2 ([0, 1]), we have from Inequality [START_REF] Baraud | Adaptive estimation in autoregression or β-mixing regression via model selection[END_REF], βl ≤ 2 s 

u(1 + θ) 3 = 2(1 + θ) 7 + θ = 1 + θ -5 θ + 7 > 1.
We use here β instead of τ which allows to take L 1 not depending on s 2 .

Proof of Claim 3 :

As in the previous section we use the following decomposition

(j,k)∈m (ν * n ) 2 (ψ j,k ) = (j,k)∈m νA,p ( ψj,k ) + νB,p ( ψj,k ) 2 ≤ 2 (j,k)∈m νA,p ( ψj,k ) 2 + 2 (j,k)∈m νB,p ( ψj,k ) 2
We treat both terms with Proposition 7.4 applied to the random variables (A * l ) 0=1,..,p-1 and (B * l ) l=0,..,p-1 and to the class of functions ( ψj,k ) (j,k)∈m . Let

B 2 m = (j,k)∈m Var ψj,k (A 1 ) , V 2 m = sup t∈B 1 (Sm) Var( t(A 1 )), H 2 m = (j,k)∈m ψ2 j,k ∞ .
We have, from Proposition 7.4

∀x > 0, P   (j,k)∈m (ν A,p ) 2 ψj,k ≥ (1 + ǫ) √ p B m + V m 2x p + κ(ǫ) H m x p   ≤ e -x . (36) 
Let us now evaluate B m , V m and H m , we have

B 2 m = 1 (2q) 2 (j,k)∈m Var q i=1 ψ j,k (X i ) .
From ( 17) and [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF] we have ∀j, k ψ j,k BV ≤ K BV 2 j/2 and ∀j k∈Z |ψ j,k | ∞ ≤ AK ∞ 2 j/2 . Thus, from Inequality (5)

(j,k)∈m Var q i=1 ψ j,k (X i ) ≤ 2 (j,k)∈m q l=1 (q + 1 -l)|Cov(ψ j,k (X 1 ), ψ j,k (X l ))| ≤ 2q Jm j=0 k∈Z q l=1 ψ j,k BV E (|ψ j,k (X 1 )|b(σ(X 1 ), X l )) ≤ 2K BV q Jm j=0 2 j/2 k∈Z |ψ j,k (X 0 )| ∞ q l=1 βl-1 ≤ 2q AK ∞ K BV ∞ l=0 βl D m .

The last inequality comes from Assumption

[W]. Since L 2 1 = AK ∞ K BV ∞ l=0 βl we have B 2 m ≤ L 2 1 D m 2q . (37) 
Let us deal with the term V 2 m . We have

V 2 m ≤ sup t∈B 1 (Sm) Var( t(A 1 )) ≤ 2 (2q) 2 q k=1 (q + 1 -k) sup t∈B 1 (Sm) |Cov(t(X 1 ), t(X k ))| (38) 
From Inequality (5), we have

|Cov(t(X 1 ), t(X k ))| ≤ t BV t ∞ βk-1 .
Since t belongs to B 1 (S m ), we have t = (j,k)∈m a j,k ψ j,k , with (j,k)∈m a 2 j,k ≤ 1. Thus, by Cauchy-Schwarz inequality

l i=1 |t(x i+1 ) -t(x i )| ≤ (j,k)∈m |a j,k | l i=1 |ψ j,k (x i+1 ) -ψ j,k (x i )| ≤   (j,k)∈m a 2 j,k   1/2   (j,k)∈m i |ψ j,k (x i+1 ) -ψ j,k (x i )| 2   1/2 ≤   (j,k)∈m ψ j,k 2 BV   1/2 ≤ K BV D m . Thus t BV ≤ D m K BV . From Assumption [M 2 ], we have t ∞ ≤ Φ √ D m . Thus |Cov(t(X 1 ), t(X k ))| ≤ ΦK BV βk-1 D 3/2 m . (39) 
Moreover, we have by Cauchy-Schwarz inequality and

[M 2 ] |Cov(t(X 1 ), t(X k ))| ≤ t ∞ t 2 s 2 ≤ Φ s 2 D m . (40) 
We use the inequality a ∧ b ≤ a u b 1-u with

a = ΦK BV βk-1 D 3/2 m , b = Φ s 2 D m , u = 6 7 + θ < 1 2 .
From (39) and (40), we derive that

|Cov(t(X 1 ), t(X k ))| ≤ L ′ k D 1/2+u m where L ′ k = Φ K BV βk-1 u s 1-u 2 .
Pluging this inequality in (38), we obtain

V 2 m ≤ L 2 2 s 1-u 2 D 1/2+u m 4q since L 2 2 = 2ΦK u BV ∞ k=0 βu k . (41) 
Finally, we have from hypothesis ). We have, from (37), ( 41) and ( 42) Then, we use the inequality

[M 2 ] H 2 m ≤ 1 4 (j,k)∈m ψ 2 j,k ∞ ≤ Φ 2 D m 4 . (42) 
P   (j,k)∈m (ν A,p ) 2 ( ψj,k ) >   (1 + ǫ) L 2 1 D m 2pq + L 3 √ D m 2p (log D m ) γ s 1-u 2 + y D 1/2+u m + L 2 2 s 1-u 2 D 1/2+u m 2pq (log D m ) γ s 1-u 2 + y D 1/2+u m   2    ≤ e - ( log 
√ α + β ≤ √ α + √ β with α = (log D m ) γ s 1-u 2 and β = y D 1/2+u m and the inequality (a + b) 2 ≤ (1 + ǫ)a 2 + (1 + ǫ -1 )b 2 with a = (1 + ǫ)L 1 + L 2 (log D m ) γ D 1/2-u m + L 3 (log D m ) γ s 1-u 2 (log n) κ D m n and b = 1 √ n L 2 s 1-u 2 y + L 3 y (log n) κ D u m . Setting L m = (1 + ǫ)a 2 n/D m , we obtain P   (j,k)∈m (ν A,p ) 2 ( ψj,k ) - L m D m n > (1 + ǫ -1 ) n L 2 s 1-u 2 y + L 3 y (log n) κ D u m 2   ≤ e -(log Dm) γ s 1-u 2 e -D -(1/2+u) m y .
Thus, for all y > 0,

P   sup m∈Mn    (j,k)∈m (ν A,p ) 2 ( ψj,k ) - L m D m n    > L s n (y + y 2 )   ≤ m∈Mn e -(log Dm) γ s 1-u 2 -D -(1/2+u) m y where L s = 2(1 + ǫ -1 ) (L 2 s 1-u 2 ) ∨ L 3 /((log 2) κ 2 u ) 2 
. We can integrate this last inequality to prove Claim 3.

Claim 4 :We keep the notations of the previous Claims. Let

L 2 (m, m ′ ) = 4 L 2 (log(D m ∨ D m ′ )) γ (D m ∨ D m ′ ) 1/2-u + Φ 3(log n) κ-γ 2 . ( 43 
)
Then there exists a constant L s,θ depending on s 2 and θ such that, for all η > 0

E sup m,m ′ ∈Mn ν n (s m -s m ′ ) - s m -s m ′ 2 2 2η -η L 2 (m, m ′ )(D m ∨ D m ′ ) n ≤ ηL s,θ n .
Proof of Claim 4 :

E sup m,m ′ ∈Mn ν n (s m -s m ′ ) - s m -s m ′ 2 2 2η -η L 2 (m, m ′ )(D m ∨ D m ′ ) n ≤ E sup m,m ′ (P n -P * n )(s m -s m ′ ) +E sup m,m ′ ν * n (s m -s m ′ ) - s m -s m ′ 2 2 2η -η L 2 (m, m ′ )(D m ∨ D m ′ ) n . ( 44 
) Since ∀l = 0, ..., p -1, E (|A l -A * l | q ) ≤ qτ q , we have E sup m,m ′ (P n -P * n )(s m -s m ′ ) ≤ 2 m,m ′ E (|(s m -sm ′ )(A 1 ) -(s m -sm ′ )(A * 1 )|) ≤ τ q m,m ′ Lip(s m -s m ′ ).
When m ⊂ m ′ , we have, for all x, y ∈ R, using Assumption [W],

|(s m -s m ′ )(x -y)| |x -y| ≤ J m ′ j=Jm+1 2 j -A 1 k=-A 2 |P ψ j,k | |ψ j,k (x) -ψ j,k (y)| |x -y| Let us fix j ∈ [J m + 1, J m ′ ], from Assumption [W]
, there is less than A indexes k ∈ Z such that ψ j,k (x) = 0, thus there is less than 2A indexes such that |ψ j,k (x) -ψ j,k (y)| = 0. Hence 

k∈Z |P ψ j,k | |ψ j,k (x) -ψ j,k (y)| |x -y| ≤ 2A sup k∈Z |P ψ j,k |Lip(ψ j,k ) ≤ 2A s 2 K L 2 3j/2 . Thus, Lip(s m -s m ′ ) ≤ A s 2 K L √ 82 3J m ′ /2 /( √ 8 
(P n -P * n )(s m -s m ′ ) ≤ L s n 3/2 (log n)τ q ≤ L s (log n) κ(θ+1)+1 n (θ-2)/2 . ( 45 
)
Let us deal with the other term in (44). We have, ∀η > 0

ν * n (s m -s m ′ ) ≤ s m -s m ′ 2 2 2η + η 2 νA,p ( tm,m ′ ) + νB,p ( tm,m ′ ) 2 ≤ s m -s m ′ 2 2 2η + η(ν A,p ( tm,m ′ )) 2 + η(ν B,p ( tm,m ′ )) 2 (46) 
where, as in the proof of Theorem 3.1, t m,m ′ = (s m -s m ′ )/ s m -s m ′ 2 . We apply Bernstein's inequality to the function tm,m ′ and the variables A * l , we have

∀x > 0, P   νA,p ( tm,m ′ ) > 2Var( tm,m ′ (A 0 ))x p + tm,m ′ ∞ x 3p   ≤ e -x . (47) 
We proceed as in the proof of Claim 3 to control this variance. We have, by stationarity of the process (

X n ) n∈Z , Var( tm,m ′ (A 0 )) = 1 2q 2 q-1 k=0 (q -k)Cov(t m,m ′ (X 1 ), t m,m ′ (X k+1 )).
From Inequality (5), we have

Cov(t m,m ′ (X 1 ), t m,m ′ (X k+1 )) ≤ t m,m ′ BV t m,m ′ ∞ βk .
Let m △ m ′ be the set of indexes that belong to m ∪ m ′ but do not belong to m ∩ m ′ . We use the same computations as in the proof of Claim 3 to get

t m,m ′ BV ≤ (j,k)∈m ′ △m (P ψ j,k )ψ j,k BV s m -s m ′ 2 ≤ (j,k)∈m ′ △m ψ j,k 2 BV ≤ K BV (D m ∨ D m ′ ). Since t m,m ′ ∞ = Φ √ D m ∨ D m ′ , we have Cov(t m,m ′ (X 1 ), t m,m ′ (X k+1 )) ≤ ΦK BV βk (D m ∨ D m ′ ) 3/2 . ( 48 
)
Moreover, we have

Cov(t m,m ′ (X 1 ), t m,m ′ (X k+1 )) ≤ t m,m ′ ∞ t m,m ′ 2 s 2 ≤ Φ s 2 (D m ∨ D ′ m ). (49) Thus, using a ∧ b ≤ a u b 1-u with a = ΦK BV βk (D m ∨ D m ′ ) 3/2 , b = Φ s 2 (D m ∨ D m ′ ), and u = 6 7 + θ < 1 2 , we have Cov(t m,m ′ (X 1 ), t m,m ′ (X k+1 )) ≤ ΦK u BV βu k s 1-u 2 (D m ∨ D m ′ ) 1/2+u . Thus Var( tm,m ′ (A 0 )) ≤ ΦK u BV ∞ k=0 βu k s 1-u 2 (D m ∨ D m ′ ) 1/2+u 2q . (50) Moreover tm,m ′ ∞ ≤ 1 2 t m,m ′ ∞ ≤ 1 2 Φ D m ∨ D ′ m . (51) 
Now, we use (47

) with x = (log(D m ∨ D m ′ )) γ / s 1-u 2 + y/(D m ∨ D m ′ ) 1/2+u
. From (50) and (51), we have for all y > 0, We integrate this last inequality to get Claim 4.

P   νA,p ( tm,m ′ ) > L 2 (D m ∨ D m ′ ) 1/2+u 2pq (log(D m ∨ D m ′ )) γ + s 1-u 2 y (D m ∨ D m ′ ) 1/2+u + Φ D m ∨ D ′

Conclusion of the proof:

Take pen ′ (m) ≥ (2L 

Moreover, if D m ≥ (L 2 /L 1 )(log n) κ-γ/2 2(7+θ)/(θ-5) , we have

L 1,m 4L 2 1 ≤ (1 + ǫ) (1 + ǫ) + 1 + L 3 2L 1 (log n) -(κ-γ) 2 ≤ (1 + ǫ) 3 + (1 + ǫ -1 )(1 + ǫ) 1 + L 3 2L 1 2 (log n) -2(κ-γ) . ( 53 
)
We use the inequality (a + b) 2 ≤ (1 + ǫ)a 2 + (1 + ǫ -1 )b 2 to obtain (53). Moreover, we have

L 2 (m, m) ≤ 4L 2 1 1 + Φ 6L 1 (log n) -(κ-γ) 2 .
As in the proof of Theorem 3.1, we take η = (log n) κ-γ and we fix ǫ sufficiently small. For n ≥ n o , we have 2L 1,m + ηL 2 (m, m) < KL 2 1 . Thus inequality [START_REF] Gannaz | Adaptive density estimation under dependence[END_REF] follows from (52).

Appendix

This section is devoted to technical lemmas that are needed in the proofs. (54)

Covariance inequality

Concentration inequalities

We sum up in this section the concentration inequalities we used in the proofs. We begin with Bernstein's inequality Proposition 7.2 Bernstein's inequality Let X 1 , ..., X n be iid random variables valued in a measurable space (X, X ) and let t be a measurable real valued function. Let v = Var(t(X 1 )) and b = t ∞ , then, for all x > 0, we have

P (P n -P )t > v 2x n + bx 3n ≤ e -x .
Now we give the most important tool of our proof, it is a concentration's inequality for the supremum of the empirical process over a class of function. We give here the version of Bousquet [START_REF] Bousquet | A Bennett concentration inequality and its application to suprema of empirical processes[END_REF]. We can deduce from this Theorem a concentration's inequality for χ-square type statistics. This is Proposition (7.3) of Massart [START_REF] Massart | Concentration inequalities and model selection[END_REF].

Theorem
Proposition 7.4 Let X 1 , ..., X n be independent and identically distributed random variables valued in some measurable space (X, X ). Let P denote their common distribution. Let φ λ be a finite family of measurable and bounded functions on (X, X ). Let 

≥ 1 + ǫ √ n B Λ + V Λ 2x n + κ(ǫ) H Λ x n   ≤ e -x , (55) 
where κ(ǫ) = ǫ -1 + 1/3.

  l) -(1+θ)/3 . The series ∞ k=0 βu k converge since θ > 5 and

Let y > 0 2 )

 02 and let us apply Inequality (36) with x = ((log D m ) γ / s1-u 

(-u 2 y 2 e 2 ,and L s = L 2 s 1-u 2 ∨ Φ 3 ((( 2 2η -4η L 2 (

 2222322 D m ∨ D m ′ )) γ s 1-u 2 + y (D m ∨ D m ′ ) 1/2+u ≤ e -(log(Dm∨D m ′ )) γ s 1-u 2 e -y Dm∨D m ′ ) 1/2+u .Now we use the inequality√ a + b ≤ √ a + √ b with a = (log(D m ∨ D m ′ )) γ and b = s 1(D m ∨ D m ′ ) 1/2+uand we obtain, using Assumption[M 1 ] P νA,p tm,m ′ -L 2 (m, m ′ )(D m ∨ D ′ m ) -(Dm∨D m ′ ) -(1/2+u) y , with L 2 (m, m ′ ) = L 2 (log(D m ∨ D m ′ )) γ (D m ∨ D m ′ ) 1/2-u + Φ(log(D m ∨ D m ′ )) γ 3(log n) κ log 2) κ 2 u .Thus, we obainP (ν A,p tm,m ′ ) 2 > 2 L 2 (m, m ′ )(D m ∨ D ′ m ) Dm∨D m ′ ) 1/2+u .The same result holds for νB,p tm,m ′ . Thus we obtain from (46)P ν * n (s m -s m ′ ) ≥ s m -s m ′ 2 2 2η + 4η L 2 (m, m ′ )(D m ∨ D ′ m ) n + 8η L 2 s n (y + y 2 ) ≤ 2e -(log(Dm∨D m ′ )) γ s 1-u 2 -y Dm∨D m ′ ) 1/2+u .We deduce thatP ∃m, m ′ ∈ M n , ν * n (s m -s m ′ ) -s m -s m ′ 2 (m, m ′ )(D m ∨ D ′ m ) Dm∨D m ′ ) 1/2+u .

Lemma 7 . 1

 71 Viennet's inequality Let (X n ) n∈Z be a stationary and β-mixing process. There exists a positive function b such that P (b) ≤ ∞ l=0 β l , P (b p ) ≤ p ∞ l=1 l p-1 β l , and for all function h ∈ L 2 (P ) Var q l=1 h(X l ) ≤ 4qP (bh 2 ).

  λ (X 1 )).Moreover, let SΛ = a ∈ R Λ : λ∈Λ a 2 λ λ (X 1 ).Then the following inequality holds, for all positive x and ǫP   λ∈Λ (P n -P ) 2 φ λ 1/2

  κ ) and Assumption [AR], the one before comes from Assumption [W]. Claim 3. Let us keep the notations of Theorem 4.1, let u = 6/(7 + θ) < 1/2 and recall that κ > 2. Let γ be a real number in (1, κ/2). Let

  -1) and by Assumptions [W], [AR] and the value of q,

	E sup
	m,m ′

  1,m + ηL 2 (m, m)) D m n ,where L 1,m and L 2 (m, m) are defined by (35) and (43) respectively. From Claims 2, 3 and 4, if we take the expectation in (21), we have, for some constant L s ,E ss 2 2 ≤ E sŝmo 2 2 + pen ′ (m o ) -V (m o ) + 2ηL 2 (m o , m o )

	D mo n	+	ηL s n	.

  7.3 Talagrand's TheoremLet X 1 , ..., X n be i.i.d random variables valued in some measurable space [X, X ]. Let F be a separable class of bounded functions from X to R and assume that all functions t in F are P -measurable, and satisfy Var(t(X 1 )) ≤ σ 2 , t ∞ ≤ b. Then

	P sup					
	t∈F	ν n (t) + σ	2x n	+ κ(ǫ)	bx n	≤ e -x .

t∈F ν n (t) > E sup t∈F ν n (t) + 2x (σ 2 + 2bE (sup t∈F ν n (t))) n + bx 3n ≤ e -x .

In particular, for all ǫ > 0, if κ(ǫ) = 1/3 + ǫ -1 , we have

P sup t∈F ν n (t) > (1 + ǫ)E sup

Proof :

Following Massart [START_REF] Massart | Concentration inequalities and model selection[END_REF] Proposition 7.3, we remark that, by Cauchy-Schwarz's inequality

Thus the result follows by applying Talagrand's Theorem to the class of functions