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Adaptive density estimation of stationary β-mixing and

τ -mixing processes.

Matthieu Lerasle
∗

Abstract:

We propose an algorithm to estimate the common density s of a stationary

process X1, ..., Xn. We suppose that the process is either β or τ -mixing. We

provide a model selection procedure based on a generalization of Mallows’ Cp

and we prove oracle inequalities for the selected estimator under a few prior

assumptions on the collection of models and on the mixing coefficients. We

prove that our estimator is adaptive over a class of Besov spaces, namely, we

prove that it achieves the same rates of convergence as in the i.i.d framework.

Key words: Density estimation, weak dependence, model selection.
2000 Mathematics Subject Classification: 62G07, 62M99.

1 Introduction

We consider the problem of estimating the unknown density s of P , the law of a random
variable X, based on the observation of n (possibly) dependent data X1, ...,Xn with com-
mon law P . We assume that X is real valued, that s belongs to L2(µ) where µ denotes the
Lebesgue measure on R and that s is compactly supported, say in [0, 1]. Throughout the
chapter, we consider least-squares estimators ŝm of s on a collection (Sm)m∈Mn of linear
subspaces of L2(µ). Our final estimator is chosen through a model selection algorithm.
Model selection has received much interest in the last decades. When its final goal is pre-
diction, it can be seen more generally as the question of choosing between the outcomes
of several prediction algorithms. With such a general formulation, a very natural answer
is the following. First, estimate the prediction error for each model, that is ‖s − ŝm‖2

2.
Then, select the model which minimizes this estimate.
It is natural to think of the empirical risk as an estimator of the prediction error. This can
fail dramatically, because it uses the same data for building predictors and for comparing
them, making these estimates strongly biased for models involving a number of parameters
growing with the sample size.
In order to correct this drawback, penalization’s methods state that a good choice can be
made by minimizing the sum of the empirical risk (how do algorithms fit the data) and
some complexity measure of the algorithms (called the penalty). This method was first
developped in the work of Akaike [2] and [1] and Mallows [19].
In the context of density estimation, with independent data, Birgé & Massart [8] used
penalties of order LnDm/n, where Dm denotes the dimension of Sm and Ln is a constant
depending on the complexity of the collection Mn. They used Talagrand’s inequality (see
for example Talagrand [24] for an overview) to prove that this penalization procedure is
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efficient i.e. the integrated quadratic risk of the selected estimator is asymptotically equiv-
alent to the risk of the oracle (see Section 2 for a precise definition). They also proved that
the selected estimator achieves adaptive rates of convergence over a large class of Besov
spaces. Moreover, they showed that some methods of adaptive density estimation like the
unbiased cross validation (Rudemo [23]) or the hard thresholded estimator of Donoho et
al. [16] can be viewed as special instances of penalized projection estimators.
More recently, Arlot [5] introduced new measures of the quality of penalized least-squares
estimators (PLSE). He proved pathwise oracle inequalities, that is deviation bounds for
the PLSE that are harder to prove but more informative from a practical point of view
(see also Section 2 for details).
When the process (Xi)i=1,...,n is β-mixing (Rozanov & Volkonskii [26] and Section 2), Ta-
lagrand’s inequality can not be used directly. Baraud et al. [6] used Berbee’s coupling
lemma (see Berbee ([7]) and Viennet’s covariance inequality (Viennet [25]) to overcome
this problem and build model selection procedure in the regression problem. Then Comte
& Merlevède [13] used this algorithm to investigate the problem of density estimation for
a β-mixing process. They proved that under reasonable assumptions on the collection Mn

and on the coefficients β, one can recover the results of Birgé & Massart [8] in the i.i.d.
framework.
The main drawback of those results is that many processes, even simple Markov chains
are not β-mixing. For instance, if (ǫi)i≥1 is iid with marginal B(1/2), then the stationary
solution (Xi)i≥0 of the equation

Xn =
1

2
(Xn−1 + ǫn), X0 independent of (ǫi)i≥1 (1)

is not β-mixing (Andrews [3]). More recently, Dedecker & Prieur [15] introduced new
mixing-coefficients, in particular the coefficients τ , φ̃ and β̃ and proved that many processes
like (1) happen to be τ , φ̃ and β̃-mixing. They proved a coupling lemma for the coefficient
τ and covariance inequalities for φ̃ and β̃. Gannaz & Wintenberger [18] used the covariance
inequality to extend the result of Donoho et al. [16] for the wavelet thresholded estimator
to the case of φ̃-mixing processes. They recovered (up to a log(n) factor) the adaptive
rates of convergence over Besov spaces.
In this article, we first investigate the case of β-mixing processes. We prove a pathwise
oracle inequality for the PLSE. We extend the result of Comte & Merlevède [13] under
weaker assumptions on the mixing coefficients. Then, we consider τ -mixing processes. The
problem is that the coupling result is weaker for the coefficient τ than for β. Moreover,
in order to control the empirical process we use a covariance inequality that is harder to
handle. Hence, the generalization of the procedure of Baraud et al. [6] to the framework
of τ -mixing processes is not straightforward. We recover the optimal adaptive rates of
convergence over Besov spaces (that is the same as in the independent framework) for
τ -mixing processes, which is new as far as we know.
The chapter is organized as follows. In Section 2, we give the basic material that we will
use throughout the chapter. We recall the definition of some mixing coefficients and we
state their properties. We define the penalized least-squares estimator (PLSE). Sections 3
and 4 are devoted to the statement of the main results, respectively in the β-mixing case
and in the τ -mixing case. In Section 5, we derive the adaptive properties of the PLSE.
Finally, Section 6 is devoted to the proofs. Some additional material has been reported in
the Appendix in Section 7.

2



2 Preliminaries

2.1 Notation.

Let (Ω,A,P) be a probability space. Let µ be the Lebesgue measure on R, let ‖.‖p be the

usual norm on Lp(µ) for 1 ≤ p ≤ ∞. For all y ∈ R
l, let |y|l =

∑l
i=1 |yi|. Denote by λκ the

set of κ-Lipschitz functions, i.e. the functions t from (Rl, |.|l) to R such that Lip(t) ≤ κ
where

Lip(t) = sup

{ |t(x) − t(y)|
|x− y|l

, x, y ∈ R
l, x 6= y

}

≤ κ.

LetBV andBV1 be the set of functions t supported on R satisfying respectively ‖t‖BV <∞
and ‖t‖BV ≤ 1 where

‖t‖BV = sup
n∈N∗

sup
−∞<a1<...<an<∞

|t(ai+1) − t(ai)|.

2.2 Some measures of dependence.

2.2.1 Definitions and assumptions

Let Y = (Y1, ..., Yl) be a random variable defined on (Ω,A,P) with values in (Rl, |.|l).
Let M be a σ-algebra of A. Let PY |M, PY1|M be conditional distributions of Y and Y1

given M, let PY , PY1 be the distribution of Y and Y1 and let FY1|M, FY1 be distribution

functions of PY1|M and PY1 . Let B be the Borel σ-algebra on (Rl, |.|l). Define now

β(M, σ(Y )) = E

(

sup
A∈B

|PY |M(A) − PY (A)|
)

,

β̃(M, Y1) = E

(

sup
x∈R

∣

∣FY1|M(x) − FY1(x)
∣

∣

)

,

and if E(|Y |) <∞, τ(M, Y ) = E

(

sup
t∈λ1

|PY |M(t) − PY (t)|
)

.

The coefficient β(M, σ(Y )) is the mixing coefficient introduced by Rozanov & Volkonskii
[26]. The coefficients β̃(M, Y1) and τ(M, Y ) have been introduced by Dedecker & Prieur
[15].
Let (Xk)k∈Z be a stationary sequence of real valued random variables defined on (Ω,A,P).
For all k ∈ N

∗, the coefficients βk, β̃k and τk are defined by

βk = β(σ(Xi, i ≤ 0), σ(Xi, i ≥ k)), β̃k = sup
j≥k

{β̃(σ(Xp, p ≤ 0),Xj)}.

If E(|X1|) <∞, for all k ∈ N
∗ and all r ∈ N

∗, let

τk,r = max
1≤l≤r

1

l
sup

k≤i1<..<il

{τ(σ(Xp, p ≤ 0), (Xi1 , ...,Xil))}, τk = sup
r∈N∗

τk,r.

Moreover, we set β0 = 1. In the sequel, the processes of interest are either β-mixing or
τ -mixing, meaning that, for γ = β or τ , the γ-mixing coefficients γk → 0 as k → +∞. For
p ∈ {1, 2}, we define κp as:

κp = p

∞
∑

l=0

lp−1βl, (2)

3



where 00 = 1, when the series are convergent. Besides, we consider two kinds of rates of
convergence to 0 of the mixing coefficients, that is for γ = β or τ ,
[AR] arithmetical γ-mixing with rate θ if there exists some θ > 0 such that γk ≤ (1 +
k)−(1+θ) for all k in N,
[GEO] geometrical γ-mixing with rate θ if there exists some θ > 0 such that γk ≤ e−θk

for all k in N.

2.2.2 Properties

Coupling
Let X be an R

l-valued random variable defined on (Ω,A,P) and let M be a σ-algebra.
Assume that there exists a random variable U uniformly distributed on [0, 1] and indepen-
dent of M∨ σ(X). There exist two M ∨ σ(X) ∨ σ(U)-measurable random variables X∗

1

and X∗
2 distributed as X and independent of M such that

β(M, σ(X)) = P(X 6= X∗
1 ) and (3)

τ(M,X) = E (|X −X∗
2 |l) . (4)

Equality (3) has been established by Berbee [7], Equality (4) has been established in
Dedecker & Prieur [15], Section 7.1.
Covariance inequalities
Let X,Y be two real valued random variables and let f, h be two measurable functions
from R to C. Then, there exist two measurable functions b1 : R → R and b2 : R → R with
E (b1(X)) = E(b2(Y )) = β(σ(X), σ(Y )) such that, for any conjugate p, q ≥ 1 (see Viennet
[25] Lemma 4.1)

|Cov(f(X), h(Y ))| ≤ 2E
1/p (|f(X)|pb1(X)) E

1/q(|h(Y )|qb2(Y )).

There exists a random variable b(σ(X), Y ) such that E(b(σ(X), Y )) = β̃(σ(X), Y ) and such
that, for all Lipschitz functions f and all h in BV (Dedecker & Prieur [15] Proposition 1)

|Cov(f(X), h(Y ))| ≤ ‖h‖BV E (|f(X)|b(σ(X), Y )) ≤ ‖h‖BV ‖f‖∞ β̃(σ(X), Y ). (5)

Comparison results
Let (Xk)k∈Z be a sequence of identically distributed real random variables. If the marginal
distribution satisfies a concentration’s condition |FX(x)−FX(y)| ≤ K|x− y|a with a ≤ 1,
K > 0, then (Dedecker et al. [14] Remark 5.1 p 104)

β̃k ≤ 2K1/(1+a)τ
a/(a+1)
k,1 ≤ 2K1/(1+a)τ

a/(a+1)
k .

In particular, if PX has a density s with respect to the Lebesgue measure µ and if s ∈ L2(µ),
we have from Cauchy-Schwarz inequality

|FX(x) − FX(y)| = |
∫

1[x,y]sdµ| ≤ ‖s‖2

(
∫

1[x,y]dµ

)1/2

= ‖s‖2 |x− y|1/2,

thus
β̃k ≤ 2 ‖s‖2/3

2 τ
1/3
k .

In particular, for any arithmetically [AR] τ -mixing process with rate θ > 2, we have

β̃k ≤ 2 ‖s‖2/3
2 (1 + k)−(1+θ)/3. (6)
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2.2.3 Examples

Examples of β-mixing and τ -mixing sequences are well known, we refer to the books of
Doukhan [17] and Bradley [11] for examples of β-mixing processes and to the book of
Dedecker et. al [14] or the articles of Dedecker & Prieur [15], Prieur [21], and Comte
et. al [12] for examples of τ -mixing sequences. One of the most important example is
the following: a stationary, irreducible, aperiodic and positively recurent Markov chain
(Xi)i≥1 is β-mixing. However, many simple Markov chains are not β-mixing but are τ -
mixing. For instance, it is known for a long time that if (ǫi)i≥1 are i.i.d Bernoulli B(1/2),
then a stationary solution (Xi)i≥0 of the equation

Xn =
1

2
(Xn−1 + ǫn), X0 independent of (ǫi)i≥1

is not β-mixing since βk = 1 for any k ≥ 1 whereas τk ≤ 2−k (see Dedecker & Prieur [15]
Section 4.1). Another advantage of the coefficient τ is that it is easy to compute in many
situations (see Dedecker & Prieur [15] Section 4).

2.3 Collections of models

We observe n identically distributed real valued random variables X1, ...,Xn with common
density s with respect to the Lebesgue measure µ. We assume that s belongs to the Hilbert
space L2(µ) endowed with norm ‖.‖2. We consider an orthonormal system {ψj,k}(j,k)∈Λ

of L2(µ) and a collection of models (Sm)m∈Mn indexed by subsets m ⊂ Λ for which we
assume that the following assumptions are fulfilled:
[M1] for all m ∈ Mn, Sm is the linear span of {ψj,k}(j,k)∈m with finite dimension Dm =

|m| ≥ 2 and Nn = maxm∈Mn Dm satisfies Nn ≤ n;
[M2] there exists a constant Φ such that

∀m,m′ ∈ Mn,∀t ∈ Sm,∀t′ ∈ Sm′ , ‖t+ t′‖∞ ≤ Φ
√

dim(Sm + Sm′)‖t+ t′‖2;

[M3] Dm ≤ Dm′ implies that m ⊂ m′ and so Sm ⊂ Sm′ .
As a consequence of Cauchy-Schwarz inequality, we have

∥

∥

∥

∥

∥

∥

∑

(j,k)∈m∪m′

ψ2
j,k

∥

∥

∥

∥

∥

∥

∞

= sup
t∈Sm+Sm′ ,t6=0

‖t‖2
∞

‖t‖2
2

(7)

see Birgé & Massart [8] p 58. Three examples are usually developed as fulfilling this set
of assumptions:
[T] trigonometric spaces: ψ0,0(x) = 1 and for all j ∈ N

∗, ψj,1(x) = cos(2πjx), ψj,2(x) =
sin(2πjx). m = {(0, 0), (j, 1), (j′ , 2), 1 ≤ j, j′ ≤ Jm} and Dm = 2Jm + 1;
[P] regular piecewise polynomial spaces: Sm is generated by r polynomials ψj,k of degree
k = 0, ..., r − 1 on each subinterval [(j − 1)/Jm, j/Jm] for j = 1, ..., Jm, Dm = rJm,
Mn = {m = {(j, k), j = 1, ..., Jm, k = 0, ..., r − 1}, 1 ≤ Jm ≤ [n/r]};
[W] spaces generated by dyadic wavelet with regularity r as described in Section 4.
For a precise description of those spaces and their properties, we refer to Birgé & Massart
[8].

2.4 The estimator

Let (Xn)n∈Z be a real valued stationary process and let P denote the law of X0. Assume
that P has a density s with respect to the Lebesgue measure µ and that s ∈ L2(µ).

5



Let (Sm)m∈Mn be a collection of models satisfying assumptions [M1]-[M3]. We define
Sn = ∪m∈MnSm, sm and sn the orthogonal projections of s onto Sm and Sn respectively,
let P be the joint distribution of the observations (Xn)n∈Z and let E be the corresponding
expectation. We define the operators Pn, P and νn on L2(µ) by

Pnt =
1

n

n
∑

i=1

t(Xi), P t =

∫

t(x)s(x)dµ(x), νn(t) = (Pn − P )t.

All the real numbers that we shall introduce and which are not indexed by m or n are fixed
constants. In order to define the penalized least-squares estimator, let us consider on R×Sn

the contrast function γ(x, t) = −2t(x) + ‖t‖2
2 and its empirical version γn(t) = Pnγ(., t).

Minimizing γn(t) over Sm leads to the classical projection estimator ŝm on Sm. Let ŝn be
the projection estimator on Sn. Since {ψj,k}(j,k)∈m is an orthonormal basis of Sm one gets

ŝm =
∑

(j,k)∈m

(Pnψj,k)ψj,k and γn(ŝm) = −
∑

(j,k)∈m

(Pnψj,k)
2.

Now, given a penalty function pen : Mn → R
+, we define a selected model m̂ as any

element
m̂ ∈ arg min

m∈Mn

(γn(ŝm) + pen(m)) (8)

and a PLSE is defined as any s̃ ∈ Sm̂ ⊂ Sn such that

γn(s̃) + pen(m̂) = inf
m∈Mn

(γn(ŝm) + pen(m)) . (9)

2.5 Oracle inequalities

An ideal procedure for estimation chooses an oracle

mo ∈ Arg min
m∈Mn

{‖s − ŝm‖2}.

An oracle depends on the unknown s and on the data so that it is unknown in practice.
In order to validate our procedure, we try to prove:
-non asymptotic oracle inequalities for the PLSE:

E

(

‖s− s̃‖2
2

)

≤ L inf
m∈Mn

{E
(

‖s− ŝm‖2
2 +R(m,n)

)

}, (10)

for some constant L ≥ 1 (as close to 1 as possible) and a remainder term R(m,n) ≥ 0

possibly random, and small compared to E

(

‖s− s̃‖2
2

)

if possible. This inequality compares

the risk of the PLSE with the best deterministic choice of m. Since m̂ is random, we prefer
to prove a stronger form of oracle inequality :

E

(

‖s− s̃‖2
2

)

≤ LE

(

inf
m∈Mn

{‖s− ŝm‖2
2 +R(m,n)}

)

, (11)

or, when it is possible, deviation bounds for the PLSE:

P

(

‖s− s̃‖2
2 > L inf

m∈Mn

(

‖s− ŝm‖2
2 +R(m,n)

)

)

≤ cn, (12)
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where typically cn ≤ C/n1+γ for some γ > 0. Inequality (12) proves that, asymptotically,
the risk ‖s− s̃‖2

2 is almost surely the one of the oracle. Let

Ω =

{

‖s− s̃‖2
2 > L inf

m∈Mn

(

‖s− ŝm‖2
2 +R(m,n)

)

}

.

We have
E

(

‖s− s̃‖2
2

)

= E

(

‖s− s̃‖2
2 1Ω

)

+ E

(

‖s− s̃‖2
2 1Ωc

)

.

It is clear that E

(

‖s− s̃‖2
2 1Ωc

)

≤ LE

(

infm∈Mn

{

‖s− ŝm‖2
2 +R(m,n)

})

. Moreover, we

have ‖s − s̃‖2 = ‖s − sm̂‖2 + ‖sm̂ − s̃‖2 ≤ ‖s‖2 + Φ2Dm̂ ≤ ‖s‖2 + Φ2n, thus, when (12)
holds, we have

E

(

‖s− s̃‖2
2 1Ωc

)

≤ (‖s‖2 + Φ2n)cn ≤ C

nγ
.

Therefore, inequality (12) implies

E

(

‖s− s̃‖2
2

)

≤ E

(

inf
m∈Mn

{‖s− ŝm‖2
2 +R(m,n)}

)

+
C

nγ
.

We can derive from these inequalities adaptive rates of convergence of the PLSE on Besov
spaces (see Birgé & Massart [8] for example). In order to achieve this goal, we only have
to prove a weaker form of oracle inequality where the remainder term R(m,n) ≤ LDm/n
for some constant L, for all the models m with sufficiently large dimension. This will be
detailed in Section 5.

3 Results for β-mixing processes

From now on, the letters κ, L and K, with various sub- or supscripts, will denote some
constants which may vary from line to line. One shall use L. to indicate more precisely
the dependence on various quantities, especially those which are related to the unknown
s.
In this section, we give the following theorem for β-mixing sequences. It can be seen as a
pathwise version of Theorem 3.1 in Comte & Merlevède [13].

Theorem 3.1 Consider a collection of models satisfying [M1], [M2] and [M3]. Assume
that the process (Xn)n∈Z is strictly stationary and arithmetically [AR] β-mixing with mix-
ing rate θ > 2 and that its marginal distribution admits a density s with respect to the
Lebesgue measure µ, with s ∈ L2(µ).
Let κ1 be the constant defined in (2) and let s̃ be the PLSE defined by (9) with

pen(m) =
KΦ2κ1Dm

n
, where K > 4.

Then, for all κ > 2 there exist c0 > 0, Ls > 0, γ1 > 0 and a sequence ǫn → 0, such that

P

(

‖s̃− s‖2
2 > (1 + ǫn) inf

m∈Mn,Dm≥c0(log n)γ1

(

‖s− sm‖2
2 + pen(m)

)

)

≤ Ls
(log n)(θ+2)κ

nθ/2
.

(13)

Remark: The term KΦ2κ1 is the same as in Theorem 3.1 of Comte & Merlevède [13] but
with a constant K > 4 instead of 320. The main drawback of this result is that the penalty
term involves the constant κ1 which is unknown in practice. However, Theorem 3.1 ensures
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that penalties proportional to the linear dimension of Sm lead to efficient model selection
procedures. Thus we can use this information to apply the slope heuristic algorithm intro-
duced by Birgé & Massart [9] in a Gaussian regression context and generalized by Arlot
& Massart [4] to more general M-estimation frameworks. This algorithm calibrates the
constant in front of the penalty term when the shape of an ideal penalty is available. The
result of Arlot & Massart is proven for independent sequences, in a regression framework,
but it can be generalized to the density estimation framework, for independent as well as
for β or τ dependent data. This result is beyond the scope of this chapter and will be
proved in chapter 4.
We have to consider the infimum in equation (13) over the models with sufficiently large
dimensions. However, as noted by Arlot [5] (Remark 9 p 43), we can take the infimum
over all the models in (13) if we add an extra term in (13). More precisely, we can prove
that, with probability larger than 1 − Ls(log n)(θ+2)κ/nθ/2

‖s̃− s‖2
2 ≤ (1 + ǫn) inf

m∈Mn

(

‖s− ŝm‖2
2 + pen(m)

)

+ L
(log n)γ2

n
, (14)

where L > 0 and γ2 > 0.
Remark : The main improvement of Theorem 3.1 is that it gives an oracle inequality
in probability, with a deviation bound of order o(1/n) as soon as θ > 2 instead of θ > 3
in Comte & Merlevède [13]. Moreover, we do not require s to be bounded to prove our
result.
Remark: When the data are independent, the proof of Theorem 3.1 can be used to
obtain that the estimator s̃ chosen with a penalty term of order KΦDm/n satisfy an
oracle inequality as (13). The main difference would be that κ1 = 1, thus it can be
used without a slope heuristic (even if this algorithm can be used also in this context to
optimize the constant K) and the control of the probability would be Lse

− ln(n)2/Cs for
some constants Ls, Cs instead of Ls(log n)(θ+2)κn−θ/2 in our theorem.

4 Results for τ-mixing sequences

In order to deal with τ -mixing sequences, we need to specify the basis (ψj,k)(j,k)∈Λ.

4.1 Wavelet basis

Throughout this section, r is a real number, r ≥ 1 and we work with an r-regular or-
thonormal multiresolution analysis of L2(µ), associated with a compactly supported scal-
ing function φ and a compactly supported mother wavelet ψ. Without loss of generality,
we suppose that the support of the functions φ and ψ is an interval [A1, A2) where A1

and A2 are integers such that A2 − A1 = A ≥ 1. Let us recall that φ and ψ generate an
orthonormal basis by dilatations and translations.
For all k ∈ Z and j ∈ N

∗, let ψ0,k : x→
√

2φ(2x− k) and ψj,k : x→ 2j/2ψ(2jx− k). The
family {(ψj,k)j≥0,k∈Z} is an orthonormal basis of L2(µ). Let us recall the following inequal-
ities: for all p ≥ 1, let Kp = (

√
2‖φ‖p) ∨ ‖ψ‖p, KL = (2

√
2Lip(φ)) ∨ Lip(ψ), KBV = AKL.

Then for all j ≥ 0, we have ‖ψj,k‖∞ ≤ K∞2j/2,
∥

∥

∥

∥

∥

∑

k∈Z

|ψj,k|
∥

∥

∥

∥

∥

∞

≤ AK∞2j/2 (15)

Lip(ψj,k) ≤ KL23j/2, (16)

‖ψj,k‖BV ≤ KBV 2j/2. (17)
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We assume that our collection (Sm)m∈Mn satisfies the following assumption:
[W] dyadic wavelet generated spaces: let Jn = [log(n/2(A+ 1))/ log(2)] and for all Jm =
1, ..., Jn, let

m = {(0, k),−A2 < k < 2 −A1} ∪ {(j, k), 1 ≤ j ≤ Jm, −A2 < k < −A1 + 2j}

and Sm the linear span of {ψj,k}(j,k)∈m. In particular, we haveDm = (A−1)(Jm+1)+2Jm+1

and thus 2Jm+1 ≤ Dm ≤ (A− 1)(Jm + 1) + 2Jm+1 ≤ A2Jm+1.

4.2 The τ-mixing case

The following result proves that we keep the same rate of convergence for the PLSE based
on τ -mixing processes.

Theorem 4.1 Consider the collection of models [W]. Assume that (Xn)n∈Z is strictly
stationary and arithmetically [AR] τ -mixing with mixing rate θ > 5 and that its marginal
distribution admits a density s with respect to the Lebesgue measure µ. Let s̃ be the PLSE
defined by (9) with

pen(m) = KAK∞KBV

(

∞
∑

l=0

β̃l

)

Dm

n
, where K ≥ 8.

Then there exist constants c0 > 0, γ1 > 0 and a sequence ǫn → 0 such that

E
(

‖s̃− s‖2
2

)

≤ (1 + ǫn)

(

inf
m∈Mn, Dm≥c0(log n)γ1

‖s− sm‖2
2 + pen(m)

)

. (18)

Remark : As in Theorem 3.1, the penalty term involves an unknown constant and we
have a condition on the dimension of the models in (18). However, the slope heuristic can
also be used in this context to calibrate the constant and a careful look at the proof shows
that we can take the infimum over all models m ∈ Mn provided that we increase the
constant K in front of the penalty term. Our result allows to derive rates of convergence
in Besov spaces for the PLSE that correspond to the rates in the i.i.d. framework (see
Proposition 5.2).
Remark : Theorem 4.1 gives an oracle inequality for the PLSE built on τ -mixing se-
quences. This inequality is not pathwise and the constants involved in the penalty term
are not optimal. This is due to technical reasons, mainly because we use the coupling
result (4) instead of (3). However, we recover the same kind of oracle inequality as in
the i.i.d. framework (Birgé and Massart [8]) under weak assumptions on the mixing co-
efficients since we only require arithmetical [AR] τ -mixing assumptions on the process
(Xn)n∈Z. This is the first result for these processes up to our knowledge.
Let us mention here Theorem 4.1 in Comte & Merlevède [13]. They consider α-mixing
processes (for a definition of the coefficient α and its properties, we refer to Rio [22]). They
make geometrical [GEO] α-mixing assumptions on the processes and consider penalties
of order L log(n)Dm/n to get an oracle inequality. This leads to a logarithmic loss in
the rates of convergence. They get the optimal rate under an extra assumption (namely
Assumption [Lip] in Section 3.2). There exist random processes that are τ -mixing and
not α-mixing (see Dedecker & Prieur [15]), however, the comparison of these coefficients
is difficult in general and our method can not be applied in this context.
The constants c0, γ1, no are given in the end of the proof.
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Remark : Inequality (2.6) can be improved under stronger assumptions on s. For exam-
ple, when s is bounded, we have β̃k ≤ C

√
τk. Under this assumption and θ > 3, we can

prove that the estimator s̃ satisfies the inequality

E
(

‖s̃− s‖2
2

)

≤ (1 + ǫn)

(

inf
m∈Mn, Dm≥c0(log n)γ1

‖s− sm‖2
2 + pen(m)

)

+
(log n)κ(θ+1)

n(θ−3)/2
.

When θ < 5, the extra term (log n)κ(θ+1)/n(θ−3)/2 may be larger than the main term
infm∈Mn, Dm≥c0(log n)γ1 ‖s − sm‖2

2 + pen(m). In this case, we don’t know if our control
remains optimal. On the other hand, Proposition 5.2 ensures that s̃ is adaptive over the
class of Besov balls when θ ≥ 5.

5 Minimax results

5.1 Approximation results on Besov spaces

Besov balls.
Throughout this section, Λ = {(j, k), j ∈ N, k ∈ Z} and {ψj,k, (j, k) ∈ Λ} denotes an
r-regular wavelet basis as introduced in Section 4.1. Let α, p be two positive numbers such
that α + 1/2 − 1/p > 0. For all functions t ∈ L2(µ), t =

∑

(j,k)∈Λ tj,kψj,k, we say that t
belongs to the Besov ball Bα,p,∞(M1) on the real line if ‖t‖α,p,∞ ≤M1 where

‖t‖α,p,∞ = sup
j∈N

2j(α+1/2−1/p)

(

∑

k∈Z

|tj,k|p
)1/p

.

It is easy to check that if p ≥ 2 Bα,p,∞(M1) ⊂ Bα,2,∞(M1) so that upper bounds on
Bα,2,∞(M1) yield upper bounds on Bα,p,∞(M1).
Approximation results on Besov spaces.
We have the following result (Birgé & Massart [8] Section 4.7.1). Suppose that the support
of s equals [0, 1] and that s belongs to the Besov ball Bα,2,∞(1), then whenever r > α− 1,

‖s− sm‖2
2 ≤

‖s‖2
α,2,∞

4(4α − 1)
2−2Jmα ≤

(2A)2α ‖s‖2
α,2,∞

4(4α − 1)
D−2α

m (19)

5.2 Minimax rates of convergence for the PLSE

We can derive from Theorems 3.1 and 4.1 adaptation results to unknown smoothness over
Besov Balls.

Proposition 5.1 Assume that the process (Xn)n∈Z is stricly stationary and arithmetically
[AR] β-mixing with mixing rate θ > 2 and that its marginal distribution admits a density
s with respect to the Lebesgue measure µ, that s is supported in [0, 1] and that s ∈ L2(µ).
For all α,M1 > 0, the PLSE s̃ defined in Theorem 3.1 for the collection of models [W]
satisfies

∀κ > 2, sup
s∈Bα,2,∞(M1)

P

(

‖s̃− s‖2
2 > LM1,α,θn

−2α/(2α+1)
)

≤ LM1(log n)(θ+2)κ

nθ/2
.

Proposition 5.2 Assume that the process (Xn)n∈Z is stricly stationary and arithmetically
[AR] τ -mixing with mixing rate θ > 5 and that its marginal distribution admits a density

10



s with respect to the Lebesgue measure µ, that s is supported in [0, 1] and that s ∈ L2(µ).
For all α,M1 > 0, the PLSE s̃ defined in Theorem 4.1 satisfies

sup
s∈Bα,2,∞(M1)

E

(

‖s̃− s‖2
2

)

≤ LM1,α,θn
−2α/(2α+1).

Remark: Proposition 5.2 can be compared to Theorem 3.1 in Gannaz & Wintenberger
[18]. They prove near minimax results for the thresholded wavelet estimator introduced
by Donoho et al. [16] in a φ̃-dependent setting (for a definition of the coefficient φ̃, we
refer to Dedecker & Prieur [15]). Basically, with our notations, their result can be stated

as follows: if (Xn)n∈Z is φ̃-mixing with φ̃1(r) ≤ Ce−arb
for some constants C, a, b, then

the thresholded wavelet estimator ŝ of s satisfies

∀α > 0, ∀p > 1, sup
s∈Bα,p,∞(M1)∩L∞(M)

E

(

‖ŝ− s‖2
2

)

≤ LM,M1,α,p

(

log n

n

)2α/(2α+1)

.

The main advantage of their result is that they can deal with Besov balls with regularity
1 < p < 2. However, in the regular case, when p ≥ 2, we have been able to remove the extra
log n factor. Moreover, our result only requires arithmetical [AR] rates of convergence for
the mixing coefficients and we do not have to suppose that s is bounded.

6 Proofs.

6.1 Proofs of the minimax results.

Proof of Proposition 5.1:

Let α > 0 and M1 > 0 and assume that s ∈ Bα,2,∞(M1). Let M̃n = {m ∈ Mn,Dm >
c0(log n)γ1}. By Theorem 3.1, there exists a constant Lθ > 0 such that

P

(

‖s̃− s‖2
2 > Lθ inf

m∈M̃n

{

‖s− sm‖2
2 +

Dm

n

})

≤ Ls(log n)(θ+2)κ

nθ/2
. (20)

It appears from the proof of Theorem 3.1 that the constant Ls depends only on ‖s‖2 and
that it is a nondecreasing function of ‖s‖2 so that Ls can be uniformly bounded over
Bα,2,∞(M1) by a constant LM1 so that, by (20)

P

(

‖s̃− s‖2
2 > Lθ inf

m∈M̃n

{

‖s− sm‖2
2 +

Dm

n

})

≤ LM1(log n)(θ+2)κ

nθ/2
.

In particular, for a model m in Mn with dimension Dm such that

c0(log n)γ1 ≤ L1n
1/(2α+1) ≤ Dm ≤ L2n

1/(2α+1),

we have

P

(

‖s̃− s‖2
2 > Lθ

(

‖s− sm‖2
2 +

Dm

n

))

≤ LM1(log n)(θ+2)κ

nθ/2
.

Since s belongs to Bα,2,∞(M1), we can use Inequality (19) to get

‖s− sm‖2
2 ≤ Lα,M1D

−2α
m .

Thus we obtain

P

(

‖s̃− s‖2
2 > LM1,α,θn

−2α/(2α+1)
)

≤ LM1(log n)(θ+2)κ

nθ/2
.�
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Proof of Proposition 5.2:

Let α > 0 and M1 > 0 and assume that s ∈ Bα,2,∞(M1). By Theorem 4.1, we have

E

(

‖s̃− s‖2
2

)

≤ Lθ

(

inf
m∈M̃n

{‖s− sm‖2
2 +

Dm

n
}
)

.

Inequality (19) leads to ‖s− sm‖2
2 ≤ Lα,M1D

−2α
m , so that for a model m in M̃n with

dimension Dm such that

c0(log n)γ1 ≤ L1n
1/(2α+1) ≤ Dm ≤ L2n

1/(2α+1),

we find
E

(

‖s̃− s‖2
2

)

≤ Lθ,α,M1n
−2α/(2α+1).�

6.2 Proof of Theorem 3.1:

For all mo in Mn, we have, by definition of m̂

γn(s̃) + pen(m̂) ≤ γn(ŝmo) + pen(mo)

Pγ(s̃) + νnγ(s̃) + pen(m̂) ≤ Pγ(ŝmo) + νnγ(ŝmo) + pen(mo)

Pγ(s̃) − Pγ(s) − 2νns̃+ pen(m̂) ≤ Pγ(ŝmo) − Pγ(s) − 2νnŝmo + pen(mo)

Since for all t ∈ L2(µ), Pγ(t) − Pγ(s) = ‖t− s‖2
2, we have

‖s− s̃‖2
2 ≤ ‖s− ŝmo‖2

2 + pen(mo) − V (mo) − (pen(m̂) − V (m̂)) − 2νn(smo − sm̂), (21)

where, for all m ∈ Mn

V (m) = 2νn(ŝm − sm) = 2
∑

(j,k)∈m

ν2
n(ψj,k).

This decomposition is different from the one used in Birgé & Massart [8] and in Comte &
Merlevède [13]. It allows to improve the constant in the oracle inequality in the β-mixing
case. Moreover, we choose to prove an oracle inequality of the form (12) for β-mixing
sequences, which allows to assume only θ > 2 instead of θ > 3. Let us now give a sketch
of the proof:

1. we build an event ΩC with P(Ωc
C) ≤ pβq such that, on ΩC , νn = ν∗n, where ν∗n

is built with independent data. A suitable choice of the integers p and q leads to
pβq ≤ C(lnn)rn−θ/2.

2. We use the concentration’s inequality (7.4) of Birgé & Massart [8] for χ2-type statis-
tics, derived from Talagrand’s inequality. This allows us to find p1(m) such that on
an event Ω1 with P(Ωc

1 ∩ ΩC) ≤ L1,scn

sup
m∈Mn

{V (m) − p1(m)} ≤ 0.

cn < C(lnn)rn−θ/2 and L1,s is some constant depending on s.

3. From Bernstein’s inequality, we prove that, for allm,m′ ∈ Mn, there exists p2(m,m
′)

such that, for all η > 0, on an event Ω2 with P(Ωc
2 ∩ ΩC) ≤ L2,scn,

sup
m,m′∈Mn

{

νn(sm − sm′) − η

2
p2(m,m

′) − ‖sm − sm′‖2
2

2η

}

≤ 0.

Moreover, for all m,m′ ∈ Mn, p2(m,m
′) ≤ p2(m,m) + p2(m

′,m′).
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4. We have ‖sm̂ − smo‖2
2 ≤ ‖sm̂ − s‖2

2 + ‖s− smo‖2
2 because sm̂ − smo is either the

projection of sm̂ − s onto Smo or the projection of s− smo onto Sm̂. Take pen(m) ≥
p1(m) + ηp2(m,m), we have, on Ω1 ∩ Ω2 ∩ ΩC

‖s− s̃‖2
2 ≤ ‖s− ŝmo‖2

2 −
Vmo

2
+ pen(mo) −

Vmo

2
(22)

−(pen(m̂) − p1(m̂)) − (p1(m̂) − V (m̂)) − 2νn(smo − sm̂)

≤ ‖s− smo‖2
2 + pen(mo) −

V (mo)

2
− ηp2(m̂, m̂)

+ηp2(m̂,mo) +
‖smo − sm̂‖2

2

η
(23)

(

1 − 1

η

)

‖s− s̃‖2
2 ≤ (1 +

1

η
) ‖s− smo‖2

2 + pen(mo) + ηp2(mo,mo). (24)

In (23), we used that V (mo) = 2‖smo − ŝmo‖2
2 ≥ 0. In (24), we used that Vmo ≥ 0.

Pythagoras Theorem gives

‖s− ŝmo‖2
2 −

V (mo)

2
= ‖s− smo‖2

2 and;‖s− sm̂‖2
2 ≤ ‖s− s̃‖2

2 .

Finally, we prove that we can choose η = (log n)γ , with γ > 0 such that ηp2(mo,mo) =
o(pen(mo)) and we conclude the proof of (3.1) from the previous inequalities.
We decompose the proof in several claims corresponding to the previous steps.
Claim 1 : For all l = 0, ..., p − 1, let us define Al = (X2lq+1, ...,X(2l+1)q) and Bl =
(X(2l+1)q+1, ...,X(2l+2)q). There exist random vectors A∗

l = (X∗
2lq+1, ...,X

∗
(2l+1)q) and B∗

l =

(X∗
(2l+1)q+1, ...,X

∗
(2l+2)q) such that for all l = 0, ..., p − 1 :

1. A∗
l and Al have the same law,

2. A∗
l is independent of A0, ..., Al−1, A

∗
0..., A

∗
l−1

3. P(Al 6= A∗
l ) ≤ βq

the same being true for the variables Bl.

Proof of Claim 1 :

The proof is derived from Berbee’s lemma, we refer to Proposition 5.1 in Viennet [25]
for further details about this construction.�

Hereafter, we assume that, for some κ > 2,
√
n(log n)κ/2 ≤ p ≤ √

n(log n)κ and for the
sake of simplicity that pq = n/2, the modifications needed to handle the extra term when
q = [n/(2p)] being straightforward. Let ΩC = {∀l = 0, ..., p − 1 Al = A∗

l , Bl = B∗
l }. We

have

P(Ωc
C) ≤ 2pβq ≤ 22+θ (log n)(θ+2)κ

nθ/2
.

Let us first deal with the quadratic term V (m).
Claim 2 : Under the assumptions of Theorem 3.1, let ǫ > 0, 1 < γ < κ/2. We define
L2

1 = 2Φ2κ1, L
2
2 = 8Φ3/2√κ2, L3 = 2Φκ(ǫ) and

L1,m = 4

(

(1 + ǫ)L1 + L2

√

(log n)γ

D
1/4
m

+
L3

(log n)κ−γ

)2

. (25)
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Then, we have

P

(

sup
m∈Mn

{

V (m) − L1,mDm

n

}

≥ 0 ∩ ΩC

)

≤ Ls,γ exp

(

−(log n)γ
√

‖s‖2

)

.

where Ls,γ = 2
∑∞

D=1 exp(−(logD)γ/ ‖s‖1/2
2 ). In particular, for all r > 0, there exists a

constant L′
s,r depending on ‖s‖2, such that

P

(

sup
m∈Mn

{

V (m) − L1,mDm

n

}

≥ 0 ∩ ΩC

)

≤
L′

s,r

nr
.

Remark : When (L2/L1)
8(log n)4(2κ−γ) ≤ Dm ≤ n, we have

L1,m ≤
[

1 + ǫ+

(

1 +

√
2κ(ǫ)√
κ1

)

(log n)−(κ−γ)

]2

4L2
1.

Proof of Claim 2 :

Let P ∗
n(t) =

∑n
i=1 t(X

∗
i )/n and ν∗n(t) = (P ∗

n − P )t, we have

V (m)1ΩC
= 2

∑

(j,k)∈m

(ν∗n)2(ψj,k)1ΩC
.

Let B1(Sm) = {t ∈ Sm; ‖t‖2 ≤ 1}. ∀t ∈ B1(Sm), let t̄(x1, ..., xq) =
∑q

i=1 t(xi)/2q and for
all functions g : R

q → R let

P ∗
A,pg =

1

p

p−1
∑

j=0

g(A∗
j ), P

∗
B,pg =

1

p

p−1
∑

j=0

g(B∗
j ), P̄ g =

∫

gPA(dµ),

and ν̄A,pg = (P ∗
A,p − P̄ )g, ν̄B,pg = (P ∗

B,p − P̄ )g.

Now we have

∑

(j,k)∈m

(ν∗n)2(ψj,k) ≤ 2
∑

(j,k)∈m

ν̄2
A,pψ̄j,k + 2

∑

(j,k)∈m

ν̄2
B,pψ̄j,k.

In order to handle these terms, we use Proposition 7.4 which is stated in Section 7. Taking

B2
m =

∑

(j,k)∈m

Var(ψ̄j,k(A1)), V
2
m = sup

t∈B1(Sm)
Var(t̄(A1)), and H2

m =

∥

∥

∥

∥

∥

∥

∑

(j,k)∈m

(ψ̄j,k)
2

∥

∥

∥

∥

∥

∥

∞

,

we have

∀x > 0, P





√

∑

(j,k)∈m

ν̄2
A,pψ̄j,k ≥ (1 + ǫ)√

p
Bm + Vm

√

2x

p
+ κ(ǫ)

Hmx

p



 ≤ e−x. (26)

In order to evaluate Bm, Vm and Hm, we use Viennet’s inequality (54). There exists a
function b such that, for all p = 1, 2, P |b|p ≤ κp where κp is defined in (2) and for all
functions t ∈ L2(P̄ ),

Var(t̄(A1)) ≤
1

q
Pbt2.
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Thus

B2
m =

∑

(j,k)∈m

Var(ψ̄j,k(A1)) ≤
1

q

∑

(j,k)∈m

Pbψ2
j,k ≤

∥

∥

∥

∥

∥

∥

∑

(j,k)∈m

ψ2
j,k

∥

∥

∥

∥

∥

∥

∞

κ1

q
.

From Assumption [M2],
∥

∥

∥

∑

(j,k)∈m ψ2
j,k

∥

∥

∥

∞
≤ Φ2Dm, thus,

B2
m ≤ Φ2κ1Dm

q
. (27)

From Viennet’s and Cauchy-Schwarz inequalities

V 2
m = sup

t∈B1(Sm)
Var(t̄(A1)) ≤ sup

t∈B1(Sm)

Pbt2

q
≤ sup

t∈B1(Sm)
‖t‖∞

(Pt2)1/2(Pb2)1/2

q
.

Since t ∈ B1(Sm), we have by Cauchy-Schwarz inequality

(Pt2)1/2 ≤ (‖t‖∞ ‖t‖2 ‖s‖2)
1/2 ≤ (‖t‖∞ ‖s‖2)

1/2.

From Assumption [M2], we have ‖t‖∞ ≤ Φ
√
Dm, and from Viennet’s inequality Pb2 ≤

κ2 <∞, thus we obtain

V 2
m ≤ Φ3/2(‖s‖2 κ2)

1/2D
3/4
m

q
. (28)

Finally, from Assumption [M2], we have, using Cauchy-Schwarz inequality

H2
m =

∥

∥

∥

∥

∥

∥

∑

(j,k)∈m

ψ̄2
j,k

∥

∥

∥

∥

∥

∥

∞

≤ 1

4

∥

∥

∥

∥

∥

∥

∑

(j,k)∈m

ψ2
j,k

∥

∥

∥

∥

∥

∥

∞

≤ Φ2Dm

4
. (29)

Let yn > 0. We define

Lm =

(

(1 + ǫ)L1 + L2

√

(logDm)γ + yn

2D
1/4
m

+ L3
(logDm)γ + yn

2(log n)κ

)2

.

We apply Inequality (26) with x = ((logDm)γ + yn)/ ‖s‖1/2
2 and the evaluations (27), (28)

and (29). Recalling that 1/p ≤ 2/(
√
n(log n)κ), this leads to

P





∑

(j,k)∈m

ν̄2
A,pψ̄j,k ≥ LmDm

n



 ≤ exp

(

−(logDm)γ
√

‖s‖2

)

exp(− yn
√

‖s‖2

).

In order to give an upper bound on Hmx, we used that the support of s in included in
[0, 1], thus

1 = ‖s‖1 ≤ ‖s‖2 .

The result follows by taking yn = (log n)γ ≥ (logDm)γ .�

Claim 3. We keep the notations κ/2 > γ > 1, L2 of the proof of Claim 2. For all
m,m′ ∈ Mn we take

Lm,m′ = 4

(

L2

√

(log n)γ

(Dm ∨Dm′)1/4
+

4Φ

3(log n)κ−γ

)2

, (30)
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we have, for all η > 0,

P

(

sup
m,m′∈Mn

ν∗n(sm − sm′) − ‖sm − sm′‖2
2

2η
− η

2

Lm,m′(Dm ∨Dm′)

n
> 0

)

≤ Ls,γe
− (log n)γ

‖s‖
1/2
2

with Ls,γ = 2
∑

m,m′∈Mn
e
−

(log(Dm∨D
m′ ))

γ

‖s‖
1/2
2 .

Remark : The constant Ls,γ is finite since for all x, y > 0, (log(x ∨ y))γ ≥ ((log x)γ +
(log y)γ)/2.
As in Claim 2, when (L2/L1)

8(log n)4(2κ−γ) ≤ Dm ≤ n, we have

Lm,m′ ≤
(

1 +
23/2

3
√
κ1

)2

(log n)−2(κ−2γ)4L2
1.

Proof of Claim 3.

We keep the notations of the proof of Claim 2 and for m,m′ ∈ Mn, let tm,m′ =
(sm − sm′)/ ‖sm − sm′‖2. We use the inequality 2ab ≤ a2η−1 + b2η, which holds for all
a, b ∈ R, η > 0. This leads to

ν∗n(sm − sm′) = ‖sm − sm′‖2 ν
∗
n(tm,m′) ≤ ‖sm − sm′‖2

2

2η
+
η

2

(

ν∗n(tm,m′)
)2

=
‖sm − sm′‖2

2

2η
+
η

2

(

ν̄A,p(t̄m,m′) + ν̄B,p(t̄m,m′)
)2

≤ ‖sm − sm′‖2
2

2η
+ η(ν̄A,p(t̄m,m′))2 + η(ν̄B,p(t̄m,m′))2.

Now from Bernstein’s inequality (see Section 7), we have

∀x > 0, P



ν̄A,p(t̄m,m′) >

√

2Var(t̄m,m′(A1))x

p
+

‖t̄m,m′‖∞x
3p



 ≤ e−x. (31)

From Viennet’s and Cauchy-Schwarz inequalities, we have

Var(t̄m,m′(A1)) ≤
Pbt2m,m′

q
≤

‖tm,m′‖∞
√

Pb2Pt2m,m′

q
.

Moreover
Pb2 ≤ κ2, P t

2
m,m′ ≤ ‖tm,m′‖∞‖tm,m′‖2‖s‖2.

Since tm,m′ ∈ Sm ∪ Sm′ and ‖tm,m′‖2 = 1, we have, from Assumption [M2] ‖tm,m′‖∞ ≤
Φ
√
Dm ∨Dm′ . Let yn > 0. We apply Inequality (31) with x = [(log(Dm ∨ Dm′))γ +

yn]/ ‖s‖1/2
2 . We define

L′
m,m′

4
=

(

L2

√

(log(Dm ∨Dm′))γ + yn

2(Dm ∨Dm′)1/4
+

4Φ [(log(Dm ∨Dm′))γ + yn]

6(log n)κ

)2

,

we have

P



ν̄A,p(t̄m,m′) >

√

L′
m,m′(Dm ∨Dm′)

4n



 ≤ exp

(

−(log(Dm ∨Dm′))γ

‖s‖1/2
2

)

e−yn/‖s‖
1/2
2 .
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The result follows by taking yn = (log n)γ and using 2 ≤ Dm ≤ n.
Conclusion of the proof:
Let η > 0 and pen′(m) ≥ (L1,m + ηLm,m)Dm/n where L1,m and Lm,m are defined respec-
tively by (25) and (30). From Claims 1, 2 and 3 and (24), we obtain that, for all mo and
with probability larger than Ls,θ(log n)(θ+2)κn−θ/2

(1 − 1

η
) ‖s− s̃‖2

2 ≤ (1 +
1

η
) ‖s− smo‖2

2 + pen′(mo) + ηL(mo,mo)
Dmo

n
. (32)

Assume that Dm ≥ (L2/L1)
8(log n)4(2κ−γ), then we have from remarks 6.2 and 6.2

L1,m ≤
[

1 + ǫ+

(

1 +
2κ(ǫ)√
κ1

)

(log n)−(κ−2γ)

]2

4L2
1 and

Lm,m ≤
(

1 +
23/2

3
√
κ1

)2

(log n)−2(κ−γ)4L2
1.

Take η = (log n)κ−γ , we have (L1,mo + ηLmo,mo)Dmo/n ≤ Cpen(mo). Fix ǫ > 0 such that
[1 + ǫ]2 < K/4. Since κ > γ, for n ≥ no, we have L1,m + ηLm,m ≤ KL2

1, thus, inequality
(13) follows follows from (32) as soon as n > no. We remove the condition n > no by
improving the constant Ls in (13) if necessary.�

6.3 Proof of Theorem 4.1.

The proof follows the previous one, the main difference is that the coupling lemma (Claim
1) as well as the covariance inequalities are much harder to handle in the τ -mixing case.
This leads to more technical computations to recover the results obtained in the β-mixing
case (see Claims 2, 3 and the proof of inequality (45)). We start with the decomposition
(21). As in the previous proof, the decomposition of the risk given in Birgé & Massart [8]
or in Comte & Merlevède [13] could be used. This leads to a loss in the constant in front
of the main term in (18) without avoiding any of the main difficulties. We divide the proof
in four claims.
Claim 1 : For all l = 0, ..., p − 1, let us denote by Al = (X2lq+1, ...,X(2l+1)q) and Bl =
(X(2l+1)q+1, ...,X(2l+2)q). There exist random vectors A∗

l = (X∗
2lq+1, ...,X

∗
(2l+1)q) and B∗

l =

(X∗
(2l+1)q+1, ...,X

∗
(2l+2)q) such that for all l = 0, ..., p − 1 :

• A∗
l and Al have the same law,

• A∗
l is independent of A0, ..., Al−1, A

∗
0..., A

∗
l−1

• E(|Al −A∗
l |q) ≤ qτq

the same being true for the variables Bl.

Proof of Claim 1 :

We use the same recursive construction as Viennet [25].
Let (δj)0≤j≤p−1 be a sequence of independent random variables uniformly distributed over
[0, 1] and independent of the sequence (Aj)0≤j≤p−1. Let A∗

0 = (X∗
1 , ...,X

∗
q ) be the random

variable given by equality (4) for M = σ(Xi, i ≤ −q), A0 and δ0.
Now suppose that we have built the variables A∗

l for l < l′. From equality (4) applied to
the σ-algebra σ(Al, A

∗
l , l < l′), Al′ and δl′ , there exists a random variable A∗

l′ satisfying
the hypotheses of Claim 1.
We build in the same way the variables B∗

l for all l = 0, ..., p − 1. �
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We keep the notations ν∗n, ν̄A,p, ν̄B,p, t̄ and B1(Sm) that we introduced in the proof of The-
orem 3.1. As in the proof of Theorem 3.1, we assume that, for some κ > 2,

√
n(log n)κ/2 ≤

p ≤ √
n(log n)κ and for the sake of simplicity that pq = n/2, the modifications needed to

handle the extra term when q = [n/(2p)] being straightforward. We have

V (m̂) =
∑

(j,k)∈m̂

ν2
n(ψj,k) ≤ 2

∑

(j,k)∈m̂

(Pn − P ∗
n)2(ψj,k) + 2

∑

(j,k)∈m̂

(ν∗n)2(ψj,k) (33)

Claim 2 : There exists a constant L = LA,KL,K∞,κ,θ such that

E





∑

j,k∈m̂

((Pn − P ∗
n)(ψj,k))

2



 ≤ L
(log n)κ(θ+1)

n(θ−3)/2
. (34)

Proof of Claim 2 :

E





∑

(j,k)∈m̂

(Pn − P ∗
n)2(ψj,k)



 ≤ E



 sup
m∈Mn

∑

(j,k)∈m

(Pn − P ∗
n)2(ψj,k)





≤
∑

m∈Mn

∑

(j,k)∈m

E
(

(Pn − P ∗
n)2(ψj,k)

)

≤ 2

p2

∑

m∈Mn

p
∑

l,l′=1

(gA,m(j, k, l, l′) + gB,m(j, k, l, l′))

with

gm,A(j, k, l, l′) = E





∑

(j,k)∈m

(

ψ̄j,k(Al) − ψ̄j,k(A
∗
l )
) (

ψ̄j,k(Al′) − ψ̄j,k(A
∗
l′)
)



 .

We develop this last term and we get, since

∣

∣ψ̄j,k(x) − ψ̄j,k(y)
∣

∣ ≤
KL23j/2 |x− y|q

2q

gA,m(j, k, l, l′) ≤ E





∑

(j,k)∈m

∣

∣ψ̄j,k(Al) − ψ̄j,k(A
∗
l )
∣

∣

∣

∣ψ̄j,k(Al′) − ψ̄j,k(A
∗
l′)
∣

∣





≤ E





∑

(j,k)∈m

∣

∣ψ̄j,k(Al) − ψ̄j,k(A
∗
l )
∣

∣KL23j/2

∣

∣Al′ −A∗
l′

∣

∣

q

2q





≤ KLτq
2

sup
x,y∈Rq







∑

(j,k)∈m

23j/2
∣

∣ψ̄j,k(x) − ψ̄j,k(y)
∣

∣







≤ KLτq
4

Jm
∑

j=0

23j/2 sup
x,y∈R

{

∑

k∈Z

|ψj,k(x) − ψj,k(y)|
}

≤ 2

3
AKLK∞22Jmτq since

∥

∥

∥

∥

∥

∑

k∈Z

|ψj,k|
∥

∥

∥

∥

∥

∞

≤ AK∞2j/2
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We can do the same computations for the term gB,m(j, k, l, l′) and we obtain

E





∑

j,k∈m̂

((Pn − P ∗
n)(ψj,k))

2



 ≤ Lτq
∑

m∈Mn

22Jm ≤ Lτq2
2Jn ≤ L

(log n)κ(θ+1)

n(θ−3)/2
.

The last inequality comes from q ≥ √
n/(2(log n)κ) and Assumption [AR], the one before

comes from Assumption [W]. �

Claim 3. Let us keep the notations of Theorem 4.1, let u = 6/(7 + θ) < 1/2 and recall
that κ > 2. Let γ be a real number in (1, κ/2). Let

L2
1 = AK∞KBV

∞
∑

l=0

β̃l, L
2
2 = 2ΦKu

BV

∞
∑

k=0

β̃u
k , L3 = κ(ǫ)Φ

and L1,m = 4(1 + ǫ)

(

(1 + ǫ)L1 + L2

√

(logDm)γ

D
1/2−u
m

+ L3
(logDm)γ

(log n)κ

)2

, (35)

There exists a constant Ls such that

E



 sup
m∈Mn







∑

(j,k)∈m

(ν∗n)2(ψj,k) −
L1,mDm

n









 ≤ Ls

n
.

Remark : The series
∑∞

l=0 β̃l and
∑∞

k=0 β̃
u
k are convergent under our hypotheses on the

coefficients τ . Since s ∈ L2([0, 1]), we have from Inequality (6), β̃l ≤ 2‖s‖2/3
2 τ

1/3
l and thus

β̃l ≤ 2‖s‖2/3
2 (1 + l)−(1+θ)/3. The series

∑∞
k=0 β̃

u
k converge since θ > 5 and

u(1 + θ)

3
=

2(1 + θ)

7 + θ
= 1 +

θ − 5

θ + 7
> 1.

We use here β̃ instead of τ which allows to take L1 not depending on ‖s‖2.

Proof of Claim 3 :

As in the previous section we use the following decomposition

∑

(j,k)∈m

(ν∗n)2(ψj,k) =
∑

(j,k)∈m

(

ν̄A,p(ψ̄j,k) + ν̄B,p(ψ̄j,k)
)2

≤ 2
∑

(j,k)∈m

(

ν̄A,p(ψ̄j,k)
)2

+ 2
∑

(j,k)∈m

(

ν̄B,p(ψ̄j,k)
)2

We treat both terms with Proposition 7.4 applied to the random variables (A∗
l )0=1,..,p−1

and (B∗
l )l=0,..,p−1 and to the class of functions

{

(ψ̄j,k)(j,k)∈m

}

. Let

B2
m =

∑

(j,k)∈m

Var
(

ψ̄j,k(A1)
)

, V 2
m = sup

t∈B1(Sm)
Var(t̄(A1)), H

2
m = ‖

∑

(j,k)∈m

ψ̄2
j,k‖∞.

We have, from Proposition 7.4

∀x > 0, P





√

∑

(j,k)∈m

(ν̄A,p)2ψ̄j,k ≥ (1 + ǫ)√
p

Bm + Vm

√

2x

p
+ κ(ǫ)

Hmx

p



 ≤ e−x. (36)
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Let us now evaluate Bm, Vm and Hm, we have

B2
m =

1

(2q)2

∑

(j,k)∈m

Var

(

q
∑

i=1

ψj,k(Xi)

)

.

From (17) and (15) we have ∀j, k ‖ψj,k‖BV ≤ KBV 2j/2 and ∀j ‖∑k∈Z
|ψj,k|‖∞ ≤ AK∞2j/2.

Thus, from Inequality (5)

∑

(j,k)∈m

Var

(

q
∑

i=1

ψj,k(Xi)

)

≤ 2
∑

(j,k)∈m

q
∑

l=1

(q + 1 − l)|Cov(ψj,k(X1), ψj,k(Xl))|

≤ 2q

Jm
∑

j=0

∑

k∈Z

q
∑

l=1

‖ψj,k‖BV E (|ψj,k(X1)|b(σ(X1),Xl))

≤ 2KBV q

Jm
∑

j=0

2j/2

∥

∥

∥

∥

∥

∑

k∈Z

|ψj,k(X0)|
∥

∥

∥

∥

∥

∞

q
∑

l=1

β̃l−1

≤ 2q

(

AK∞KBV

∞
∑

l=0

β̃l

)

Dm.

The last inequality comes from Assumption [W].
Since L2

1 = AK∞KBV
∑∞

l=0 β̃l we have

B2
m ≤ L2

1Dm

2q
. (37)

Let us deal with the term V 2
m. We have

V 2
m ≤ sup

t∈B1(Sm)
Var(t̄(A1)) ≤

2

(2q)2

q
∑

k=1

(q + 1 − k) sup
t∈B1(Sm)

|Cov(t(X1), t(Xk))| (38)

From Inequality (5), we have

|Cov(t(X1), t(Xk))| ≤ ‖t‖BV ‖t‖∞ β̃k−1.

Since t belongs to B1(Sm), we have t =
∑

(j,k)∈m aj,kψj,k, with
∑

(j,k)∈m a2
j,k ≤ 1. Thus,

by Cauchy-Schwarz inequality

l
∑

i=1

|t(xi+1) − t(xi)| ≤
∑

(j,k)∈m

|aj,k|
l
∑

i=1

|ψj,k(xi+1) − ψj,k(xi)|

≤





∑

(j,k)∈m

a2
j,k





1/2



∑

(j,k)∈m

(

∑

i

|ψj,k(xi+1) − ψj,k(xi)|
)2




1/2

≤





∑

(j,k)∈m

‖ψj,k‖2
BV





1/2

≤ KBVDm.

Thus ‖t‖BV ≤ DmKBV . From Assumption [M2], we have ‖t‖∞ ≤ Φ
√
Dm. Thus

|Cov(t(X1), t(Xk))| ≤ ΦKBV β̃k−1D
3/2
m . (39)
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Moreover, we have by Cauchy-Schwarz inequality and [M2]

|Cov(t(X1), t(Xk))| ≤ ‖t‖∞ ‖t‖2 ‖s‖2 ≤ Φ ‖s‖2

√

Dm. (40)

We use the inequality a ∧ b ≤ aub1−u with

a = ΦKBV β̃k−1D
3/2
m , b = Φ ‖s‖2

√

Dm, u =
6

7 + θ
<

1

2
.

From (39) and (40), we derive that

|Cov(t(X1), t(Xk))| ≤ L′
kD

1/2+u
m where L′

k = Φ
(

KBV β̃k−1

)u
‖s‖1−u

2 .

Pluging this inequality in (38), we obtain

V 2
m ≤ L2

2 ‖s‖1−u
2 D

1/2+u
m

4q
since L2

2 = 2ΦKu
BV

∞
∑

k=0

β̃u
k . (41)

Finally, we have from hypothesis [M2]

H2
m ≤ 1

4

∥

∥

∥

∥

∥

∥

∑

(j,k)∈m

ψ2
j,k

∥

∥

∥

∥

∥

∥

∞

≤ Φ2Dm

4
. (42)

Let y > 0 and let us apply Inequality (36) with x = ((logDm)γ/ ‖s‖1−u
2 ) + (y/D

1/2+u
m ).

We have, from (37), (41) and (42)

P





∑

(j,k)∈m

(ν̄A,p)
2(ψ̄j,k) >



(1 + ǫ)

√

L2
1Dm

2pq
+
L3

√
Dm

2p

(

(logDm)γ

‖s‖1−u
2

+
y

D
1/2+u
m

)

+

√

√

√

√

L2
2‖s‖1−u

2 D
1/2+u
m

2pq

(

(logDm)γ

‖s‖1−u
2

+
y

D
1/2+u
m

)





2





≤ e

−
(log Dm)γ

‖s‖1−u
2 e−D

−(1/2+u)
m y.

Then, we use the inequality
√
α+ β ≤ √

α+
√
β with

α =
(logDm)γ

‖s‖1−u
2

and β =
y

D
1/2+u
m

and the inequality (a+ b)2 ≤ (1 + ǫ)a2 + (1 + ǫ−1)b2 with

a =

(

(1 + ǫ)L1 + L2

√

(logDm)γ

D
1/2−u
m

+
L3(logDm)γ

‖s‖1−u
2 (log n)κ

)
√

Dm

n

and b =
1√
n

(

L2

√

‖s‖1−u
2 y +

L3y

(log n)κDu
m

)

.

Setting Lm = (1 + ǫ)a2n/Dm, we obtain

P





∑

(j,k)∈m

(ν̄A,p)
2(ψ̄j,k) −

LmDm

n
>

(1 + ǫ−1)

n

(

L2

√

‖s‖1−u
2 y +

L3y

(log n)κDu
m

)2




≤ e
− (log Dm)γ

‖s‖1−u
2 e−D

−(1/2+u)
m y.
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Thus, for all y > 0,

P



 sup
m∈Mn







∑

(j,k)∈m

(ν̄A,p)
2(ψ̄j,k) −

LmDm

n







>
Ls

n
(y + y2)



 ≤
∑

m∈Mn

e
− (log Dm)γ

‖s‖1−u
2

−D
−(1/2+u)
m y

where Ls = 2(1 + ǫ−1)

[

(L2

√

‖s‖1−u
2 ) ∨ L3/((log 2)κ2u)

]2

. We can integrate this last

inequality to prove Claim 3.�

Claim 4 :We keep the notations of the previous Claims. Let

L2(m,m
′) = 4

(

L2

√

(log(Dm ∨Dm′))γ

(Dm ∨Dm′)1/2−u
+

Φ

3(log n)κ−γ

)2

. (43)

Then there exists a constant Ls,θ depending on ‖s‖2 and θ such that, for all η > 0

E

(

sup
m,m′∈Mn

{

νn(sm − sm′) − ‖sm − sm′‖2
2

2η
− η

L2(m,m
′)(Dm ∨Dm′)

n

})

≤ ηLs,θ

n
.

Proof of Claim 4 :

E

(

sup
m,m′∈Mn

{

νn(sm − sm′) − ‖sm − sm′‖2
2

2η
− η

L2(m,m
′)(Dm ∨Dm′)

n

})

≤ E

(

sup
m,m′

(Pn − P ∗
n)(sm − sm′)

)

+E

(

sup
m,m′

{

ν∗n(sm − sm′) − ‖sm − sm′‖2
2

2η
− η

L2(m,m
′)(Dm ∨Dm′)

n

})

. (44)

Since ∀l = 0, ..., p − 1, E (|Al −A∗
l |q) ≤ qτq, we have

E

(

sup
m,m′

(Pn − P ∗
n)(sm − sm′)

)

≤ 2
∑

m,m′

E (|(s̄m − s̄m′)(A1) − (s̄m − s̄m′)(A∗
1)|)

≤ τq
∑

m,m′

Lip(sm − sm′).

When m ⊂ m′, we have, for all x, y ∈ R, using Assumption [W],

|(sm − sm′)(x− y)|
|x− y| ≤

Jm′
∑

j=Jm+1

2j−A1
∑

k=−A2

|Pψj,k|
|ψj,k(x) − ψj,k(y)|

|x− y|

Let us fix j ∈ [Jm + 1, Jm′ ], from Assumption [W], there is less than A indexes k ∈ Z

such that ψj,k(x) 6= 0, thus there is less than 2A indexes such that |ψj,k(x) − ψj,k(y)| 6= 0.
Hence

∑

k∈Z

|Pψj,k|
|ψj,k(x) − ψj,k(y)|

|x− y| ≤ 2A sup
k∈Z

|Pψj,k|Lip(ψj,k)

≤ 2A ‖s‖2KL23j/2.
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Thus, Lip(sm−sm′) ≤ A ‖s‖2KL

√
823Jm′/2/(

√
8−1) and by Assumptions [W], [AR] and

the value of q,

E

(

sup
m,m′

(Pn − P ∗
n)(sm − sm′)

)

≤ Lsn
3/2(log n)τq ≤ Ls

(log n)κ(θ+1)+1

n(θ−2)/2
. (45)

Let us deal with the other term in (44). We have, ∀η > 0

ν∗n(sm − sm′) ≤ ‖sm − sm′‖2
2

2η
+
η

2

(

ν̄A,p(t̄m,m′) + ν̄B,p(t̄m,m′)
)2

≤ ‖sm − sm′‖2
2

2η
+ η(ν̄A,p(t̄m,m′))2 + η(ν̄B,p(t̄m,m′))2 (46)

where, as in the proof of Theorem 3.1, tm,m′ = (sm − sm′)/‖sm − sm′‖2. We apply
Bernstein’s inequality to the function t̄m,m′ and the variables A∗

l , we have

∀x > 0, P



ν̄A,p(t̄m,m′) >

√

2Var(t̄m,m′(A0))x

p
+

‖t̄m,m′‖∞x
3p



 ≤ e−x. (47)

We proceed as in the proof of Claim 3 to control this variance. We have, by stationarity
of the process (Xn)n∈Z,

Var(t̄m,m′(A0)) =
1

2q2

q−1
∑

k=0

(q − k)Cov(tm,m′(X1), tm,m′(Xk+1)).

From Inequality (5), we have

∣

∣Cov(tm,m′(X1), tm,m′(Xk+1))
∣

∣ ≤
∥

∥tm,m′

∥

∥

BV

∥

∥tm,m′

∥

∥

∞
β̃k.

Let m△m′ be the set of indexes that belong to m∪m′ but do not belong to m∩m′. We
use the same computations as in the proof of Claim 3 to get

∥

∥tm,m′

∥

∥

BV
≤

∥

∥

∥

∑

(j,k)∈m′△m(Pψj,k)ψj,k

∥

∥

∥

BV

‖sm − sm′‖2

≤
√

∑

(j,k)∈m′△m

‖ψj,k‖2
BV ≤ KBV (Dm ∨Dm′).

Since
∥

∥tm,m′

∥

∥

∞
= Φ

√
Dm ∨Dm′ , we have

∣

∣Cov(tm,m′(X1), tm,m′(Xk+1))
∣

∣ ≤ ΦKBV β̃k(Dm ∨Dm′)3/2. (48)

Moreover, we have

Cov(tm,m′(X1), tm,m′(Xk+1)) ≤
∥

∥tm,m′

∥

∥

∞

∥

∥tm,m′

∥

∥

2
‖s‖2 ≤ Φ ‖s‖2

√

(Dm ∨D′
m). (49)

Thus, using a ∧ b ≤ aub1−u with

a = ΦKBV β̃k(Dm ∨Dm′)3/2, b = Φ ‖s‖2

√

(Dm ∨Dm′), and u =
6

7 + θ
<

1

2
,

we have

∣

∣Cov(tm,m′(X1), tm,m′(Xk+1))
∣

∣ ≤ ΦKu
BV β̃

u
k ‖s‖1−u

2 (Dm ∨Dm′)1/2+u.
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Thus

Var(t̄m,m′(A0)) ≤ ΦKu
BV

(

∞
∑

k=0

β̃u
k

)

‖s‖1−u
2

(Dm ∨Dm′)1/2+u

2q
. (50)

Moreover

‖t̄m,m′‖∞ ≤ 1

2
‖tm,m′‖∞ ≤ 1

2
Φ
√

Dm ∨D′
m. (51)

Now, we use (47) with x = (log(Dm ∨Dm′))γ/ ‖s‖1−u
2 + y/(Dm ∨ Dm′)1/2+u. From (50)

and (51), we have for all y > 0,

P



ν̄A,p(t̄m,m′) > L2

√

√

√

√

(Dm ∨Dm′)1/2+u

2pq

(

(log(Dm ∨Dm′))γ +
‖s‖1−u

2 y

(Dm ∨Dm′)1/2+u

)

+
Φ
√

Dm ∨D′
m

6p

(

(log(Dm ∨Dm′))γ

‖s‖1−u
2

+
y

(Dm ∨Dm′)1/2+u

))

≤ e
−

(log(Dm∨D
m′ ))

γ

‖s‖1−u
2 e

− y

(Dm∨D
m′ )

1/2+u
.

Now we use the inequality
√
a+ b ≤ √

a+
√
b with

a = (log(Dm ∨Dm′))γ and b =
‖s‖1−u

2 y

(Dm ∨Dm′)1/2+u

and we obtain, using Assumption [M1]

P

(

ν̄A,pt̄m,m′ −
√

L2(m,m′)(Dm ∨D′
m)

n
>

Ls√
n

(
√
y + y)

)

≤ e
−

(log(Dm∨D
m′ ))

γ

‖s‖1−u
2 e−(Dm∨Dm′ )−(1/2+u)y,

with

L2(m,m
′) =

(

L2

√

(log(Dm ∨Dm′))γ

(Dm ∨Dm′)1/2−u
+

Φ(log(Dm ∨Dm′))γ

3(log n)κ

)2

,

and Ls = L2

√

‖s‖1−u
2 ∨ Φ

3(log 2)κ2u
.

Thus, we obain

P

(

(ν̄A,pt̄m,m′)2 > 2
L2(m,m

′)(Dm ∨D′
m)

n
+ 4

L2
s

n
(y + y2)

)

≤ e
−

(log(Dm∨Dm′ ))
γ

‖s‖
1−u
2

− y

(Dm∨Dm′ )
1/2+u

.

The same result holds for ν̄B,pt̄m,m′ . Thus we obtain from (46)

P

(

ν∗n(sm − sm′) ≥ ‖sm − sm′‖2
2

2η
+ 4η

L2(m,m
′)(Dm ∨D′

m)

n
+ 8η

L2
s

n
(y + y2)

)

≤ 2e
−

(log(Dm∨D
m′ ))

γ

‖s‖1−u
2

− y

(Dm∨D
m′ )

1/2+u
.
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We deduce that

P

(

∃m,m′ ∈ Mn, ν
∗
n(sm − sm′) − ‖sm − sm′‖2

2

2η
− 4η

L2(m,m
′)(Dm ∨D′

m)

n

≥ 8η
L2

s

n
(y + y2)

)

≤ 2
∑

m,m′∈Mn

(

e
−

(log(Dm∨D
m′ ))

γ

‖s‖1−u
2

)

e
− y

(Dm∨D
m′ )

1/2+u
.

We integrate this last inequality to get Claim 4.�

Conclusion of the proof:
Take

pen′(m) ≥ (2L1,m + ηL2(m,m))
Dm

n
,

where L1,m and L2(m,m) are defined by (35) and (43) respectively. From Claims 2, 3 and
4, if we take the expectation in (21), we have, for some constant Ls,

E

(

‖s− s̃‖2
2

)

≤ E

(

‖s− ŝmo‖2
2 + pen′(mo) − V (mo) + 2ηL2(mo,mo)

Dmo

n

)

+
ηLs

n
. (52)

Moreover, if Dm ≥
(

(L2/L1)(log n)κ−γ/2
)2(7+θ)/(θ−5)

, we have

L1,m

4L2
1

≤ (1 + ǫ)

(

(1 + ǫ) +

(

1 +
L3

2L1

)

(log n)−(κ−γ)

)2

≤ (1 + ǫ)3 + (1 + ǫ−1)(1 + ǫ)

(

1 +
L3

2L1

)2

(log n)−2(κ−γ). (53)

We use the inequality (a+ b)2 ≤ (1 + ǫ)a2 + (1 + ǫ−1)b2 to obtain (53). Moreover, we have

L2(m,m) ≤ 4L2
1

((

1 +
Φ

6L1

)

(log n)−(κ−γ)

)2

.

As in the proof of Theorem 3.1, we take η = (log n)κ−γ and we fix ǫ sufficiently small. For
n ≥ no, we have 2L1,m + ηL2(m,m) < KL2

1. Thus inequality (18) follows from (52).�

7 Appendix

This section is devoted to technical lemmas that are needed in the proofs.

7.1 Covariance inequality

Lemma 7.1 Viennet’s inequality Let (Xn)n∈Z be a stationary and β-mixing process. There
exists a positive function b such that P (b) ≤ ∑∞

l=0 βl, P (bp) ≤ p
∑∞

l=1 l
p−1βl, and for all

function h ∈ L2(P )

Var

(

q
∑

l=1

h(Xl)

)

≤ 4qP (bh2). (54)
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7.2 Concentration inequalities

We sum up in this section the concentration inequalities we used in the proofs. We begin
with Bernstein’s inequality

Proposition 7.2 Bernstein’s inequality
Let X1, ...,Xn be iid random variables valued in a measurable space (X,X ) and let t be a
measurable real valued function. Let v = Var(t(X1)) and b = ‖t‖∞, then, for all x > 0,
we have

P

(

(Pn − P )t > v

√

2x

n
+
bx

3n

)

≤ e−x.

Now we give the most important tool of our proof, it is a concentration’s inequality for
the supremum of the empirical process over a class of function. We give here the version
of Bousquet [10].

Theorem 7.3 Talagrand’s Theorem
Let X1, ...,Xn be i.i.d random variables valued in some measurable space [X,X ]. Let F be
a separable class of bounded functions from X to R and assume that all functions t in F
are P -measurable, and satisfy Var(t(X1)) ≤ σ2, ‖t‖∞ ≤ b. Then

P

(

sup
t∈F

νn(t) > E

(

sup
t∈F

νn(t)

)

+

√

2x (σ2 + 2bE (supt∈F νn(t)))

n
+
bx

3n

)

≤ e−x.

In particular, for all ǫ > 0, if κ(ǫ) = 1/3 + ǫ−1, we have

P

(

sup
t∈F

νn(t) > (1 + ǫ)E

(

sup
t∈F

νn(t)

)

+ σ

√

2x

n
+ κ(ǫ)

bx

n

)

≤ e−x.

We can deduce from this Theorem a concentration’s inequality for χ-square type statistics.
This is Proposition (7.3) of Massart [20].

Proposition 7.4 Let X1, ...,Xn be independent and identically distributed random vari-
ables valued in some measurable space (X,X ). Let P denote their common distribution.
Let φλ be a finite family of measurable and bounded functions on (X,X ). Let

H2
Λ = ‖

∑

λ∈Λ

φ2
λ‖∞ and B2

Λ =
∑

λ∈Λ

Var(φλ(X1)).

Moreover, let SΛ =
{

a ∈ R
Λ :
∑

λ∈Λ a
2
λ = 1

}

and

V 2
Λ = sup

a∈SΛ

{

Var

(

∑

λ∈Λ

aλφλ(X1)

)}

.

Then the following inequality holds, for all positive x and ǫ

P





(

∑

λ∈Λ

(Pn − P )2φλ

)1/2

≥ 1 + ǫ√
n
BΛ + VΛ

√

2x

n
+ κ(ǫ)

HΛx

n



 ≤ e−x, (55)

where κ(ǫ) = ǫ−1 + 1/3.
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Proof :

Following Massart [20] Proposition 7.3, we remark that, by Cauchy-Schwarz’s inequal-
ity

(

∑

λ∈Λ

ν2
nφλ

)1/2

= sup
a∈SΛ

∑

λ∈Λ

aλνnφλ = sup
a∈SΛ

νn

(

∑

λ∈Λ

aλφλ

)

.

Thus the result follows by applying Talagrand’s Theorem to the class of functions

F =

{

t =
∑

λ∈Λ

aλφλ; a ∈ SΛ

}

.
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