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Abstract. The main contribution of this paper is the definition of multi-
label simple points that ensures that the partition topology remains in-
variant during a deformable partition process. The definition is based
on simple intervoxel properties and is easy to implement. A deformation
process is carried out with a greedy energy minimization algorithm. A
discrete area estimator is used to approach at best standard regularizers
classically used in continuous energy minimizing methods. The effective-
ness of our approach is shown on several 3D image segmentations.
Key words: Simple Point, Deformable Model, Multi-Label Image

1 Introduction

Segmentation is a crucial step in any image analysis process. Over the past
twenty years, energy-minimizing techniques have shown a great potential for
segmentation. They combine in a single framework two terms, one expressing
the fit to data, the other describing shape priors and acting as a regularizer.
Furthermore, as noted by many authors, the parameter balancing the two terms
acts as a scale factor, providing a very natural multiscale analysis of images. De-
formable models [14], Mumford-Shah approximation [19], geometric or geodesic
active contours and other levelset variants [5, 18, 6, 24], are classical variational
formulation (i.e. continuous) of such techniques. Our objective is to propose a
novel energy-minimizing model for segmenting 3D images into regions, a kind of
deformable digital partition with the following specific features.

(i) It is a purely digital formulation of energy minimization, which can be solved
by combinatorial algorithms. We use a simple greedy algorithm.

(ii) The standard area regularizer is mimicked in this digital setting by a discrete
geometric estimator.
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(iii) It encodes both region structures and the geometry of their interfaces. It may
thus incorporate any kind of fit to data energy, region-based like quadratic
deviation [19, 7] or contour-based like strong gradients [14].

(iv) We propose a new method in order to guarantee that the topology of the
whole partition is preserved during the deformation process.

Point (i) is interesting from a fundamental point of view. Continuous varia-
tional problems induce partial differential equations which are solved iteratively.
They are most often bound to get stuck in local minimas, except in specific
cases [9, 7, 1]. To our knowledge, none of them are able to find the optimal image
partition if more than two regions are expected. In discrete settings, the opti-
mal solution to the two label partitioning is computable [11]. For more regions,
optimization algorithms can guarantee to be no further away than two times
the optimal value [4], and scale-sets within pyramids present solutions that are
experimentally very close to the optimal solution [12, 21]. However, the regular-
ization/shape prior term of these discrete methods is most often reduced to the
number of surfels of the region boundaries, a very poor area estimator.

Point (ii) addresses this problem. We indeed propose an original regulariza-
tion term which uses a discrete geometric estimator for computing the area of
each surfel. Its principle is to extract maximal digital straight segments to esti-
mate the surfel normal, area being a byproduct [17]. We get therefore a digital
equivalent of continuous active surfaces minimizing their area, which is also an
3D extension of discrete deformable boundaries [16].

Point (iii) is important to get a versatile segmentation tool. According to the
image characteristics, it is well known that contour or region based approaches
are more or less adapted. From a minimization point of view, region-based en-
ergies are generally more “convex”, thus easier to optimize [7, 24]. Our partition
model allows to mix energies defined on regions and energies defined on bound-
aries. To our knowledge, very few explicit or implicit variational or deformable
models can do that in 3D, except perhaps the work of Pons and Boissonnat [20],
but they may not model energies depending on the inclusion between regions.

In this paper we focus on the last point which is mandatory for such de-
formable model. Point (iv) is important in several specific image applications
where the topology of anatomic components is a prior information, like atlas
matching. This is even truer in 3D images, where anatomic components are in-
tertwined in a deterministic way. Preserving the topology of a two label partition
in a discrete setting is generally done by computing and locating simple points [3].
Similar tools are used in level set techniques to control topology changes [13, 22].
For a multi-label partition, a few authors have proposed an equivalent to simple
points in a discrete setting [23, 2]. However, they are computationally too costly
to be used to drive the evolution of a digital partition. We propose a new defi-
nition of simple points in multi-label partitions, that we call ML-Simple points

(ML for Multi-Label). ML-Simpleness is stronger than simpleness, therefore de-
forming ML-Simple points preserves the partition topology. ML-Simpleness is
easy to decide thanks to our intervoxel encoding. ML-Simpleness is sometimes



a bit too restrictive and may forbid valid evolution. But our experiments show
that it was not a problem in our context.

The paper is organized as follows. Section 2 recalls standard notions of dig-
ital geometry used later on. Section 3 presents the definition of ML-simpleness
and proves that it implies simpleness. The ML-simpleness test derives from its
definition. Section 4 describes a preliminary digital deformable partition model
that uses ML-Simple points to ensure that the topology is preserved and Sect. 5
shows some first experiments.

2 Preliminaries Notions

A voxel is an element of the discrete space Z
3. In the following, the symbol I

designates a 3D image, which is a couple (Id, If ), where Id is a set of voxels (the
image domain) and If is a map from Id to a set of colors or to a set of grey
levels (the image values). Each voxel v is associated with a label l(v), a value in
a given finite set L.

We use the classical notion of α-adjacency, with α ∈ {6, 18, 26}. N∗

α(v) is the
set of voxels α-adjacent to v, and Nα(v) = N∗

α(v)∪{v}. An α-path between two
voxels v1 and v2 is a sequence of voxels from v1 to v2 such that each pair of
consecutive voxels is α-adjacent. A set of voxels C is α-connected iff there is an
α-path between any pair of voxels of C, with all its voxels in C.

The relation induced by being 6-connected and having the same label is
an equivalence relation over the image domain. The equivalence classes are the
regions of the image. We consider an infinite region r0 that surrounds the image
(i.e. r0 = Z

3 \ Id). The complement set of a region X in Id is denoted by X̄.
In order to describe the boundaries of the regions within an image, we use

the classical notion of intervoxel [15]. In the intervoxel framework, the discrete
space is considered as a subdivision of the space in unit elements: voxels are unit
cubes, surfels are unit squares between voxels, linels are unit segments between
surfels, and pointels are the points between linels.

For a voxel v, we denote by surfels(v) the set of six surfels between v and
all its 6-neighbors. For a surfel s, we denote by linels(s) the set of four linels
between s and its adjacent surfels, and for a linel l we denote by pointels(l) the
set of two pointels between l and its adjacent linels. We use also the notation
linels(v) to denote the set of twelve linels around v. We say that a pointel p and
a linel l (resp. a linel l and a surfel s, a surfel s and a voxel v) are incident if
p ∈ pointels(l) (resp. l ∈ linels(s), s ∈ surfels(v)).

We denote by SF the set of boundary surfels of Id, i.e. SF = {surfel s|s
separates two voxels with different labels}. Note that all the surfels incident to a
voxel of the infinite region belong to SF since the label of the infinite region is by
convention distinct from any other label. Given a voxel v, sf(v) = surfels(v)∩SF

is the set of boundary surfels incident to the voxel v.
The degree of a linel d(l) is the number of boundary surfels incident to l.

Note that d(l) is 0, 2, 3 or 4, but never 1. We denote by d(l, v) the degree of l

restricted to boundary surfels incident to v (sf(v)).



We recall now notations and definition from [3]. The set of α-connected com-
ponents of a set of voxels X is called Cα(X). The geodesic neighborhood of v in X

of order k is the set Nk
α(v, X) defined recursively by: N1

α(v, X) = N∗

α(v, X)∩X,
and Nk

α(v, X) =
⋃

{Nα(Y ) ∩ N∗

26
(v) ∩ X, Y ∈ Nk−1

α (v, X)}.
In other words, Nk

α(v, X) is the set of voxels x belonging to N∗

26
(v)∩X such

that it exists an α-path π from v to x of length at most k, all the voxels of π

belonging to N∗

26
(v) ∩ X.

In this paper, we use only the couple of neighborhood (6, 18) (6 for object and
18 for background). In this framework, we obtain the 6-geodesic neighborhood
G6(x, X) = N3

6
(x, X) and the 18-geodesic neighborhood G18(x, X) = N2

18
(x, X).

From these notations, Bertrand [3] defines the notion of simple points in a
(6, 18)-connectivity as given in Definition 1.

Definition 1 (Simple points [3]).
A voxel v is simple for a set X if #C6 [G6(v, X)] = #C18

[

G18(v, X̄)
]

= 1,
where #Ck[Y ] denotes the number of k-connected components of a set Y .

3 Multi-Label Simple Points

Our goal is to modify an image partition by preserving the topology of described
objects. Given a voxel v in some region R, we want to remove v from R by
modifying the label of v. The simple point definition is the main tool to control
topology change. However, (1) we deal with multi-label images and not binary
images; (2) we want to preserve the topology of regions but also the relations
between surfaces (surface inclusion or intersection).

For these two reasons, we cannot directly use simple points. To our knowl-
edge, there is no variant of simple points that follows these two constraints.
Thus, we propose a new variant of simple point in multi-label images. Our main
idea is to preserve the linels incident to the considered voxel in order to avoid
removal or creation of surface intersections.

3.1 Definition of Multi-Label Simple Points

Definition 2 gives the definition of multi-label simple points (called ML-Simple

points) which are points preserving both the topology of regions and the surface
relations:

Definition 2 (ML-Simple points). A voxel v is ML-Simple if:

1. ∀l ∈ linels(v), d(l) ∈ {0, 2};
2. The body of sf(v) is homeomorphic to a 2-disk;

3. ∀l ∈ linels(v), d(l, v) = 0 ⇒ d(l) = 0.

Intuitively, the three conditions of Definition 2 allow:

1. to avoid cases of several regions around voxel v: this condition avoids d(l) > 2
which is the case when more than 2 regions touch linel l.



2. to preserve the topology of the surface: if the set of surfels incident to v and
separating two voxels with different labels is not homeomorphic to a disk,
the removal of voxel v from its region induces a topological modification on
the surface (cases A, D, H and J in Fig. 1);

3. to preserve the relations between surfaces: if a linel l is such that d(l, v) = 0
and d(l) > 0, the removal of voxel v from its region forces the surface to
touch another surface. This creates a new contact between two surfaces that
were previously not adjacent (in Fig. 1, linels such that d(l, v) = 0 are drawn
in bold; for these linels, d(l) must be equal to 0).

Figure 1 displays the possible cases depending on the number of surfels of
sf(v) (from 0 to 6) for configurations satisfying condition (1). All other cases
may be obtained from these cases by rotations and symmetries. In Fig. 1, cases
A, D, H and J show non ML-Simple points since condition (2) is violated. In
case A, sf(v) is empty and thus is not homeomorphic to a disk; in case D, sf(v)
is composed of two distinct components; in case H, sf(v) is homeomorphic to
an annulus, and in case J , sf(v) is homeomorphic to a sphere. Note that case I

displays an ML-Simple point because there is no linel such that d(l, v) = 0 thus
condition (3) holds. For all other cases, points are ML-Simple if d(l) = 0 for each
bold linel l.

A B C D E

F G H I J

Fig. 1: All the possible cases depending on the number of surfels of sf(v) (drawn in dark)
incident to the considered voxel. All the configurations can be obtained from these 10
cases by rotation and symmetries. (A) Case of inner voxel with 0 boundary surfel. (B) 1
surfel. (C) and (D) 2 surfels. (E) and (F) 3 surfels. (G) and (H) 4 surfels. (I) 5 surfels.
(J) Case of isolated voxel with 6 surfels. Bold linels are those with d(l, v) = 0. Plain
frames highlight non ML-Simple point configurations. The dashed frame highlights the
case where the voxel is always ML-Simple.



3.2 Multi-Label Simple Points are Simple Points

To prove that the topology of regions is preserved when removing a ML-Simple
point, we show that ML-Simple points are simple points. Therefore, we prove
that ML-Simple points occur only in binary neighborhood, which is required
to prove that ML-Simple points are simple points since simple points are only
defined for binary images.

Lemma 3. Let v be an ML-Simple point, the number of distinct labels in N18(v)
is two.

Idea of the proof. The principle of the proof is to study the neighboorhod of v,
and to show that all the voxels in N18(v) have either the same label as v, or have
all the same label w, with w 6= l(v). This is proved by contradiction, assuming
this is not the case and then showing that each possible configuration contradicts
one condition of Definition 2. ⊓⊔

Note that v is an ML-Simple point does not imply that the number of distinct
labels in N26(v) is two. However, Lemma 3 ensures that for each ML-Simple point
v, removing v from its region R can be done in a unique way by setting l(v) = w

with w the second label of N18(v). We naturally call this operation a swap, and
denote it by swap(v), since swap(swap(v)) is the identity.

Now we show that the topologies of both the region R containing v and its
complementary R̄ are preserved by proving Proposition 4 which links ML-Simple
points to simple points.

Proposition 4. If v ∈ R is an ML-Simple point, then v is a simple point for

R.

Proof. We prove the contrapositive of Proposition 4, i.e. if v is not a simple
point for R, then v is not an ML-Simple point. Let n1 = #C6 [G6(v, R)] and
n2 = #C18

[

G18(v, R̄)
]

. Voxel x is not simple in the four following cases: (1)
n1 = 0, (2) n2 = 0, (3) n1 ≥ 2, (4) n2 ≥ 2. We prove that, in each case, voxel v

is not an ML-Simple point.

1. n1 = 0. There is no 6-connected component of voxels belonging to R in
G6(v, R): v is an isolated point. In this case, sf(v) contains all the surfels
incident to v, and thus is homeomorphic to a sphere (case J in Fig. 1) which
contradicts condition (2) of Definition 2.

2. n2 = 0. There is no 18-connected component of voxels belonging to R̄ in
G18(v, R̄): v is inside the region (i.e. all 18-neighbor voxels have the same
label than v, case A in Fig. 1). In this case, sf(v) is empty, which also
contradicts condition (2).

3. n1 ≥ 2: there are at least two 6-connected components of voxels belonging to
R in G6(v, R). If there are two 18-adjacent voxels v1 and v2 in two different
connected components, then the voxel v3 6= v 6-adjacent to v1 and to v2

belongs to R̄ (otherwise there is only one connected component) and thus
the linel l incident to v, v1 and v2 is such that d(l, v) = 0 (because the two



voxels v1 and v2 belong to R thus there is no surfel between these voxels
and v) and d(l) = 2 (there are two surfels, one between v3 and v1 and one
between v3 and v2), which contradicts condition (3) of Definition 2.
If there is no two voxels v1 and v2 in two different connected components
and which are 18-adjacent too, the connected components are separated by
v (case H in Fig. 1). In this case, sf(v) is not homeomorphic to a disk (it is
a annulus), which contradicts condition (2).

4. n2 ≥ 2: there are at least two 18-connected components of voxels belonging
to R̄ in G18(v, R̄). If there are two voxels v1, v2 ∈ N6(v) in two different
connected components, then v1 and v2 are not 18-adjacent (otherwise there
is only one connected component). Hence the two surfels of sf(v) between
v1 and v and between v2 and v are not adjacent (case D in Fig. 1). Thus,
sf(v) is not homeomorphic to a disk, which contradicts condition (2) of
Definition 2.
If there is no two voxels of N6(v) in two different connected components,
it means that one of them (say v1) belongs to N18(v) \ N6(v). The two 6-
neighbors of v1 in N6(v) belong to R (otherwise we are in the case of the
previous paragraph). Hence the linel l incident to v1 and v is such that
d(l, v) = 0 (because the two 6-neighbors of v1 in N6(x) belong to R thus
there is no surfel between these surfels and v). But there are two surfels
between v1 and its two 6-neighbors in N6(v) and d(l) = 2. This contradicts
condition (3). ⊓⊔

Now we prove that the topology of the image is preserved (i.e. the topology
of each region of the image is preserved and the surface relations are preserved).
This proof is necessary since we deal with multiple regions and Proposition 4
proves only that the topology is preserved for binary cases.

Proposition 5. If v is an ML-Simple point, the topology of the image partition

is unchanged by swapping v.

Idea of the proof. The proof is made in two steps. First, we show that the topol-
ogy of each region is preserved by using the link with simple points (Proposi-
tion 4). Second, we prove that the topology of surfaces is preserved (inclusion
and adjacency between surfaces). With these two facts, we can prove that for
each region, its Betti numbers1 are preserved. ⊓⊔

3.3 Detection of Multi-Label Simple Points

To efficiently retrieve intervoxel information, we use an intervoxel matrix to
encode the borders of the regions in the 3D image. This matrix stores the state
(on or off) of each intervoxel cell, determined by the three following rules:

– a surfel s is on iff s ∈ SF (i.e. s is between 2 voxels with different labels);

1 In 3D, the first 3 Betti numbers count the number of connected components, the
number of tunnels and the number of cavities.



Algorithm 1: Detection of ML-Simple points

Data: The intervoxel matrix;
A voxel v.

Result: true iff v is an ML-Simple point.
foreach l ∈ linels(v) do

if l is on then return false;
if both surfels incident to l and v are off then

if at least one surfel incident to l and not to v is on then
return false;

if configuration of surfels is A, D, H, J then return false;
return true;

– a linel l is on iff l is incident to > 2 on surfels;
– a pointel p is on iff p is incident to 1 or > 2 on linels.

Using this intervoxel matrix, Algo. 1 determines if voxel v is ML-Simple. We
prove that our algorithm returns true iff v is an ML-Simple point.

Proof. For each linel l incident to v, l is on implies d(l) > 2 which contradicts
condition (1) of Definition 2: the algorithm returns false. The second test, if
both surfels incident to l and v are off, corresponds to case d(l, v) = 0. In
this case, if at least one surfel incident to l and not to v is on, we have d(l) > 0
which contradicts condition (1): the algorithm returns false. The last test verifies
condition (2). We test if sf(v) is homeomorphic to a disk by testing all the cases
where this condition is not satisfied (cases A, D, H, J in Fig. 1) and returns
false in such a case. After all these tests, the three conditions of Definition 2 are
satisfied, thus v is ML-Simple. The algorithm returns true accordingly. ⊓⊔

The complexity of Algo. 1 is O(1). There are 12 linels in linels(v), and each
test (if a cell is on or off) is an atomic operation. Checking if the configuration
is A, D, H or J is easily achieved in constant time for each case, just by probing
some particular surfels.

4 Deformable Model Process

We define a digital deformable partition model, whose geometry is encoded with
an intervoxel matrix. The elementary deformations are swaps of ML-Simple vox-
els. Proposition 5 ensures the preservation of the topology of the partition. The
deformation is governed by an energy-minimizing process. The energy used here
is a preliminary and simple version allowing to show the feasibility of a de-
formable partition model based on ML-Simple voxels swaps. The energy of a
partition is the sum of the energies of each digital surface S between pairs of
regions (r1, r2). The total energy for S is defined as E(S) = ωrEr(S)+ωsEs(S),
where Er and Es are respectively the region and surface energies. Parameters



ωr and ωs are the weights defining the relative significance of the corresponding
terms.

Energy Er is an energy describing the quality of the fit of regions to image
data: Er(S) = MSE(r1)+MSE(r2) where MSE(x) is the Mean Squared Error

of region x. Er(S) decreases when the region becomes more homogeneous.
Energy Es is based on a discrete area estimator proposed in [17]. The area

estimation is not the same whether it is computed on one side or the other of the
surface. Thus, the energy of S is defined as Es(S) =

∑

s∈S arear1
(s) + arear2

(s)
where arear1

(s) and arear2
(s) are the area estimators for a surfel s considering

respectively the side of region r1 and the side of region r2. Es decreases when
the surface becomes smoother.

The principle of the deformation process of one surface S is the following.
The initial energy is computed. For each surfel s of S, the process tries two
swaps, one for each voxel incident to s: v1 and v2. If this voxel is an ML-Simple
point we temporary swap it and compute the energy associated to the move.
The move of minimum energy is selected. If its energy is lower than the initial
energy, we apply the deformation and set the new initial energy. In the case of
an energy minimization process, the deformation algorithm is executed on every
border faces represented in the intervoxel matrix. The process iterates until no
deformations occur (i.e. a local minimum energy is reached). Since we process
surfels, and since a swap is made if and only if the global energy strictly decreases,
deformations will stop at some point whatever the input configuration.

5 Experiments

In this section we present three experiments on the deformation process and the
energies used in the paper.

(a) (b) (c)

Fig. 2: (a) A noisy discrete plane surface. (b) Minimization of the number of surfels.
(c) Minimization of the area based on the discrete estimator.

The first experiment highlights the interest of the discrete area estimator for
regularization. We experiment a deformation process on a noisy plane surface



in order to retrieve the optimal discrete plane. Two energies are compared: one
using the number of surfels and one using the discrete area estimator. Figure 2a
shows the noisy discrete area (|S| = 240, Es(S) = 338.0) corresponding to an
inclined plane: the optimal result is (|S| = 180, Es(S) = 259.4). Figure 2b is the
result of the energy minimization process using the energy based on the number
of surfels (|S| = 190, Es(S) = 266.0). Figure 2c shows the result of the en-
ergy minimization process using the energy based on the discrete area estimator
(|S| = 192, Es(S) = 262.2). The discrete area estimator gives a better visual and
estimated area than the energy based on the number of surfels. Remark that, in
both cases, a local minimum is reached.

The second experiment shows a segmentation of a 3D medical image with a
poor initialization, in a way similar to continuous deformable partition models
[24]. Starting with a topologically correct segmentation of the image, the defor-
mation process is used to retrieve shapes in the image while keeping topological
information. The algorithm is applied on a simulated MRI brain image obtained
from [8]. According to a-priori knowledge the image is composed of a sphere with
two surrounding shells. Figure 3a shows a slice of the original image, the initial
partition on the same slice is presented Fig. 3b and the resulting segmentation is
shown in Fig. 3c). The algorithm ensures that the topology of the last segmen-
tation is the same as the topology of the image partitionned by three surfaces.
The resulting partition is not satisfactory due to the expression of the energies
which needs to be adressed in future works.

(a) (b) (c)

Fig. 3: (a) Slice of a simulated MRI brain image. (b) Initial partition with three over-
lapping spheres. (c) Resulting segmentation after deformation.

The last experiment consists in optimizing an initial segmentation containing
several regions in order to enhance the result. The first partition, produced by
a split and merge algorithm, contains block shaped regions. The deformation
slightly modifies surfaces of the image to get a better partition according to
the criterion. Figure 4a and Fig. 4b present a slice of the partition before and
after the deformation processes. Borders of regions match more accurately image
data. Figure 4c and Fig. 4d present the surface of the central dark region region
before and after the deformation processes.



(a) (b) (c) (d)

Fig. 4: (a) Slice of the initial segmentation. (b) Same slice after deformation. (c) Surface
of the stripped region. (d) Same surface after deformation.

6 Conclusion

The main contributions of this work are: (i) The definition of ML-Simple points:
a voxel is ML-Simple if its removal preserves the topology of the partition. The
ML-Simple test algorithm is local, short and easy to implement. (ii) Our method
is generic: regions and surfaces information can be mixed to define energies
specialized for various applications. (iii) Our work deals with arbitrary multi-
label image partitions: we can deform any number of surfaces while preserving
their topology. The overall computational complexity depends on the number of
surfels of the partition, not on its topological complexity. These interests have
been illustrated in several preliminaries experiments. We may either deform an
initial set of arbitrary surfaces like the example of three included spheres that
fit a brain image, or smooth an initial partition obtained from a preliminary
segmentation.

In future works, we plan to extend the notion of ML-Simple point to allow
deformation of surface intersections. Currently, if there is an intersection be-
tween two surfaces, we leave unchanged both the topology and the geometry
of this intersection since linels are preserved. We think that the definition can
be extended to preserve the topology while allowing intersections to be moved.
Another prospect is to improve the energies used in the deformable model to
have a better fit with the image data. The discrete area estimator could also be
improved, first by making it linear-time in the same way as the 2D case, sec-
ondly by making it dynamic to avoid global recomputation. This would allow the
processing of big 3D images. Another research track is to find an area estimator
with less local minima, in a way similar to [10] in 2D.
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