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Coordination and Trajectory Tracking of Multiple
Agent Systems

R.Lozano, M.W. Spong, J. A. Guerrero, N. Chopra

Abstract— In this work we analize the controllability and
observability properties of several interconnection configu-
rations such as the chain topology and ring topology as well
as combinations of these two topologies. A leader/follower
control strategy is proposed to control the center of mass of
the multiple agent system. It is shown that the trajectory
tracking for a multiagent system converges to the constant
input reference given only to the leader. Also, it is shown
that choosing an appropiated gain, the agents achieve con-
sensus for time varying input reference.

Keywords— Multi-agent coordination, Trajectory tracking,
Formation Control, Controllability, Observability.

I. INTRODUCTION

Multiple agent coordination as well as multiple space-
craft flying in formation has been intensively investigated
during the last decade. Coordination control of multiple
aerial, ground or underwater vehicles has important appli-
cations. They include the transport of heavy or large loads,
search and rescue operations, surveillance, space or ocean
exploration, etc.

Different approaches have been proposed in the literature
for coordinating multiple robot systems. There are mainly
three approaches: Leader/Follower, Virtual Structure and
Behavioral Control.

In the leader/follower architecture, one agent is desig-
nated as leader while the others are designated as followers
which should track the leader. Leader /follower approaches
are described in: [1], [2]. The virtual structure approach
considers every agent as an element of a larger structure
[3] and [4]. Finally the behavioral control in [5] and [6] is
based on the decomposition of the main control goal into
tasks or behaviors. This approach also deals with collision
avoidence, flock centering, obstacle avoidance and barycen-
ter.

Consensus algorithms allow the coordination of veloci-
ties and/or positions of multiple agents. They have been
the object of extensive analysis and developement [4], [7],
[8] and[9]. Trajectory tracking of flocks has been recently
studied in [10] and [11].

A natural way to analyze the relationship and commu-
nication between agents is using directed or undirected
graphs. Every node in a graph is considered as an agent
which can have information exchange with all or serveral
agents. In [4], [8], [9], and [12], the authors use algebraic
graph theory in order to model the information exchange
between vehicles. By using this technique several control
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strategies have been developed. In [12] a coordination con-
trol is proposed which is composed of a velocity consensus
term and a gradient based term. The gradient term helps
the cohesion of the group while the velocity consensus term
synchronizes the velocities of the agents. An extension of
this approach to include navigational feedback has been
also presented in [12]. The navigational term is used to
change the orientation of the group or to move the for-
mation to a given reference position. [10] presents a new
strategy for consensus in multi-agent systems with a time
varying reference. Several cases are presented, such as: all
agents have access to the reference, several agents have ac-
cess to the reference, etc. The analysis presented assumes
that each agent evolution is represented by a first order
integrator.

In [13] and [14] an analysis of multiple agent coordina-
tion using a passivity approach to decompose the system
into two passive subsystems is presented. The first subsys-
tem called "shape" maintains the formation of the group
of agents while the second subsystem called "lock" repre-
sents the translational dynamics of the group. In [14], the
convergence of velocity and relative position of the agents
via passive decomposition is shown.

A Dbilateral teleoperation approach has been used in [11]
to teleoperate a group of agents. The authors provide re-
sults to achieve a bilateral teleoperation one-to-many (i.e.
one master and many slaves in a leader/follower achitec-
ture). The center of mass is used as a virtual master robot
which is used to coordinate the slave robots. Trayectory
tracking is also considered using an input to state stability
analysis.

Most of the papers in literature dealing with multiple
agent coordination consider fully actuated agents capable
of movement in all directions. Some represent the agents
by single integrators and some other by double integrators.
A state of the art in consensus algorithms can be found in
[7].

In this paper we propose a passive approach for multiple-
vehicle coordination and flock trajectory tracking control.
The study is mainly focused on two configurations: ring
and chain configurations of information exchange between
agents. The control strategy is composed of two terms. The
first control term is used for agent consensus and the sec-
ond control term is used for achieving a desired position of
the formation center of mass. We use the output synchro-
nization control in [15] for agent coordination. This type
of strategy is such that the control input for each agent de-
pends only on the information coming from its neighbors.
Tracking of the center of mass is achieved by using a full
state feedback control on the leader. Since the leader is not



assumed to have direct information from all the agents, the
state is observed from the input and output of the leader.
We therefore require observability and controllability (or
at least detectability and stabilizability) of the agents net-
work from the leader input and output. Observability and
controllability of agent formations is studied for the case of
ring and chain topologies using a coordinating controller.

The paper is organized as follows: Section 2 introduces
the background and preliminaries on information graph
theory. Section 3 presents the dynamic model of the pro-
posed configurations. Section 4 presents necessary con-
ditions to satisfy the controllability and observability of
the multi-agent system. Flock trajectory tracking control
based on the centroid of the system is also presented. Sec-
tion 5 is devoted to simulation results. Conclusions and
future work are given in section 6.

II. PRELIMINARIES (GRAPH THEORY)

A multi-agent dynamic system can be modelled as a
group of dynamical systems which has a information ex-
change topology represented by information graphs. A
graph G is a pair G(N,E) consisting of a set of nodes
N = {n;: n; € N,Vi =1,...,n} together with their inter-
connections £ on N [7]. Each pair (n1,ns2) is called an edge
e € £. An undirected graph is one where nodes 7 and j can
get information from each other. In a digraph, the i*” node
can get information from the j** node but not necessarily
viceversa. We can think of the information exchange be-
tween agents as an undirected graph but also as a digraph
which implies a more complicated problem. A graph is con-
nected if for every pair {z,y} of distinct vertices there is a
path from z to y. A connected graph allows the communi-
cation between all agents through the network. A graph is
said to be balanced if its in-degree (number of communi-
cation links arriving at the node) is equal to its out-degree
(number of communication links leaving the node).

III. CONTROLLABILITY AND OBSERVABILITY OF
INTERCONNECTIONS

We will study the controllability and observability of in-
terconnections using a coordinating control strategy. We
will assume that the agents are represented by double in-
tegrators. We will first consider the case of three agents
and study the controllability and observability of the sys-
tem using only the input and output of a single agent. It is
shown that for the ring topology the system is observable
and controllable from any agent. It also shown that for the
chain topology with undirected communication, the system
is controllable and observable for agents 1 and 3 but only
stabilizable and detectable for agent 2.
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Fig. 1. Information flow configurations: a)Ring topology (left), b)
Chain topology(right)

A. Ring topology

In the case of 3 agents, the ring topology with input and
output on the first agent, is represented as

Zfl = .fg — 561 + uy
To = T3 — To
iz = Ty — I3

The above system can be rewritten as

I -1 1 0 I 1
To = 0 -1 1 X2 + 0 | up (1)
T3 1 0 -1 T3 0
T
yi=[1 0 0] i (2)
T3

It is clear that the system is observable since det O = oc.
Also the system is controllable since det C = —oc.
B. Chain topology. Input and output on agent 1.

In the chain topology with input and output of the first
agent, the system is represented by

T = To — T1 + U
o = (@1 — Do)+ (L3 — @2)
I3 = To — I3

The state space representation is

T1 -1 1 0 T 1
To = 1 -2 1 o |+ ] 0 [ wu (3)
T3 0 1 -1 T3 0
1
Yy = [ 1 0 O ] jjz
T3

The system is observable since det O = co. The system
is also controllable since det C = co.
C. Chain topology. Input and output on agent 2.

Let us consider the same chain configuration as before
but considering this time the input and output of agent 2.

T = To — T
Ty = (i‘l — i’z) + (Sbg — sz) =+ U (4)
T3 = To — T3

The state space representation is given by:

T -1 1 0 T 0
To = 1 —2 1 To + 1 | us (5)
s 0 1 —1 || & 0
T
yi=[0 1 0] & (6)



The observabilty matrix is

o 0 1 0
O=| T4 |=| 1 -2 1
T A2 -3 6 -3

The system is not observable since det O = /. Note how-
ever that we assumed that agent 2 measures all the state.
The controllability matrix is

0 1 -3
C:[B AB AQB]: 1 -2 6
0o 1 -3
The system is not controllable since det C = /. Let

wl wl and wl be the eigenvectors of (5), see (26). Pre-

multiplying (5) by w{,wl, w¥ we obtain

L1+ To+23 = Us
T — 2T9 + T3 = —3(56‘1 — 2%9 + CE‘3) + U2
Iy — i3 = —(@1 — 23)

Equations (4) can also be rewritten as

To = —2i9+ (Ci‘l + i‘3) + ug
T+ T3 = 2T — (561 + 563) (7)
T —d3 = —(@1 — 23)

The last equation represents a stable uncontrollable
mode. It follows that &1 — 23 = e(0)exp~t with e(0) =
21(0) — 3(0). Thus defining z = 41 + @3, (7) can be re-
duced to:

—2T9 + 2 + us
21‘2—2’

or

&
m=[1 0] %]
The controllability matrix of the reduced system is
1 =2
C[wa]h 2]

The reduced system is controllable since det C = €. The
observability matrix is

o=[&al=[ % 1]

The reduced system is observable since det O = 0.

D. General case

The examples above suggest that the interconnection of
agents using the coordinating control strategy leads to sys-
tems that are controllable and observable from the input
and output of every agent or that are at least stabilizable
and detectable. We will prove next that this is true in the
general case when the system is represented by

X=—-LX+bu (8)

y=c'X

where L is the Laplacian matrix having the following
properties:

1. L has a single eigenvalue at 0, A\{(L) = 0 with right
eigenvector wi = [ 11 1 ] ,i.e. Lw; = 0.

2. The remaining eigenvalues are all positive, i.e. A;(L) >
0 and Lw; = \;w; for i = 2,..n, and w; € R™.

We assume that the information exchange graph is bal-
anced. Let us assume also that in the coordinating con-
troller the gains multiplying the signals in between agents
are all equal to 1. For the ¢ — th row of L, the entries
l;j = —1 for ¢ # j correspond to the gains multiplying the
signals from other agents coming to agent i. For the i —th
column of L, the entries [;; = —1 for ¢ # j correspond to the
gains multiplying the signals going out of agent i towards
the other agents. We then have the following property.

8 wy defined above is also the left eigenvalue of L corre-
sponding to the eigenvalue 0, i.e. w{ L = 0.

Let us study the controllability and observability of the
system from the input and output of agent k,i.e. ¢ =
bT:[O 0 1 0 O]Whereonlythek—th
element is different from zero.

D.1 Observability

System (8) will not be observable if ¢cIw; = 0 for some
right eigenvector of L, w;. Note that c’w; # 0, and
thus, the mode corresponding to (A1, w;) is observable. If
cTw; = 0 for some i = 2, ..n, then the system will have non
observable modes, but such modes will be asymptotically
stable, i.e., they will converge to zero, because A;(L) > 0

fori =2,..n.

D.2 Controllability

Let us now study the controllability of system (8). Note
that L and LT have the same eigenvalues. Let v; be the
right eigenvectors of L (or the left eigenvectors of L), i.e.
LTv; = \jv; or vI' L = \jvl. Pre-multiplying (8) by vl we
get

vIX = —vILX +vTbu

or
vl X = -\l X +olbu 9)
If vl = 0 for some i, then
d

ST X) = AT X)



which means that the corresponding mode is not control-
lable. Nevertheless, for i = 2, ...,n such mode is asymptot-
ically stable and converges to zero. Recall that for ¢ = 1
we have v; = w; and therefore v7'b # 0. Thus the mode
corresponding to (A1, v;) is controllable.

E. The ring topology in the general case

In this section it will be proved that the ring topology is
controllable and observable in the general case. The state
space representation of the ring topology is the following

. -1 1 .
T T 1
.. -1 1 ..
T i) 0
. = T . + (31
-1 1
Tn 1 1 Tn 0
(10)
Z1
T
Y1 = [ 1 0 0 } (11)
Ty

which for simplicity will be rewritten as

T T
To To
=L, + buy
‘{I}n :'i"ll
T
T2
T
y1=2¢ .
'i.'ll

E.1 Observability

The system will be non observable if there exists a vector
v such that

vTh=0 (12)

and

Lyv=M\v (13)

v3 ] and a real \.
1] and thus v"b # 0

with vT' = [ v U2

For A =0,0v" =[1 1
which is a contradiction.

For A\ # 0, it follows from (12) that v; = 0. In view of
the structure of L, in (13) it follows that vy = 0. Tterating
it follows that v = 0. We conclude that the system is
observable.

E.2 Controllability

The system will be non controllable if there exists a vec-
tor v such that

vTh=0 (14)

and

v Ly = T (15)

with v = [ V1 Vg V3 ] and a real \.

For A = 0, it follows from (14) that v; = 0. In view of
(15) it follows that v = 0. Iterating it follows that v = 0.

For A\ # 0, since v; = 0 and in view of the structure of
L, in (15) it follows that v,, = 0. Substituting in (15) gives
vp—1 = 0. Iterating it follows v = 0. We conclude that the
system is controllable.

F. The chain topology in the general case

In this section it will be proved that the chain topology is
controllable and observable in the general case. The state
space representation of the chain topology is the following

-1 1 . 1
7 1 -2 1 o
T2 To 0
S T t
1 -2 1 ’
Tn 1 1 Tn 0
(16)
1
T2
yi=[10 o] . (17)
i"n

which for simplicity will be rewritten as

T T
To To
- *Lc . + bul
Z1
T
T 2
Yy =c¢ .
Tn

F.1 Controllability

The system will be non controllable if there exists a vec-
tor v such that

vTh=0 (18)
and

v L, = X" (19)



with o =[ v1 w2 --- w3 | and a real A.

For A\ = 0, since v; = 0, from (19) it follows that vo = 0.
Iterating it follows that v = 0.

For A # 0, in view of the structure of L. in (??) it follows
from (19) that vo = 0. Iterating it follows that v = 0. We
conclude that the system is controllable.

F.2 Observability

Given that L. = LT and b = ¢, the system is also ob-
servable.

G. Combinations of chain and ring topologies

In this section we show that a network of agents obtained
by apropriately combining the ring and chain toplogies is
controllable and observable. Let us consider the following
topology

/! N\

<~ 3 5

N e
4

Considering the input and output of agent 1, the state
space representation is given by

T -1 1 T
o 1 -2 1 g
iy | 1 -2 1 &y
C.L.‘4 B -1 1 1‘4(2 )
e 11 i
Tg 1 -1 Te
1
0
+1 . |wm (21)
0
T
T
3
p=[10 0|3 (22)
T5
. :t6 -

which for simplicity will be rewritten as

T T
To To
T3 T3
. =—L¢ . + buq

T4 T4
Ts5 T5
Tg Te

T

T

7| T3

Y1 =¢ s

T5

T

ot

G.1 Controllability

The system will be non controllable if there exists a vec-
tor v such that

vIh=0

and

0T Loy = Mot (23)

with o' = [ v1 w2 v | and Areal.

Case A = 0. In this case the only vector satisafing (23)
is vT = [ 11 1 ] which implies that v7'b # 0.

Case A # 0. In view of the structure of L., in (20) it
follows that v; =0 = wvs = 0. Similarly it follows that
vg3 =0,v5 =0,v4 =0 and v5 = 0.

We conclude that the system is controllable.

G.2 Observability

The system will be non observable if there exists a vector
v such that

vTh=0 (24)

and

Leov =M

with v7' = [ vl U Vg ] and a real .

Case A = 0. The only vector satisfying (25) is v
[ 11 1 ] and thus v7'b # 0 which is a contradic-
tion.

Case A # 0. In view of the structure of L., in (23) and
since v; = 0, it follows that vo = 0. Iterating it follows
that v = 0. We conclude that the system is observable.

Remark 1: In view of the structure of L., in (23) and
the arguments described above, it follows that the control-
lability and the observability properties are preserved if the
chain and the ring topologies in (20) have arbitrary length.

(25)

T

H. Simple configurations that are either mon controllable
or non observable

In order to help characterizing the configurations that
are both controllable and observable, we present in this
section a series of illustrative simple configurations that
are not in the form (20) and that fail to be controllable
and observable. We will denote by L,Cy, Oy the Laplacian,
the controllability and observability matrices respectively
when using the input and output of the ¢ — th agent.

H.1 Example 1

1
/! N\
2 = 4
AN 7
3

Note that det Coo = detCe = 7.We have that det Oy =
det OE =/



H.2 Example 2

1

T 7

2 = 3

Note that det Co, = det Oy, =7

H.3 Example 3

1
([}
2 3
detCop = 1,det Oy =/
[—2 1 1
L = 1 -1 0 ;
! 0 -1
[1 -2 6
Coo = 0 1 =3 |;
|01 -3
1 0 0
Ox=1| -2 1 11
6 -3 -3
H.4 Example 4
1
Sl
2 «— 3 = 4

det Coo = 1,det Oy = 0

det Cc = —o0,det Oc =/

detCs =1,det O5 =1/

detCa = 00,det On = —00

Controllability and observability from agent 4 can also
be proved as it was done for (20).

H.5 Example 5

l <& 2 — 4 << 5
T
3
det Coo =1, det Oy = 0
H.6 Example 6
5
(i
1l < 2 — 14
T/
3

detCop = 1,det Oy =/

H.7 Example 7

1l <& 2 — 4
TV
3 &= 5
detCop = —00,det Oy =/
H.8 Example 8
1 — 3 — 5
NN L
2 4

det Cop =1, det Oy = 0

IV. FORMATION LEADER TRACKING

In this section we introduce a coordination control for
flock tracking. We first study the case of three agents and
then we extend the method to the general case.

A. FEigenvalues and eigenvectors of the system

Consider the case of three agents in chain topology de-
scribed in (3). The eigenvalues of A in (3) are 0,—1,—3.
Their corresponding eigenvectors are

wi=[111],wg=[10 -1],wj=[1 -2 1]
(26)
since
-1 1 0 1 1
1 -2 1 1 {=0]1
0o 1 -1 1 1
[ -1 1 0 ][ 1 [ 1]
1 -2 1 0 |=-1] 0
| 0 I =1 ][ -1] | -1
[ -1 1 0 ][ 1 [ 1]
1 -2 1 -2 | =-3| -2
| 0 I =1 [ 1 | |1
Premultiplying (3) by wi,wi wl above we obtain
T+ Ea+ 33 = uy
T — I3 *(i’l — i’g) =+ uq (27)
3.6.1 — Qiz + .fg = *3(3'61 — 2$-2 + $3) + Uy
3
Define oy = %le and its desired velocity value
i=1
id,,. Consider the tracking control law
uy = 3ksat {ily — iom} (28)

where sat(-) represents the saturation function and k is
a positive gain. Note that ©¢js is not directly measurable
by the leader (agent 1), but the state can be observed from
the input and output of agent 1. Introducing (28) into (27)
we get



Tom = ksat {x%M —.CECM}
Tr1 — I3 =
T —2T9+ 23 =
If the desired velocity value #d,, is constant, then
Tom — a'c‘éM as t — oo,which implies that u; — 0
and (&1 — &3), (41 — #2) — 0. Notice that for small val-
ues of k, the convergence speed of ¢y is slow, but the
transient in the errors (&1 — 43), (€1 — #2) will be smaller.
From the previous analysis we can state the following
lemma
Lemma 2: Consider a multi-agent system of the form (8)
with coordinating control law (28). If %, is constant,
then oy — a'c‘éM as t — oo,which implies that u; — 0
and (&; — ;) — 0.

B. Formation leader tracking in the general case
N
Define oy = % Z 4; where N is the number of agents
i=1
in the formation. Let x’% a be the desired value for £oa.
Assume for simplicity that agent 1 is the leader, i.e. ¢ =
T = [ 1 0 0 ] and that the control law is

w = Nksat {@dy — tom } (29)

where sat(-) represents the saturation function and k is a
positive gain. Note that ¢ps may not be directly mea-
surable for the leader (agent 1). We assume the system is
observable from the input and output of the leader. The
state can therefore be observed from the input and output
of agent 1. Introducing (28) into (9) we get

ksat {i¢y — Tom )
NI X)+vlbuy;i=2,.., N

fomy =
LI X)

The modes in the last equation above are all stable. When
u; = 0, these modes converge to zero which means that
(#;—2;) — 0 for i # j. This property is obtained by using
the coordinating control algorithm that leads to system (8).
These modes are uncontrollable when v}'b = 0. There is a
trade-off in the choice of gain & in (29). For smaller values
of k, the speed of convergence of ¢y, is slower, but the
transient in the errors (&; — &;) for ¢ # j, will be smaller.

It has been shown that all agents velocities synchronize
with respect to the leader’s velocity. The previous results
can be extended to cover the case of position convergence
of the flock as follows

After applying an appropriate coordinating control, we
obtain the following multi-agent system

Y=—LY +bu (30)

where L is the Lagrangian matrix and

Y =X+ X

—(i’l — .133) + 3ksat ZL‘%M —ZTom . . L. .
3 — 2o + d3) + 3k’£at {:'U%M _ S.U}C@such that Yoy — YéiM as t — oo which implies that

then the control law

u = ksat{Yon — Y&} (31)

— Yéu /A
C. Observer Design

Due to the nature of information flow between agents,
full state is in general not available. Thus, we have devel-
opped a coordination control based on the center of mass
of the multi-agent system. Full state is needed in order to
compute the coordination control (29). In order to obtain
the full state we propose a Luenberger observer of the form:

Az — Bu(#)
—& = LCx+ (A—LC): —u(d)

y = Cz

_ where x is the state vector, 7 is the observed state vector,
L is the Luenberger gain vector.

V. SIMULATIONS

We will consider both, the case when partial and full
state of the multi-agent system is available from measure-
ment. When the state is not available from measurement
a Luenberger observer is used to estimate the state. It is
shown that the multi-agent system synchronizes in veloc-
ity and position using the combination of coordinating and
tracking control. Synchronization of the center of mass is
achieved with respect to a continuous time varying refer-
ence while there is a small bias in agents synchronization
with the input reference. When observer is used in the mul-
tiagent system, simulation results (Fig. 2 - Fig. 5) show
the observer state convergence to the actual state which
implies a convergence of the center of mass to the input
reference. Agents state also converge to the center of mass
reference.

o 5 10 15 20 25 30 35 0
Time (sec)

Fig. 2. Case a) Velocity consensus and tracking considering full state
available for 3-agent ring configuration.

VI. CONCLUSION

In this paper we have proposed a control method for syn-
chronizing and tracking multiple agents in formation. We



—— Reference
~ = = Center of Mass
25| Agent1 1
—— Agent2
— = Agent3

Velocity (mis)

o 5 10 1 25 30 35 a0

20
Time (sec)

Fig. 3. Case b) Velocity consensus and tracking using Luenberger
Observer for 3-agent ring configuration.

Positon (m)
v
4
i

0 5 10 15 20 2 30 35 40
Time (sec)

Fig. 4. Case c) Position consensus and tracking considering full state
available for 3-agent ring configuration.

have used the coordinating control in [15] for which the
input of every agent depends only on its neighbors infor-
mation.

Tracking of the center of mass of the agents formation
has been achieved by using state feedback control applied
to the leader. Since the leader is not assumed to have direct
information from all the agents, the state is observed from
the input and output of the leader. This approach requires
observability and controllability (or at least detectability
and stabilizability) of the agents network from the leader
input and output. The observability/controllability prop-
erties for chain and ring topologies has been studied in this

paper.

Position (m)

Fig. 5. case d) Position consensus and tracking using Luenberger
Observer for 3-agent ring configuration.

It has been shown that the interconnection of agents us-
ing the coordinating control strategy and leading to sys-
tems as (8) are stabilizable and detectable from the input
and output of any agent.

It has been proved that, after applying a coordinating
control, the ring topology is observable and controllable
from any agent and the chain topology is observable and
controllable from the first or the last agent of the chain. A
ring topology and a chain topology can be interconnected
in cascade to obtain a new configuration that is control-
lable and observable provided that the input and output
are taken from the first agent of the chain topology as in
(20). Several simple counter-examples show that adding
any extra interconnection to the ring topology, the chain
topology or the combination of both as in (20) leads to
either uncontrollable or unobservable modes. This means
that the most general combination of chain and ring topolo-
gies that is both controllable and observable from one agent
(the first agent of the chain) is the cascade interconnection
of a chain topology and a ring topology as in (20).
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