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dolean@math.unice.fr
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Summary. In this paper we recall a new domain decomposition method for
the Stokes problem obtained via the Smith factorization. From the theoretical
point of view, this domain decomposition method is optimal in the sense that
it converges in two iterations for a decomposition into two equal domains.
Previous results illustrated the fast convergence of the proposed algorithm in
some cases. Our algorithm has shown a more robust behavior than Neumann-
Neumann or FETI type methods for particular decompositions; as far as gen-
eral decompositions are concerned, the performances of the three algorithms
are similar. Nevertheless, the computations of the singular values of the inter-
face preconditioned problem have shown that one needs a coarse space whose
dimension is less than the one needed for the Neumann-Neumann algorithm.
In this work we present a new strategy in order to improve the convergence
of the new algorithm in the presence of cross points.

1 Introduction

The last decade has shown that Neumann-Neumann type algorithms, FETI,
and BDDC methods are very efficient domain decomposition methods. Most
of the early theoretical and numerical work has been carried out for scalar
symmetric positive definite second order problems, see for example [17, 10,
11, 5]. Then, the method was extended to different other problems, like the
advection-diffusion equations [6, 1], plate and shell problems [20] or the Stokes
equations [16, 19]. In the literature one can also find other preconditioners for
the Schur complement of the Stokes equations (cf. [19, 2]). Moreover, there
exist some Schwarz-type algorithms for non-overlapping decompositions (cf.
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[15, 14, 13, 18]). Also FETI [8] and BDDC methods [9] are applied to the
Stokes problem with success.

Our work is motivated by the fact that in some sense the domain decom-
position methods for Stokes are less optimal than the domain decomposition
methods for scalar problems. Indeed, in the case of two subdomains consisting
of the two half planes it is well known that the Neumann-Neumann precon-
ditioner is an exact preconditioner for the Schur complement equation for
scalar equations like the Laplace problem (cf. [17]). A preconditioner is called
exact, if the preconditioned operator simplifies to the identity. Unfortunately,
this does not hold in the vector case. It is shown in [4] that the standard
Neumann-Neumann preconditioner for the Stokes equations does not possess
this property and the construction of an optimal method is explained. Thus,
one can expect a very fast convergence for such an algorithm. Indeed, numeri-
cal results clearly support our approach. For an application to the compressible
Euler equations see [3].

In Section 2 we recall the domain decomposition method for the Stokes
system. Section 3 is dedicated to numerical results for the two-dimensional
Stokes problem.

2 DDM for the Stokes equations

2.1 Stokes equations

We consider the stationary Stokes problem in a bounded domain Ω ⊂ R
d,

d = 2, 3. The Stokes equations are given by a velocity u and a pressure p

satisfying

−ν∆u + ∇p + cu = f in Ω,

∇ · u = 0 in Ω,

and some boundary conditions on ∂Ω. The Stokes problem is a simple model
for incompressible flows. The right hand side f = (f1, . . . , fd)

T ∈ [L2(Ω)]d is
a source term, ν is the viscosity and c ≥ 0 is a constant reaction coefficient.
Very often c stems from an implicit time discretization and then c is given by
the inverse of the time step size. In the following we denote the d-dimensional
Stokes operator by Sd(u, p) := (−ν∆u + cu +∇p,∇ ·u). In the following we
will restrict to the two-dimensional case (d = 2) but the three-dimensional
formulation can be found in [4].

2.2 A new algorithm for the Stokes equations

We further introduce the stress depending on a velocity u = (u, v), a pressure
p and the unit normal vector n on the boundary:
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σn(u, p) := ν
∂u

∂n
− pn

For any vector u, its normal (resp. tangential) component on the interface is
uni

= u · ni (resp. uτ i
= u · τ i). We denote σi

ni
(ui, pi) := σni

(ui, pi) · ni

and σi
τ i

(ui, pi) := σni
(ui, pi) · τ i as the normal and tangential parts of σni

,
respectively. We now present the new algorithm for the Stokes equations for
a general decomposition into non overlapping subdomains Ω̄ = ∪N

i=1Ω̄i. We
denote by Γij the interface between subdomains Ωi and Ωj , i 6= j. The new
algorithm for the Stokes system is:

ALGORITHM 1 Starting with an initial guess ((u0
i , p

0
i ))

N
i=0 satisfying u0

i,τ i
=

u0
j,τ j

and σi
ni

(u0
i , p

0
i ) = σ

j
nj

(u0
j , p

0
j ) on Γij, ∀i, j, i 6= j, the correction step

is expressed as follows for 1 ≤ i ≤ N :
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n+1
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= −
1
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i,ni
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2
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(un
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(un
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(1)

followed by an updating step for 1 ≤ i ≤ N :
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(2)

We have

Proposition 1. For a domain Ω = R
2 divided into two non overlapping half

planes, Algorithm 1 converges in two iterations.

The new algorithm for the Stokes system is reminiscent of the hybrid approach
presented in [7]. Indeed, in both cases, the interface conditions are mixed
Dirichlet and Neumann type boundary conditions. However, our approach
is different in the sense that it shows the good combination of stress and
displacement for the interface conditions in both 2d and 3d (see [4] for details).

3 Numerical results

In this section we will analyze the performance of the new algorithm in the
two-dimensional case. As in [4], we consider the domain Ω = (0.2, 1.2) ×
(0.1, 1.1) decomposed into N×N subdomains (in the presence of cross points).
We choose the right hand side f such that the exact solution is given by
u(x, y) = sin(πx)3 sin(πy)2 cos(πy), v(x, y) = − sin(πx)2 sin(πy)3 cos(πx) and
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p(x, y) = x2 + y2. The viscosity ν is always 1. The interface system is solved
by GMRES. In all tables we count the number of iterations needed to reduce
the L∞ norm of the error by the factor TOL = 10−6:

max
i=1,...,N

‖U i
k − Uh‖L∞(Ωi) ≤ 10−6,

where U i
k = (uk, vk, pk)i is the discrete solution of iteration step k in subdo-

main Ωi and Uh = (uh, vh, ph) is the global discrete solution computed by a
direct solver applied to the global problem.

A problem in Algorithm 1 is that in the correction step, the local matrices
may be singular (the local problems are ill-posed for the pressure, the latter
being defined up to an additive constant). To overcome this difficulty we
chose to add a penalization term εp with ε sufficiently small to the divergence
equation. This penalization term leads however still to ill-conditioned local
matrices and an ill-conditioned interface problem. Thus, the reduction of the
Euclidean norm of the residual is not a good indicator for the convergence of
the algorithm as can be seen in Figure 3:
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Fig. 1. Convergence of the GMRES algorithm (residual and error) for 3 × 3 (left)
and 4× 4 (right) decompositions for ε > 0

This is also due to the presence of the large eigenvalues in the spectrum,
as seen in the Table 1.

A very simple way to eliminate the large eigenvalues is to avoid using
the penalization term: the local problems are now singular. Consider a local
matrix A which corresponds to interior subdomains in the correction (precon-
ditioning) step. It will be singular of co-rank 1. The null space is formed by
a vector whose components are constant non-zero only for the pressure com-
ponents. It can be easily shown that the matrix B + f · et is invertible if we
choose e (resp. f) to be a vector non-orthogonal to ker(A) (resp. ker(AT )). In
our case it is sufficient to take (in order to preserve the sparsity of the matrix
A) a vector with null components except for one non-zero component chosen
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N ×N No. of large eigenvalues N ×N No. of large eigenvalues

2x2 0 6x6 16
3x3 1 7x7 25
4x4 4 8x8 36
5x5 9 9x9 49

Table 1. Number of eigenvalues which are larger than 10 in modulus for a N ×N

decomposition.

in the right position. Afterward, for any right hand side b in the Im(A), the
solution of Bx = b verifies Ax = b. In this case no more large eigenvalues will
be present in the spectrum and the convergence of the residual will reflect
more accurately the convergence of the error as one can see in Figure 3.
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Fig. 2. Convergence of the GMRES algorithm (residual and error) for 3 × 3 (left)
and 4× 4 (right) decompositions for ε = 0

Nevertheless the convergence is still very sensitive to the number of sub-
domains, which shows the necessity of introducing a coarse space correction
in the algorithm. This bad convergence is mainly due to the presence of small
eigenvalues in the spectrum of the interface operator (see Figure 3).

We need to eliminate the small eigenvalues which can cause bad conver-
gence. In order to do this we will first notice that the error during the iterations
of the GMRES method is mainly localized in the corners, as seen in Figure 4
where the error on component p is visualized.

A solution to this problem could be a deflation method applied to the pre-
conditioning step as seen in [12], where the deflated vectors contain constant
non-zero elements only for the corner components of the solution. As a result,
we obtain a better convergence than before. It is however not optimal, since
it is dependent on the number of subdomains (see Figure 3).
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Fig. 3. Eigenvalues of the interface preconditioned operator for 3×3 (left) and 4×4
(right) decompositions.
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By looking at the spectrum (Figure 3), we can see that there are still small
eigenvalues that have not been taken care of by the deflation method.

As a conclusion we can state that even if the strategy presented is not yet
optimal, it leads to an improvement of the previous algorithm (since it elimi-
nates a part of small eigenvalues) and could pave the way to the construction
of a more scalable method.
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