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Abstract. Stochastic games are a natural model for open reactive processes: one player represents
the controller and his opponent represents a hostile environment. The evolution of the system depends
on the decisions of the players, supplemented by random transitions. There are two main algorith-
mic problems on such games: computing the values (quantitative analysis) and deciding whether a
player can win with probability 1 (qualitative analysis). In this paper we reduce the quantitative anal-
ysis to the qualitative analysis: we provide an algorithm for computing values which uses qualitative
analysis as a sub-procedure. The correctness proof of this algorithm reveals several nice properties of
perfect-information stochastic tail games, in particular the existence of optimal strategies. We apply
these results to games whose winning conditions are boolean combinations of mean-payoff and Biichi
conditions.



1 Introduction

There is a long tradition of using infinite games to model open reactive processes [BL69,PR89]. The
system is represented as a game arena, i.e. a graph whose vertices belong either to Eve (controller),
Adam (non-deterministic environment), or Random (stochastic evolution). A step of the game con-
sists in moving a token on the arena: when it is in one of Eve’s vertices, she chooses its next location
among the successors of the current vertex; when it is in one of Adam’s vertices, he chooses its next
location; when it is in a random vertex, its next location is decided by a fixed random function. The
game is played for infinitely many steps and the winner of the play depends on the infinite path of
the token: the winning condition is the set of infinite plays winning for Eve. Eve and Adam have
conflicting interests a play not winning for Eve is winning for Adam, thus given a strategy for Eve,
Adam plays a counter-strategy that lowers as much as possible the winning probability of Eve, and
vice-versa. Roughly speaking, the value of the game is the supremum of winning probabilities that
Eve can guarantee, and by Martin’s theorem it coincides with the infimum of winning probabilities
that Adam can secure (cf. Section 2 for formal definitions).

The computation of values of stochastic games is a challenging algorithmic problem, which has
received various answers depending on the class of winning conditions considered. The seminal
paper by Shapley [Sha53| dealt with discounted games, more recent work focused on games for
verification [dA97|, while Hoffman-Karp introduced strategy improvement algorithms for mean-
payoff [HK66] and Condon focused on reachability games [Con92].

Another appealing algorithmic problem consists in deciding whether Eve or Adam has an almost-
sure strategy i.e. a strategy which guarantees to win with probability 1. Due to potential applications
in verification of open systems, this question was solved for winning conditions used in verification
i.e. safety, reachability, Biichi, parity and Miiller conditions [CY95,dA97,Cha07¢c,Hor08|.

Although deciding the existence of almost-sure strategies (the qualitative analysis) may seem
similar to computing values (the quantitative analysis), these two problems are quite different.
For example the qualitative analysis of simple stochastic games can be carried out in polyno-
mial time [dA97] while for the quantitative analysis of these games only exponential time algo-
rithms are known [Con92|. Even worse, for certain classes of stochastic games with partial obser-
vation the existence of almost-sure winning strategies is decidable whereas values are not com-
putable [Paz71,CDHR07,BBG08,BGG09.

In this paper, we focus our attention on simple stochastic tail games. By “simple” we mean
that players have perfect-information and take their decisions turn-by-turn, whereas in stochastic
games as introduced initially by Shapley [Sha53| players take their decisions concurrently. A tail
winning condition is such that the winner of a play does not depend on finite prefixes of the play,
only the long-term behaviour of the play matters. This class encompasses games for verification and
mean-payoff games. From a verification perspective, tail conditions correspond to cases where local
glitches are tolerated in the beginning of a run, as long as the specification is met in the long-run,
e.g. in self-stabilising protocols.

Some interesting results about stochastic games with concurrent moves and tail winning con-
ditions were obtained by Chatterjee. In particular, the limit-one property (if at least one vertex
has strictly positive value then at least one vertex has value one) was extended from Miiller
games [dAHO00| to the full class of tail games [Cha07al.

Chatterjee also showed that an algorithm for the qualitative analysis (checking existence of
almost-sure strategies) can be used for the quantitative analysis (computing values) of stochastic



games with Miiller and mean-payoff winning conditions [Cha07c|. This was based on the decompo-
sition of the game arena according to its value classes and on the limit-one property.

We provide several new results, both algorithmic and theoretical, about simple stochastic games
with tail winning conditions and finitely many vertices.

Our main algorithmic result is a reduction of the quantitative analysis to the qualitative analysis:
we design an algorithm for computing values that relies on a procedure for computing almost-sure
winning sets. This implies that if almost-sure winning sets of a game G are computable in time ¢(G)
then values of G are computable in time |Qg|! - t(G), where |Qg| is the number of random vertices
(Theorem 14).

The proof of this algorithmic result reveals two properties of simple stochastic tail games which
are of independent interest: they are qualitatively determined and both players have optimal strate-
gies. Qualitative determinacy means that from every initial vertex of a simple stochastic tail game
with finitely many vertices, either Eve has an almost-sure winning strategy or Adam has a positive
strategy (Theorem 7). Qualitative determinacy is actually a by-product of the proof of a stronger
result: in every simple stochastic tail game with finitely many states, both players have optimal
strategies (Theorem 9), whereas in general only e-optimal strategies are guaranteed to exist [Mar98].

As an application, we provide algorithms for computing values of games whose winning condition
is a boolean combination of a mean-payoff and a Biichi condition (Section 5).

Our results improve previously known results in several aspects. First, to our knowledge no
algorithm was ever proposed for the full class of simple stochastic tail games. Moreover, in the special
cases of parity and Miiller games, our algorithm is more efficient that Chatterjee’s algorithm which
requires to guess non-deterministically (i.e. to enumerate) the values of the game and a partition
of the arena, while our algorithm only requires to guess non-deterministically a permutation of the
random vertices. The existence of optimal strategies was only known for simple stochastic games
with mean-payoff or Miiller conditions, we extended this result to the full class of simple stochastic
tail games, using as a main proof tool reset-strategies.

The paper is organized as follows. Section 2 recalls the classical notions about simple stochastic
games. Section 3 deals with our qualitative determinacy result, and sketches how the proof uses reset-
strategies and their properties. In section 4, we show how to compute values of simple stochastic
tail games using an algorithm computing almost-sure winning sets. In the same section, we state
our main theoretical result: in finite simple stochastic tail games with finitely many states, both
players have optimal strategies. Finally, in section 5 we apply these results to prove computability of
values of games whose winning conditions are a boolean combination of a Biichi and a mean-payoff
condition.

2 Definitions

We recall here several classical notions about simple stochastic games, and refer the reader to

[GTWO02| and [dA97] for more details.

Arenas and plays. A simple stochastic arena A is a directed graph (Q,7 ) without deadlocks,
whose vertices are partitioned between Eve’s vertices (Qp, represented as O’s), Adam’s vertices
(Qa, represented as O’s), and random vertices (Qg, represented as A’s), and supplemented by a
function ¢ : Qr — D(Q), which is the random law directing the choice of successors in the random



vertices (in particular, 6(r)(q) > 0 < (r,q) € 7). A sub-arena Ajp of A is the restriction of A to a
subset B of @ such that each controlled vertex of B has a successor in B, and all the successors of
random vertices in B belong to B. A play p of A is an (possibly infinite) path in the graph (Q, 7).
The set of infinite plays, denoted by (2, can naturally be made into a measurable space (£2,0) in
the following way: O is the o-field generated by the cones {I', | w € Q*}, where I}, is the set of
plays extending w.

Strategies and measures A pure strategy o for Eve is a deterministic way of extending finite plays
ending in a vertex of Eve: 0 : Q*Qp — Q is such that (¢,o(wq)) € 7. Strategies can also be defined
as strategies with memory. Given a (possibly infinite) set of memory states M, a strategy o with
memory M is defined by two functions: a “next-move” function o™ : (Qp x M) — Q and a “memory-
update” function o® : (Qx M) — M. Notice that any strategy can be represented as a strategy with
memory Q*. A play p is consistent with a strategy o if and only if Vi, p; € Qr = pi+1 = o(po,-- ., pi)-

Once an initial vertex ¢ and two strategies o and 7 have been fixed, we can define recursively a
probability measure Pg’" over the cones by Pg’" (I7.) = 1,—, and:

]P)g’T(FU”“) ’ 10(wr):s ifreQp,
Yw € Q*a (Ta 3) S Q2>P2’T(ers) = ]P)?T(er) : 1T(’UJ7‘):S if r € QA ;
Pe" (L) - 6(r)(s) ifre Qg .

By Carathéodory’s extension theorem, there is a unique extension of Pg'" to (£2,0).

Winning conditions and values. A winning condition @ is a Borel set of (2, O). An infinite play
is winning for Fve if it belongs to @, and winning for Adam otherwise. Finite plays are not winning
for either player. A winning condition @ is a tail condition if the winner of a play does not depend
on finite prefixes: Vw € Q*,Vpe€ Q¥,pc & & wp € 9.

The value of ¢ € Q with respect to the strategies o and T for Eve and Adam (or oT-value) is
defined by: v,,(q) = Pg"(®). The value of q with respect to a strategy o for Eve (or o-value) is
the infimum of its {o, 7}-values: v, (¢) = inf; v, - (¢). Symmetrically, the value of ¢ with respect to a
strategy T for Adam (or T-value) is the supremum of its {o, 7}-values: v-(¢) = sup, vs,+(q). By the
quantitative determinacy of Blackwell games [Mar98|, the supremum of the o-values is equal to the
infimum of the 7-values. This common value is called the value of ¢:

v(g) = supvo(q) = infvr(q) -

Almost-sure strategies. A strategy o for Eve is almost-surely winning (or almost-sure) from a
vertex ¢ if and only if the o-value of g is one. It is positively winning (or positive) from ¢ if and only
if for any strategy 7, the {o, 7}-value of ¢ is positive (notice that the o-value of ¢ may be zero). The
almost-sure region of Eve (resp. positive region of Eve) is the set of vertices from which Eve has an
almost-sure (resp. positive) strategy.

3 Qualitative Determinacy of Tail Games

Before we tackle the issues regarding the problem of computing the values of finite simple stochastic
tail games, we need some preliminary results about what happens in the regions with value zero
and value one —the so-called “qualitative problems”. The main result of this section is the following
theorem, which establishes the existence of almost-sure strategies in these extremal regions:



Theorem 1. In any finite simple stochastic tail game, Eve has an almost-sure strategy in the region
with value one, and Adam has an almost-sure strategy in the region with value zero.

This theorem is instrumental in the proof of our next-section’s algorithm, and is very interesting
on its own, since it states that the limit and almost-sure winning criteria from [dAHO00] are equivalent
in finite simple stochastic tail games. It follows directly that the positive and bounded winning criteria
are also equivalent. Using the standard reduction to parity games, these results can be extended to
finite simple stochastic w-regular games.

Our main tool in the proof of Theorem 1 is the notion of reset-strategy, for which we need to
extend o-values to finite plays. In a nutshell, the o-value evaluates how much Eve lost since the
beginning of the play, and reset strategies can “reboot” if this loss goes beyond a given threshold.

Definition 2. The o-value of a finite play w of length £ consistent with o is the infimum of the
{o, T}-values under the assumption that w is a prefiz of the play:

Vo (w) = f PP | po = wo, p1 = Wiy pro1 = we-1) -

Using the o-values of the prefixes, we can observe how the prospects of the players evolve during
a play. In particular, for any positive real number 7, we define the event A;’Z, corresponding to the
plays where Eve’s chances of winning have dropped below 7 at some point:

A7 ={Fi,v5(po- .. pi) <} -

This event has two interesting characteristics: first, if the o-value of the initial vertex is greater
than 7, the probability that the ensuing play belongs to A7 is bounded away from one (Proposi-
tion 3); second, the probability that Adam wins is zero outside of A7 (Proposition 4).

Proposition 3. Let q be a vertex of Q, o and T be strategies for Eve and Adam, and n < vs(q) a
positive real number. We have:
PZ,T(AZ) < 1 —v,(q) ‘
L—=n
Proposition 4. Let g be a vertex of Q, o and T be a strategy for Adam, and n be a positive real

number. We have:
]P’Z’T(sl5 | ﬂ/lg) =1.

These two results suggest a way to improve o with a “reset” procedure with respect to a given
real number 7. Assume that Eve plays ¢ and, at some point, the o-value of the prefix drops below
7, while the o-value of the current vertex is greater than 7. She can improve her chances to win by
forgetting the past, and restart playing o as if the play just started.

Definition 5. The strategy o reset with respect to n, denoted by oy, is a strategy with memory,
whose memory states are the plays of A consistent with o. Its memory-update and next-move func-
tions are defined as follows:

n _Jole) ifvo(wg) <n andvs(q) >
Ty, ) = {a(wq) otherwise

u faq ifve(wg) <nandv,(q) >n
oly(w,a) = {wq otherwise



Proof (of Theorem 1). In order to prove Theorem 1, we just need to choose carefully the initial
strategy and the reset trigger. As the arena is finite, we can choose 7 strictly less than 1 and at the
same time strictly greater than the value of any vertex whose value is less than one. Then plays
consistent with the reset strategy o, will stay in the set of vertices with value 1, otherwise a reset
occurs just before this set is left. If Eve plays according to ¢ starting from a vertex with value 1,
it follows from Proposition 3 that the probability of one reset when playing is strictly less than 1,
hence the number of resets when playing the reset strategy o, is finite with probability one. Thus,
with probability one some suffix of a play has no reset, hence by Proposition 4 this suffix is in @.
Since @ is tail, with probability one the whole play itself is won by Eve.

Notice that Theorem 1 cannot be extended to games with context-free conditions, infinite arenas,
or concurrent moves: in each of the three games of Figure 1, the value of the initial vertex is one,
yet Eve has no almost-sure strategy.

#4530

P = anbn@

& = Reach®

(a) Context-free condition (b) Concurrent moves (from [)

® = - Reach®

(¢) Infinite arena

Fig. 1. In general, limit-sure is not almost-sure

The following theorem is the qualitative counterpart of the limit-one property for concurrent
tail games, which states that if at least one vertex has strictly positive value then at least one vertex
has value one [ChaO7a].

Theorem 6 (Positive-almost property). In any finite simple stochastic tail game, if Eve has a
positive strateqy from at least one vertexr, she has an almost-sure strategqy from at least one vertex.

As a consequence we obtain qualitative determinacy of simple stochastic tail games.

Theorem 7 (Qualitative determinacy). In any finite simple stochastic tail game, from any
vertex, either Eve has an almost-sure strateqy or Adam has a positive strategy, and vice versa.

Whereas Theorem 1 does not hold for the three games depicted on Figure 1, these three games
are qualitatively determined. This gives hope that Theorem 7 may be extended beyond the class of
simple stochastic tail games.



4 Computing Values in Tail Games

In recent years, many algorithms were proposed to compute the values of specific classes of finite
simple stochastic tail games. These algorithms are often adaptations of algorithms for reachability
games which use qualitative algorithms as oracles. For example, one can guess a solution to a set
of local consistency equations and use a qualitative algorithm to check necessary and sufficient
conditions on the value regions: see [CdAHO05]| for Rabin games, [Cha07b| for Muller games, and
[CHHO8| for finitary games. It is also possible to adapt the strategy improvement algorithm of
[HK66] when one of the players has positional strategies: see [CJHO04| for parity, and [CH06| for
Rabin games. Finally, in one-player stochastic tail games (Markov Decision Processes), one can
compute first the almost-sure region, and then the values of the reachability game to this region
[ChaOT7a).

In this section, we propose a generic way to compute the values of any tail game, using quali-
tative oracles and permutation concepts from the algorithm for reachability games of [GHO09|. The
theoretical complexity of the resulting “meta-algorithm” matches the best known results in each of
the cases mentioned before: NP and co-NP membership for quantitative problems in parity games, NP-
completeness (resp. co-NP-completeness) in Rabin (resp. Streett) games, and PSPACE-completeness
in coloured Muller games. The following theorem unifies and generalises these results:

Theorem 8. Let € be a class of tail conditions. If the problem of deciding whether a vertex is
almost-surely winning for Eve in finite simple stochastic €-games belongs to the complexity class IC,
then the problem of deciding whether the value of a vertex is greater than % in finite simple stochastic
C-games belongs to the classes NPX and co-NPX.

Furthermore, the permutation algorithm is much more efficient than the “brute-force” approach
of guessing the values:

Theorem 9. Let € be a class of tail conditions. If the almost-sure region of Eve in a €-game G can
be computed in time t(|G|), then the values of any €-game G can be computed in time |Qr+1|!-t(|G|).

The main idea of our algorithm is that if Adam does not make obvious mistakes, Eve can only
hope to win by reaching her almost-sure region. This can only be done through random vertices:
there is no vertex of Eve leading to it (it would belong to the almost-sure region), and she cannot
hope that Adam will enter it voluntarily (that would be an obvious mistake). The winning condition
is then only a tool for Eve to ensure that the token reaches the best possible random vertex: if Adam
refuses to comply, he loses with probability one. Consider for example what happens in the game of
Figure 2, where the goal of Eve is reaching square vertices infinitely often. By herself, Eve cannot
send the token into the top random vertex. However, she can do better than sending the token to
the bottom random vertex and win with probability .1. Actually, by repeatedly sending the token
to Adam’s vertex, she forces him to either send the token to the top vertex or lose the play, and she
wins with probability 1.

The behaviour of both players is then determined by their preferences over the random vertices.
Furthermore, it is sufficient to consider the cases where Eve and Adam share the same estimation
over the respective quality of random vertices, i.e., when their preferences are opposed. These
preferences are represented by permutations over the random vertices. In the remainder of the
paper, a permutation T designates a permutation (7q,...,7) over the k random vertices, such that

{m1,..., 7} = QR.
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Fig. 2. Winning condition as a tool for Eve

For simplicity (and efficiency), we first normalise the games we consider: we compute the almost-
sure regions of both players, and merge each of them into a single sink vertex (® for Adam, ® for
Eve). The winning condition is modified accordingly: a play that reaches ® is winning for Adam
and a play that reaches © is winning for Eve. In permutation-based concepts, we often consider the
sink and target vertices as random vertices with the implicit assumption that they are respectively
the lowest and greatest vertices: mg = ® and 741 = ©.

Adam’s almost-sure region

Eve’s almost-sure region

(a) Original game (b) Normalised game
Fig. 3. Game normalisation

The principle of our algorithm is to search for a live (Definition 12) and self-consistent (Defini-
tion 11) permutation, from which the values can be easily derived. There is always such a permuta-
tion, so an exhaustive search yields Theorem 9, while a non-deterministic guess yields Theorem 8.

We first need to determine, for each vertex, the best (with respect to 7) random vertex that
Eve can ensure to reach. We do so with the help of a qualitative oracle, which computes embedded
almost-sure regions for Eve:

Definition 10. Let G = (A, ®) be a normalised finite simple stochastic tail game, and 7 be a
permutation over the k random vertices of A. The vertices of A are partitioned into the m-regions

(Wx[0],...,Wx[k + 1]) defined as follows:

= Walk+1] ={e};
— for any 1 < i < k, Wy[i] is the almost-sure region of Eve in A with respect to the objective
U Reach(UjZi{wj}), minus Uj>iW7r[j];



— Wr[0] = {®}.

Notice that a random vertex m; may belong to a region Wy [j] with ¢ < j (but not ¢ > j). In this
case, the region W;[i] is empty. Once the m-regions have been computed, we derive from them a
Markov Chain G™, with k + 2 vertices numbered 0. ..k + 1: for any 4,5 € [0,k + 1], the probability
of going from 7; to m; is equal to the probability of going from m; to Wr[j] in G. We denote by vy[i]
the value of 7; in G™.

Self-consistency is then a most natural condition, as it simply expresses the adequation between
a priori preferences, and resulting values:

Definition 11. Let G be a finite simple stochastic tail game with k random vertices. A permutation
m over Qg is self-consistent if for any 1 <i < j <k, vg[i] < vglj].

Liveness expresses the intuitive fact that a random vertex should always have a positive proba-
bility to progress to a better region (from Eve’s point of view) in one step:

Definition 12. Let G be a finite simple stochastic tail game with k random vertices. A permutation
m over Qg is live if for any 1 <i <k, §(m;)(Uj>iWx[j]) > 0.

Our interest in self-consistent and live permutations is explained by the following proposition,
which the key for the proof of Theorem 9.

Proposition 13. Let G be a finite simple stochastic tail game with k random vertices. Then there
exists a self-consistent and live permutation in G. Checking that a permutation is live and self-
consistent can be achieved with k calls to a procedure computing almost-sure winning sets of games
smaller than G. Given a live and self-consistent permutation, values of G are computable time
polynomial in the size of G.

Proof (of Theorem 9). The algorithm enumerates all possible permutations of random vertices,
and check whether they are live and self-consistent. Once such a permutation is found, values are
computed in polynomial time. According to Proposition 13, this can be achieved with less than
(k + 1)! calls to the procedure computing almost-sure winning sets.

An important theoretical by-product of this proof follows from the fact that the m-strategies
derived from a live and self-consistent permutation are optimal:

Theorem 14. In any finite simple stochastic tail game, both players have optimal strategies.

It can also be noted that Eve’s strategy is defined as a spatial composition of residually almost-
sure strategies, and does not use more memory than its components:

Theorem 15. Let € be a class of tail conditions. If Eve has almost-sure strategies with finite mem-
ory M in C-games, then she also has optimal strategies with memory M in €-games.

Note that Theorem 15 does not hold when the winning condition is not a tail condition. Consider
for example the (regular) case of weak-parity games, where Eve wins if the lowest visited vertex
is even. Both players have positional almost-sure strategies, but optimal strategies may require
memory, as in Figure 4.



Fig. 4. Optimal strategies require memory in weak parity games

5 New examples of games with computable values

In this section we apply results of the previous section and present an algorithm for computing values
of games whose winning condition is a boolean combination of Biichi and mean-payoff conditions.

In verification, Biichi games are popular tools, due to their strong links with temporal logics
and their ability to encode accessibility, safety and liveness conditions [GTWO02|. In a Biichi game,
a subset B C Q of the vertices is called the set of Biichi states. The goal of Eve is to visit these
vertices infinitely often: @pue = {(qo,q1,q2,...) € Q¥ | I°n,q, € B}.

In simple stochastic Biichi games, almost-sure sets can be computed in quadratic time [dA97]
and values of Biichi games in exponential time [dAHO0].

Mean-payoff games arise from economic modeling and have been extensively studied in classical
game theory [MN81]. In a game equipped with the mean-payoff condition @yean, each vertex g is
labelled with a reward r(¢q) € R and the goal of Eve is to maximize the probability that the average
value of rewards is positive:

)+ () ) 2 0)

Pmean = {(QO7QI7Q27 . ) €Q” | limnsup
Remark that this definition slightly differs from the usual notion of mean-payoff game, where Eve
wants to maximize the expected average value of rewards, while in a @y ean-game Eve wants to
maximize the probability that this average value is positive. For that reason, we cannot make use
of the classical algorithms for mean-payoff games. However, results of [Gim07,Gim06| imply that
players have positional (memoryless) optimal strategies in @ean-games, hence a standard strategy
enumeration algorithm can be used to compute values of @ ean-games in exponential time. The
almost-sure set is exactly the set of vertices with value 1, according to Theorem 1.

Theorem 16. Values of games equipped with winning conditions Pmean N Pouc and Poean U Ppuc
are computable in exponential time.

At first, computing values of @ ean N Ppuc-games and Prean U Phuc-games seems pretty compli-
cated, because in these games players do not have positional (memoryless) optimal strategies, in
contrary to @pyc-games and P ean-games.

However, since @nean N Phuc and Prean UPpuce are tail winning conditions, we can make use of the
algorithm described by Theorem 9, and it is enough to design algorithms for computing almost-sure
regions in Prean N Pouc and Prean U Pouc games, which is quite easy.

For the winning-condition @y ean N Phue, computation of the almost-sure region is achieved by
Algorithm 1, which computes the largest sub-game where Eve wins both the @,,can and @y, games.
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Input: A game G=(Q,7)and r: Q >R and BC Q.
Output: The almost-sure region R of Eve in (G, @Pbuc N Pmean)
1 R« Q;
2 repeat
let R’ be the almost-sure region in the @,can-game induced by R
let R” be the almost-sure region in the ®yu.-game induced by R’
if R=R" then
| return R;
else

L R<—RN;

(o I = L BV

Algorithm 1: Algorithm for computing almost-sure region for @puc N Prean-

For the winning-condition @ ean U Phuc, computation of the almost-sure region is achieved
by Algorithm 2. This algorithm uses reachability games, whose winning condition is @reach =
{(90,q1,92,-..) € Q¥ | In € N,q, € B} and computes the largest sub-game of G where from
every vertex Eve wins either positively the @cac game or wins almost-surely the @ean game.

Input: A game G=(Q,7)and r: Q >R and BC Q.
Output: The almost-sure region R of Eve in (G, @Pbuc U Pmean)
1 R+ Q;
2 repeat
let R’ be the almost-sure region of Adam in the @, c.cn-game induced by R;
let R” be the positive region of Adam in the ®mean-game induced by R’;
if R” = () then
| return R;
else
L remove R” from R;

(o I =PI L BV

Algorithm 2: Algorithm for computing almost-sure region for @pyc U Prean-

6 Conclusion

We have shown that the computation of values of simple stochastic games with a tail winning
condition reduces to the computation of almost-sure winning sets in games with the same winning
condition. Moreover, we have proved the qualitative determinacy of stochastic tail games and the
existence of optimal strategies in these games. Based on these results, we have described an algorithm
for computing values of games whose winning condition is a boolean condition of mean-payoff and
Biichi condition.

This work opens two interesting research directions. First, finding classes of tail winning con-
ditions that are of interest for verification and/or economics and whose values are computable.
Second, checking whether qualitative determinacy holds for other classes of stochastic games: con-
current games, pushdown games or games on vector addition systems.
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A Proofs for Section 3

Proof (of Proposition 3). For any finite play u such that v,(u) < 7, we define a strategy 7, such
that v, -, (u) < 7. Consider now the strategy 6, defined by:

— if for any prefix u of z, v,(u) > n, 0(x) = 7(z);
— if w is the shortest prefix of = such that v(u) <n, 8(z) = 7,(x).

It is clear that P77 (A7) = ]P’Z’e(/l;’]), and that P (@ | A7) <. As Py (@) > v, we get:
v<n-P7T(A7) + (1 =P77(A7)) .
Proposition 3 follows.

Proof (of Proposition 4). For any integer n, we define the function ¢, from {2 to [0, 1] by ¢, (p) =
Vgr(P0 - - - pn)- By Levy’s law [Dur96],

]P’;"T(nILH;O ETTon =1g) =1 .
Now, if p # A7, we get,
V1, on(p) = Vor(po---pn) = Vo(po-- pn>1 ,
80 limy, oo on(p) # 0, Pg7(® | =A7) = 1, and Proposition 4 follows.
We define some shorthand notation to simplify the manipulation of reset-related events:

R; = {p € 29| there are i resets in p} ,

Ry =R .
i€eN

We can now prove two intermediate propositions about the behaviour of reset strategies:

Proposition 17. Let q be a vertex of Q, o be a strategy for Eve, and T be a strategy for Adam. We
have:
T,
Py"" (RY)=0

Proof. Let v = min{uv,(s) | s € Q@ Avy(s) > n}. The key observation is that:

. . 1—v
. O nT 1
i, BT (R R)) < T 1)
Indeed, after the ith reset, the token is in a vertex whose o-value is greater than 7 (and thus greater
or equal than v), and Eve plays o as if the play just started. Thus, by Proposition 3, the probability
that the o-value of the finite play in memory will ever drop below 7 is at most ﬁ’ and (1) follows.

This completes the proof of Proposition 17.

Proposition 18. Let q be a vertex of Q, o be a strategy for Eve, and T be a strategy for Adam. We
have:
PGS | 30,V > 4, v0(ps) > 1) =1 .
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Proof. By Proposition 17, ]P’g“’ ’T(R%O) = 0, so we can consider only the plays with a finite number
of resets. Let us consider the “final” memory after the play: it is a play consistent with ¢ which
does not verify A7. By Proposition 4 it is winning for Eve with probability one, and Proposition 18
follows from the fact that @ is a tail condition.

Proof (of Theorem 1). Let us show first how to compute an almost-sure strategy for Eve from the
vertices with value one. As Q is finite, we can choose a real number 7 such that Vg,v(q) < 1 —
v(q) < n and a strategy o such that Vq,v(q) = 1 — vs(q) > 1. The proof consists then in showing
that 0|, is almost-sure from any vertex with value one. Neither Adam nor Random can leave the
region with value one, and by Definition 5, Eve does not: she could leave only if the value of the
prefix was below 7, and she would sooner reset her memory. So, for any play p starting in the region
with value one and consistent with o,, Vi,v,(p;) > 7, and by Proposition 18, P () = 1. An
almost-sure strategy for Adam from the vertices with value zero can be built in the same way. This
completes the proof of Theorem 1

Proof (of Theorem 6). By Theorem 1, each vertex in the positive region of Eve has a positive value.
As Q is finite, we can choose a real number v such that Vg € Q,v < v(q), and a strategy o such
that Vg € Q,vs(q) > v. Let n be a real number such that n < v. For any play p of A, Vi, v,(p;) > n,
so Proposition 18 yields the almost sureness of o},. The second equation follows by duality, and
Theorem 6 follows.

B Proofs for Section 4

For a given permutation 7, we define the m-strategies for both players:

Eve’s m-strategy o, is a spatial combination of almost-sure strategies: in W;[i], she plays an
almost-sure strategy with respect to the objective W V Reach(U;>;{;}).

Adam’s 7-strategy 7, is a spatial combination of reset strategies: in Wr[i], he plays a bounded
strategy of value n with respect to the objective W V Reach(U;>;{7;})), which is reset when the
value of the prefix drops below . By Proposition 18, if any region is visited infinitely often, Adam
wins with probability one, and Proposition 19 follows:

Proposition 19. Let w be a permutation, and 7, be the corresponding w-strateqy for Adam. For
any initial vertex q and strategy o of Eve, we have:

P7™ (=@ V Reach©) = 1

Proposition 20. Let w be a live permutation, and o, be the corresponding w-strateqy for Eve. For
any strategy T of Adam, we have:

Po=7(® V Reach ®) = 1

Proof. Let q be a vertex of Q, 7 be a strategy for Adam, and Stuck(i) be the event “Inf(p) "Wy [i] #
OAInf(p)N{m;, ..., 7} = 0”. By definition of o, for any 1 < i < k, we have Pg™" (Stuck(i)A—=®) = 0.
By the liveness property, for any 1 < i < k, we have Pq™" (m; € Inf(p) AInf(p) NU;>;Wr[j] = 0) = 0.
Proposition 20 follows.

Proposition 21. There is a live permutation consistent with the values of G.
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Proof. The permutation is chosen starting from 7, and going down to m1. At each step, the vertex
m; is chosen among the ones such that:

— v(m) = max{v(q) | ¢ € Qr \ {mit+1,..., Tk }}
= 0(mi)(Uj>iWrli]) > 0

There is always such a vertex: otherwise, the set X of vertices whose value is maximal in Q \
Uj>iWr[j] would be a trap for Adam, and the vertices of X have value 1, in contradiction with the
“normalised” hypothesis.

Proposition 22. Let 7 be a self-consistent permutation, and i and j be two integers such that i < j
and m; € Wrlj]. Then for all ¢ such that §(m;)(Wr[€]) > 0, v:[i] = v:[j] = v [(].

Proof. As m; € Wr[j], 6(m))(Wx[€]) > 0 = ¢ > j. By self-consistency, { > j = v:[{] > v:[j], so
v, [i] > v.[j]. But, again by self-consistency, v,[i] < v:[j]. So v.[i] = v:[j], and, o(m;)(W,[{]) > 0 =
v, [i] = v.[f]. Proposition 22 follows.

Lemma 23. There is a live and self-consistent permutation.

Proof. The first part of this proof was to show that there is a live permutation 7 consistent with
the values of the game (Proposition 21). The point is now to prove that the m-values are the values
of G. These values are constant over the m-regions:

g € Wing/ "M (4) = v(g) > min{v(q) | ¢ € X}

q¢ Win%VReaChx’l(A) = v(q) <max{v(r) |r € Qr\ X}

Thus, the relations between the values of the m-regions which follow from (?7?) are exactly the
relations between the values of the vertices in &". So v = v, and Lemma 23 follows.

Lemma 24. If 7w is a live and self-consistent permutation, then the m-strategies are optimal and
v = V.

Proof. We fix an initial vertex ¢ and prove independently that v,_(q) > v:(q) and v;_(q) < v.(q).
Let 7 be a strategy for Adam. We define an “expected m-value” function f by f(n) = > .o 0x(s) -
Pg™" (pn, = s). This function is waxing:

— a move of Eve consistent with ¢, remains in the same m-region;

— a move of Adam sends the token to a vertex with greater or equal m-value (self-consistency);

— the value of a random vertex m; such that m; € Wy[i] is the average value of its successors;

— a random vertex m; such that m; € W;[j] and i < j sends the token to a vertex with equal
m-value (Proposition 22).

Thus, f(n) < f(n + 1). Furthermore, as f(n) < 1 —Pg™"(p, = ®), we get lim f(n) < 1 —
Pg™" (Reach ®). By Proposition 20, Py (Reach ®) = 1—v,, +(q), s0 v:(q) = f(0) < lim,_o0 f(n) <
Vo, +(q). As T is an arbitrary strategy for Adam, we get v, > 0.

Likewise, for a strategy o for Eve, we define the function g by g(n) = > co 0x(s)-Pg"" (pn = 5).
This function is waning:

— a move of Eve sends the token to a vertex with lower or equal m-value (self-consistency);
— a move of Adam consistent with 7, remains in the same m-region;
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— the value of a random vertex m; such that m; € Wy [i] is the average value of its successors;
— a random vertex m; such that m; € W;[j] and i < j sends the token to a vertex with equal
m-value (Proposition 22).

Thus, g(n) > g(n + 1). Furthermore, as g(n) > Py (p, = ®), we get limg(n) > Pg"" (Reach ®).
By Proposition 19, Pg™" (Reach ®) = v,.1, (¢), s0 v:(q) = g(0) > lim;,, .00 g(n) > vs.r, (q). As o is
an arbitrary strategy for Eve, we get v, < v;.

It follows that v, = v, = v, so o, and 7, are optimal strategies, and v, = v. This concludes
the proof of Lemma 24.

C Proofs for Section 5

Proof (of Theorem 16). According to Theorem 9, it is enough to provide exponential time algorithms
for computing almost-sure sets of @y ean UPpuc-games and Ppean NPhuc-games. This is a consequence
of the following propositions.

Proposition 25. Algorithm 1 terminates and is correct.

Proof. First we have to explain what is the "®can-game induced by the subset" R C O, since
this term is used in line 3 of Algorithm 1. This notion defined only if R is a trap for Adam, in the
following sense.

Definition 26. Let G = (Q,7) be a game. A subset R C Q is a trap for Adam if every random
verter ¢ € RN Qg and every Adam vertices ¢ € RN Q4 have all their successors in R and every FEve
vertex ¢ € RN Qg has at least one successor in R. In this case the game on the arena (R, T "R X R)
is called the game induced by R and denoted G[R].

Since Ppean and Py are tail winning conditions, the almost-sure winning sets of Eve in @can-
games and Ppy-games are traps for Adam, hence the following invariant of Algorithm 1:

(A) The sets R, R’ and R are traps for Adam.

Thus it makes sense to speak about the game arena G[R)].

To prove that Algorithm 1 is correct, we prove that the almost-sure winning set of Eve for
the @ pean N Ppuc-game is the largest set R C Q such that R is a trap for Adam and Eve wins
almost-surely both the @yean and the @pye games in G[R]. This property is stable by union hence
the existence of such a largest set R.

We prove that R is contained in the almost-sure region for Eve in the @pean U Phuc-game.
According to [Gim07], in G[R] Eve has two positional optimal strategies op : R — R and oy :
R — R that are almost-surely winning for the Biichi and mean-payoff games respectively. To win
almost-surely the @puc N Prean-game, Eve can alternate between opg and oj. Since R is finite, there
exists a probability p > 0 that using op Eve will reach a Biichi vertex with probability more than
p in less than |R| steps, whatever be the initial vertex ¢ € R. Then it is straightforward to check
that the following strategy is almost-surely winning for the @y N Prean-game: play oy for 1 step,
play op for |R| steps, play oy for 2 step, play op for |R| steps, play o for 3 step, play op for |R)|
steps and so on... Actually this strategy both guarantees to visit Biichi vertices infinitely often and
that the expected mean value of rewards is positive, as guaranteed by ojy.

We prove that the almost-sure region for Eve in the @ pean U Phuc-game is contained in R. This
property actually holds not only for R but for R' and R”, at every step of Algorithm 1. This is clear
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because if Eve can win the @,,can N Ppuc-game almost-surelythen a fortiori she should win both the
P nean and the dp,c games almost-surely.

Proposition 27. Algorithm 2 terminates and is correct.

Proof. 1t is easy to establish that:
(A) The set R is a trap for Eve in G[R] and the set R — R” is a trap for Adam,

thus it makes sense to speak about the games induced by R and R'.

To prove that Algorithm 2 is correct, we prove that the almost-sure winning set of Eve for the
D nean U Ppuc-game is the largest set R C Q such that R is a trap for Adam and, denoting R’ the
almost-sure region for Adam for the @;each-game in G[R], Eve wins almost-surely the @pcan-game
in G[R']. This property is stable by union hence the existence of such a largest set R.

We prove that R is contained in the almost-sure region for Eve in the @ean U Ppuc-game. Again
we construct an almost-sure strategy which consists in switching between two positional strategies.
When the play is in R, Eve plays her positional strategy almost-sure for the @,can-game. When the
play is outside R’, Eve plays for |R| steps her positional strategy for attracting the play in a Biichi
vertex with positive probability. Under the conditional hypothesis that the play stays ultimately
trapped in R’ then Eve wins the @can-game with probability 1. Under the conditional hypothesis
that the play reaches R — R’ infinitely often then with probability 1 the play visits Biichi vertices
infinitely often, hence Eve wins the @y, .-game with probability 1. This proves that Eve is almost-
surely winning the @ean U Ppyc-game on R.

We prove that the almost-sure region for Eve in the @ can U Ppuc-game is contained in R. This
is because every set R” which is removed from R is such that R” is a trap for Eve in G[R] and
moreover Adam wins the @ean U Ppyc-game with positive probability in G[R”]. Hence at every step
of the program, Q@ — R is contained in the positive region for Adam in the @ean U Ppuc-game and
the almost-sure region for Eve in the @ can U Ppuc-game is contained in R.
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