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Introduction

In randomized clinical trials, survival times are often measured from randomization or treatment implementations. But studying survival functions or hazard rates may be inadequate to answer a patient asking, during the trial, how much more time he still has or whether the new treatment improves his life expectancy. To correctly address these questions, life expectancy must be studied as a function of time, via the so-called mean residual life (MRL) function: e(y) = E(Y -y|Y > y) , y > 0, (1.1) where Y is a lifetime (i.e. a nonnegative random variable) with E(Y ) < +∞. This functionaverage remaining life of a surviving subject -is of interest in several other application fields, such as reliability or actuarial studies. For a discussion concerning statistical applications of the MRL, we refer to [START_REF] Embrechts | Modelling Extremal Events[END_REF]. If we denote by F the cumulative distribution function (cdf) and by F = 1 -F the survival function, we have the following formula for the MRL e: e(y) = +∞ y F (u)du/F (y) if F (y) > 0 0 otherwise.

This equality leads to several proposals of nonparametric estimators, built by plug-in of Kaplan-Meier survival estimators, see [START_REF] Hall | Mean residual life. Statistics and related topics[END_REF] or [START_REF] Csörgö | Mean Residual Life Processes[END_REF] and the references therein. Under adequate assumptions, these estimators inherit the parametric rates of the Kaplan-Meier estimator, but unfortunately they are not smooth. To circumvent this drawback, regularized estimators based on kernel smoothing have been proposed by [START_REF] Chaubey | On smooth estimation of mean residual life[END_REF] or [START_REF] Abdous | Mean residual life estimation[END_REF].
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To measure the combined effect of a covariate X on the MRL, we shall rather define and study the conditional MRL:

e(y|x) = E(Y -y|Y > y, X = x) = +∞ y F (u|x)du/F (y|x) if F (y|x) > 0 0 otherwise, (1.2)
where F (y|x) is the conditional survival function of Y given X = x:

F (y|x) = P(Y > y|X = x) = +∞ y f (X,Y ) (x, u)du f X (x) if f X (x) > 0.
Here f (X,Y ) denotes the joint probability density of (X, Y ) and f X denotes the marginal density of X. In semi-parametric regression analysis, Oakes & Dasu (1990) propose a proportional mean residual life model to study the association with related covariates, when the response is completely observed. This model is studied in [START_REF] Maguluri | Estimation in the mean residual life regression model[END_REF]. Then, Chen & Cheng (2005) and Chen et al. (2005) have developed strategies in this model for censored response.

In this paper, we propose a minimum contrast estimator of the conditional MRL. To our knowledge, this is the first purely nonparametric approach. To be more precise, we propose a regression-type contrast that we minimize over collections of finite dimensional functional spaces spanned by orthonormal bases, called models. This produces a collection of estimators among which the best one, in a sense to be defined, is chosen by using a penalization device. The resulting estimator is proved to satisfy an oracle type inequality. This type of nonparametric strategy has been introduced by [START_REF] Barron | Risk bounds for model selection via penalization[END_REF] among others, but using it in the present setting is new.

We describe in Section 2 our estimation strategy. First, we present the contrast which is minimized in the following. Then we give the conditions on the spaces over which the contrast is minimized: this corresponds to model collections for which examples are provided. The procedure is completed by a model selection performed via a penalization of the minimal contrast. Then MISE bound is given in Section 3 and illustrated by asymptotic rate over Besov spaces. Illustrations are provided in Section 4 and concluding remarks are stated in Section 5. Most proofs are relegated in Section 6.

Estimation strategy

2.1. Definition of the contrast. Let Y be a nonnegative random variable and X a onedimensional covariate. We assume that the joint density

f (X,Y ) of (X, Y ) is such that F1 (x, y) = +∞ y f (X,Y ) (x, u)du and F2 (x, y) = +∞ y F1 (x, u)du
are measurable and finite nonnegative functions. Then, it is interesting to remark that

e(y|x) = F2 (x, y) F1 (x, y) if F1 (x, y) > 0.
This holds by simplification by f X (x) in Formula (1.2). Next, we consider two functions S and T such that S 2 (x, y) F1 (x, y)dxdy < +∞ and T 2 (x, y) F1 (x, y)dxdy < +∞. We define the µ-scalar product of S and T by (2.1) S, T µ = S(x, y)T (x, y)dµ(x, y) with dµ(x, y) = F1 (x, y)dxdy and by . µ the associated norm: T 2 µ = T, T µ . This is meaningful as F1 (x, y) ≥ 0 and we will work on fields where F1 (x, y) > 0.

Let T : (x, y) → T (x, y) be a bivariate measurable compactly supported function, with support denoted by A = A 1 × A 2 . We propose to study the following contrast for estimating the conditional MRL e(y|x):

(2.2) Γ n (T ) = 1 n n i=1 T 2 (X i , y)1 I {Y i ≥y} dy -2Ψ T (X i , Y i )
where

Ψ T (x, y) = y 0 (y -u)T (x, u)du.
This contrast is justified by the following result:

Proposition 2.1. Assume that T and e are µ-square integrable. Then, under the following assumption:

(A0) For all x ∈ A 1 , lim y→+∞ y F1 (x, y) = 0, we have: E(Γ n (T )) = T -e 2 µ -e 2 µ .
Therefore, minimizing the contrast Γ n (T ) over a large set of functions should mean minimizing the empirical counterpart of T -e 2 µ and lead to find the function T which is the "nearest" of e among a given class of functions.

Proof of Proposition

2.1. Let us compute (2.3) E(Γ n (T )) = E T 2 (X 1 , y)1 I {Y 1 ≥y} dy -2Ψ T (X 1 , Y 1 ) .
First, the Fubini-Tonelli Theorem implies that

E T 2 (X 1 , y)1 I {Y 1 ≥y} dy = T 2 (x, y)1 I {u≥y} dy f (X,Y ) (x, u)dxdu = T 2 (x, y) F1 (x, y)dxdy, (2.4)
and the last term is finite as T is µ-square integrable. Secondly, an integration by part yields

+∞ u (y -u)f (X,Y ) (x, y)dy = [-(y -u) F1 (x, y)] y=+∞ y=u + +∞ u F1 (x, y)dy = F2 (x, u)
under the condition (A0). Therefore, with the Fubini-Tonelli Theorem first and next the Cauchy-Schwarz Inequality, we have

y 0 (y -u)|T (x, u)|f (X,Y ) (x, y)dudxdy = |T (x, u)| F2 (x, u)dudx = |T (x, u)|e(u|x) F1 (x, u)dudx ≤ T 2 (x, u) F1 (x, u)dudx e 2 (u|x) F1 (x, u)dudx 1/2 .
The last bound is finite since T and e are µ-square integrable. Thus, the Fubini Theorem can be applied to get:

E (Ψ T (X 1 , Y 1 )) = y 0 (y -u)T (x, u)duf (X,Y ) (x, y)dxdy = 1 I {u≤y} (y -u)f (X,Y ) (x, y)dy T (x, u)dxdu = T (x, u) F2 (x, u)dxdu. (2.5)
Now, gathering (2.3), (2.4) and (2.5) yields

E(Γ n (T )) = [T 2 (x, y) -2T (x, y)e(y|x)] F1 (x, y)dxdy = T 2 µ -2 T, e µ
To end the proof, we can see that

E(Γ n (T )) = T -e 2 µ -e 2 µ . 2 Remark 2.1. Since F1 (x, y) = F (y|x)f X (x)
, Assumption (A0) is easily satisfied when the cdf y → F (y|x), for fixed x, belongs to exponential family laws (and has exponential rate of decay w.r.t. y).

Remark 2.2. Note that the simpler contrast defined for a function t(•) of one variable by:

(2.6)

γ n (t) = 1 n n i=1 t 2 (y)1 I {Y i ≥y} dy -2ψ t (Y i ) where ψ t (y) = y 0 (y -u)t(u)du
would lead to build an estimator of e(.) in the non-conditional setting (in which case e(.) is univariate). But this would not improve the rate of convergence. Indeed nonparametric estimators obtained by substituting Kaplan-Meier estimators (or empirical distribution functions) to the true survival functions achieve the parametric rate √ n (see [START_REF] Hall | Mean residual life. Statistics and related topics[END_REF] or [START_REF] Csörgö | Mean Residual Life Processes[END_REF]): therefore, it cannot be improved by any strategy. The contrast proposed in (2.6) would only avoid to consider directly a quotient estimator. Note that this estimator would have interesting properties in a nonasymptotic point of view. But, this is not in the scope of this paper. Now, we need to specify the set of functions T that are considered here, to check that the minimum Γ n -contrast estimator can adequately be defined, including possibly model selection, and to prove an oracle risk-bound result.

2.2. Assumptions and collections of linear spaces. Let us mention first that we provide an estimator of e on a compact set only. We denote this compact by A = A 1 × A 2 and the collection of spaces are defined with respect to this compact set. We will use norms referring to this compact set, for T ∈ (L 2 ∩ L ∞ )(A):

T 2 A = A T 2 (x, y)dxdy, T ∞,A = sup (x,y)∈A |T (x, y)|.
Moreover, our assumptions are also related to this compact set:

(A1) There exist F0 , f 1 > 0 such that ∀(x, y) ∈ A 1 × A 2 , F1 (x, y) ≥ F0 and f X (x) ≤ f 1 . (A2) ∀(x, y) ∈ A 1 × A 2 , e(y|x) ≤ e ∞,A < +∞.
Assumptions (A1) and (A2) are weak because the bounds are required on a compact set only. As F1 (x, y)/f X (x) is a conditional survival function, it is bounded by 1, thus f X (x) ≤ f 1 in (A1) implies F1 (x, y) ≤ f 1 for (x, y) ∈ A. Therefore Assumption (A1) implies that ∀(x, y) ∈ A, F0 ≤ F1 (x, y) ≤ f 1 i.e. the reference measure of the problem here dµ(x, y) = F1 (x, y)dxdy is equivalent to the Lebesgue measure on A. Now, we introduce a collection {S m : m ∈ M n } of projection spaces: S m is called a model and M n is a set of multi-indexes (see the examples below). For each m, the space S m of functions with support in A = A 1 × A 2 is defined by:

S m = F m ⊗ H n = h, h(x, z) = j∈Jm k∈Kn a j,k ϕ m j (x)ψ k (z), a j,k ∈ R ,
where F m and H n are subspaces of (L 2 ∩L ∞ )(R) respectively spanned by two orthonormal bases:

(ϕ m j ) j∈Jm with |J m | = D m , where D m is varying and (ψ k ) k∈Kn with |K n | = D (2)
n is fixed. For all j and all k, the supports of ϕ m j and ψ k are respectively included in A 1 and A 2 . Here, indexes j and k are not necessarily integers, they can be pairs of integers, as in the case of a piecewise polynomial space specified below.

Remark 2.3. From a theoretical point of view, we may consider that the covariates X are in R d and consider models of the form S m = F m 1 ⊗ . . . F m d ⊗ H n . The convergence rate would be slower because of the curse of dimensionality.

Let us introduce the following set of assumptions on the models {S m : m ∈ M n }, which are usual in model selection techniques. The specificity here is that they mainly concern the x-direction and the spaces {F m : m ∈ M n }. We denote by F n the space in the collection of the F m 's with maximal dimension denoted by D

(1)

n and note that dim(H n ) = D (2) n . • (M1) D (1) n ≤ n 1/4 / √ log n, D (2) 
n ≤ n 1/4 / √ log n and ∀m, F m ⊂ F n . • (M2) There exists a positive real φ 1 such that, for all m ∈ M n , we have

∀x ∈ A 1 , j∈Jm (ϕ m j (x)) 2 ≤ φ 1 D m • (M3) Nesting condition: D m ≤ D m ⇒ F m ⊂ F m .
Assumptions (M1)-(M3) are not too restrictive. Indeed, they are verified for the spaces F m on A 1 = [0, 1] without loss of generality, spanned by the following bases (see [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]):

• [T ] Trigonometric basis: span(ϕ 0 , . . . , ϕ m-1 ) with ϕ 0 = 1 I [0,1] , ϕ 2j (x) = √ 2 cos(2πjx) 1 I [0,1] (x), ϕ 2j-1 (x) = √ 2 sin(2πjx)1 I [0,1] (x) for j ≥ 1. For this model D m = m and φ 1 = 2 hold.
• [DP ] Regular piecewise polynomial basis: polynomials of degree 0, . . . , r (where r is fixed) on each interval [( -1)/2 D , /2 D [ with = 1, . . . , 2 D . In this case, we have

m = (D, r), J m = {j = ( , d) ∈ N × N, 1 ≤ ≤ 2 D , 0 ≤ d ≤ r}, D m = (r + 1)2 D and φ 1 = √ r + 1. • [W ]
Regular wavelet basis on an interval, as described by [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF].

Remark 2.4. If we denote by [H] the histogram basis defined by: for

A 1 = [0, 1], span(ϕ 1 , . . . , ϕ 2 m ) with ϕ j = 2 m/2 1 I [(j-1)/2 m ,j/2 m [ for j = 1, . . . , 2 m , we have D m = 2 m , φ 1 = 1.
We want to emphasize that [H] is a particular case of both [DP ] and [W ], and that practical computations with [H] are easier than with any other basis.

Remark 2.5. The first assumption can be weakened for localized basis: for histogram basis, piecewise polynomial basis and wavelets, (M1) reduces to D (i) n ≤ n/ log n. Assumption (M1) implies that there exists for the F m ⊗ H n 's a global nesting space S n := F n ⊗ H n with dimension denoted by N n . By assumption (M1), we have N n ≤ n/ log n but for localized basis N n ≤ n/ log n would be sufficient to prove Theorem 3.1 in Section 3. The condition (M2) implies a useful link between the sum of the squared basis functions and the dimension of the space F m . The third assumption (M3) implies in particular that ∀m,

m ∈ M n , S m +S m ⊂ S n := F n ⊗H n .
2.3. Definition of the estimator. The first step would be to define êm = arg min T ∈Sm Γ n (T ). To that end, let T (x, y) = j∈Jm k∈Kn a j,k ϕ m j (x)ψ k (y) be a function in S m . To compute êm , we have to solve:

∀j 0 ∈ J m ∀k 0 ∈ K n , ∂Γ n (T ) ∂a j 0 ,k 0 = 0 or equivalently for all j 0 ∈ J m , k 0 ∈ K n , j∈Jm k∈Kn a j,k 1 n n i=1 ϕ m j (X i )ϕ m j 0 (X i ) ψ k (z)ψ k 0 (z)1 I {Y i ≥z} dz = 1 n n i=1 ϕ m j 0 (X i ) Y i 0 (Y i -u)ψ k 0 (u)du.
Let vec(.) denote the operator that stacks the columns of a matrix into a vector. The above equation can be summarized by G m Âm = Υ m , where Âm denotes the vector vec((â j,k ) j∈Jm,k∈Kn ) of the coefficients of the development of the estimator in the basis,

G m := 1 n n i=1 ϕ m j (X i )ϕ m l (X i ) ψ k (z)ψ p (z)1 I {Y i ≥z} dz (j,k),(l,p)∈(Jm×Kn) 2 and Υ m := vec 1 n n i=1 ϕ m j (X i ) Y i 0 (Y i -u)ψ k (u)du j∈Jm,k∈Kn
.

Remark 2.6. We want to point several features of G m . First, it is a square matrix with size

|J m ||K n | × |J m ||K n |. Next, it has nonnegative eigenvalues. Indeed, if u = vec((u j,k ) j∈Jm,k∈Kn
) is a vector, and u denotes its transpose, then

u G m u = 1 n n i=1   j,k u j,k ϕ m j (X i )ψ k (z)   2 1 I {Y i ≥z} dz ≥ 0.
Lastly, the matrix G m can also be written

G m = 1 n n i=1 Φ (i) m ⊗ Ψ (i) m where Φ (i) m ⊗Ψ (i)
m is the tensorial product of two square matrices Φ (i)

m := (ϕ m j (X i )ϕ m j 0 (X i )) (j,j 0 )∈J 2 m and Ψ (i) m := ( ψ k (z)ψ k 0 (z)1 I {Y i ≥z} dz) (k,k 0 )∈K 2 n .
For the practical implementation of the estimator, we need to compute the inverse of the matrix G m .

As G m may be non invertible, we modify the definition of êm in the following way:

êm := arg min T ∈Sm Γ n (T ) on Ĥm 0 on Ĥc m , (2.7) where Ĥm := min Sp(G m ) ≥ max( F0 /3, n -1/2 )
where Sp(G m ) denotes the spectrum of G m i.e. the set of the nonnegative eigenvalues of the matrix G m . The quantity F0 is an estimator of the bound F0 (the minimum of F1 on A, see (A1)). We require that it fulfills the following assumption:

(A3) For any integer k ≥ 1, P(| F0 -F0 | > F0 /2) ≤ C k /n k .
An estimator F0 satisfying (A3) is defined in [START_REF] Comte | Adaptive estimation of the conditional intensity of marker-dependent counting processes[END_REF]. The definition of F0 is recalled in Section 3.3. Note that k = 5 is enough for the proofs. The final step is to select the relevant space via the penalized criterion. Here, only one direction requires model selection, namely the x-direction. Indeed, the y-direction keeps the good properties of empirical estimators provided that the y-space is simply chosen as large as possible, as it would be done if no covariate was involved. Therefore, we select a model m defined by

(2.8) m = arg min m∈Mn Γ n (ê m ) + pen(m) ,
where pen(m) is defined in Theorem 3.1 below. Our estimator of e on A is then ẽ = ê m. 

Oracle inequality and rate of convergence

(m) = κφ 1 E(Y 3 1 ) + (A 2 )E(Y 2 1 ) F0 D m n ,
where κ is a numerical constant. Then ẽ = ê m with m defined by (2.8) with pen(m) given by (3.1), satisfies:

(3.2) E( ẽ -e 2 A ) ≤ C inf m e -e m 2 A + pen(m) + C n ,
where C is a constant depending on F0 and C is a constant depending on E(Y 6 1 ), F0 , e ∞,A . Remark 3.1. Inequality (3.2) shows that the estimator automatically makes the compromise between the square bias e -e m 2 A and the variance term which is proportional to the order D m /n of the penalty.

Remark 3.2. The constant terms in the penalty do not have the same status. The constant κ is numerical and does not depend on any unknown quantity. Roughly speaking, it is universal in the sense that it is not affected by the sampling changes and it can be calibrated over a wide range of models by simulation experiments. The constant φ 1 is known when the basis is chosen. On the other hand, the unknown quantities E(Y 2 1 ) and E(Y 3 1 ) can be estimated by empirical moments, and F0 can be replaced by F0 . For an example of theoretical study of such random penalty, see [START_REF] Comte | Adaptive estimation of the conditional intensity of marker-dependent counting processes[END_REF]. The results of Theorem 3.1 would be generalized but in an asymptotic setting.

Remark 3.3. We might have worked under the following stronger assumption instead of (A4):

(A'4) Y 1 , • • • , Y n are bounded random variables and there exists a positive constant B < +∞ such that 0 < Y 1 ≤ B a.s.

In that case, the proof of the result (3.2) can be made simpler, and we can take the penalty

(3.3) pen B (m) = κ φ 1 B 3 F0 D m n .
Here, the bound B is unknown and depends on the observations. Nevertheless, it is possible to estimate it by the simple estimator B = max 1≤i≤n Y i .

3.2. Rates of convergence on Besov spaces. We can deduce from Theorem 3.1 the order of the risk and the rate of convergence of the estimator. For that purpose, assume that e restricted to A belongs to the anisotropic Besov space B α 2,∞ (A) on A with regularity α = (α 1 , α 2 ). Let us recall the definition of B α 2,∞ (A). Let e 1 and e 2 be the canonical basis vectors in R 2 and for

i = 1, 2, A r i,h = {x ∈ R 2 ; x, x + he i , . . . , x + rhe i ∈ A}. Next, for x in A r i,h , let (3.4) ∆ r i,h g(x) = r k=0 (-1) r-k r k g(x + khe i )
the rth difference operator with step h. For t > 0, the directional moduli of smoothness are given by

ω r i ,i (g, t) = sup |h|≤t A r i i,h |∆ r i h,i g(x)| 2 dx 1/2 .
We say that g is in the Besov space B α 2,∞ (A) if

(3.5) |g| B α 2,∞ := sup t>0 2 i=1 t -α i ω r i ,i (g, t) < ∞
for r i integers larger than α i . The estimation procedure may allow an adaptation of the approximation space to each directional regularity. But, it happens that in the y-direction, the greatest space is directly chosen. Thus, we just have to select a relevant F m .

Corollary 3.1. Assume that e restricted to A belongs to the anisotropic Besov space B α 2,∞ (A) with regularity α = (α 1 , α 2 ) such that α 1 > 1/2 and α 2 > 1. We consider the spaces [DP] and [W] described in Subsection 2.2 (with the regularity r of the polynomials and the wavelets larger than α i -1, i = 1, 2). Then, for D

(2) n = O( n/ log(n)), and under the assumptions of Theorem 3.1,

E( e1 I A -ẽ 2 ) = O(n - 2α 1 2α 1 +1 ).
The proof of Corollary 3.1 is standard and thus omitted (see [START_REF] Brunel | Minimax estimation of the conditional cumulative distribution function under random censorship[END_REF]). Thus we obtain a rate of convergence which would be standard for the estimation of a function of one variable with regularity α 1 .

About Assumption (A3).

We recall here the definition of F0 which is given in Comte et al. (2008), and the assumptions under which it fulfills (A3).

First define

Fm (x, y) = j∈Jm,k∈Kn bj,k ϕ m j (x)ψ k (y), with bj,k = 1 n n i=1 ϕ m j (X i ) ψ k (y)1 I {Y i ≥y} dy.
Indeed, it is easy to see that

E( bj,k ) = ϕ m j (x)ψ k (y) F1 (x, y)dxdy = ϕ m j ⊗ ψ k , F1 ,
so that Fm (x, y) is a natural projection estimator of F1 . Then take

F0 = inf (x,y)∈A Fm * (x, y)
where m * is chosen such that log(n) ≤ D m * ≤ n 1/4 / log(n), and D

(2) n = n 1/4 / log(n). Then Proposition 1 in [START_REF] Comte | Adaptive estimation of the conditional intensity of marker-dependent counting processes[END_REF] states that, if F1 (x, y) ∈ B β 2,∞ (A) with β = (β 1 , β 2 ) and β > 1 and n large enough, then (A3) is fulfilled. Here β denotes the harmonic mean:

β-1 = 1 2 (β -1 1 + β -1 2 ).

Examples and illustration

We give numerical illustrations for some classical regression models used in lifetime analysis. The description and the parametric inference of these models are detailed in Chapter 6 of [START_REF] Lawless | Statistical models and methods for lifetime data[END_REF]. Then we have

P(Y > y|X = x) = P(ln(Y ) > ln(y)|X = x) = P(ε > ln(y) -µ(x) σ |X = x) = Fε ln(y) -µ(x) σ .
where Fε stands for the survival function of the noise ε. Therefore, we can write

e(y|x) = +∞ y Fε ln(u)-µ(x) σ du Fε ln(y)-µ(x) σ .
• Example 1 : Take Fε (x) = exp(-exp(x)) and σ = 1. Then e 1 (y|x) = e µ(x) , the conditional expectation does not depend on y.

• Example 2 : Take Fε (x) = exp(-exp(x)) and σ = 2. Then

+∞ y exp(- √ ue -µ(x) 2 )du = 2e µ(x)/2 +∞ √ ye -µ(x) 2 e -v vdv = 2e µ(x) (1 + √ ye -µ(x) 2 ) exp(- √ ye -µ(x) 2 ). Thus (4.1) e 2 (y|x) = 2e µ(x) (1 + √ ye -µ(x)
2 ).

• Example 3 : Take Fε (x) = (1 + exp(x)) -1 and σ = 1/2. Then x) arctan(y -1 e µ(x) ).

F (y|x) = 1 1 + y 2 e -2µ(x) . +∞ y du 1 + u 2 e -2µ(x) = e µ(x) +∞ ye -µ(x) dv 1 + v 2 = e µ(x) (arctan(+∞) -arctan(ye -µ(x) )) = e µ(x) ( π 2 -arctan(ye -µ(x) )) = e µ(
This yields (4.2) e 3 (y|x) = (e µ(x) + y 2 e -µ(x) ) arctan(y -1 e µ(x) ).

We shall take affine functions µ(x).

4.2. Generalized Cox model. The standard Cox model assumes that the conditional hazard rate α can be decomposed in the following multiplicative way: α(y|x) = exp(βx)α 0 (y). It was generalized by [START_REF] Castellan | Estimation of the Cox regression function via model selection[END_REF] for nonparametric estimation purpose by the general equation α(y|x) = exp(µ(x))α 0 (y). As conditional cumulative hazard denoted by A(y|x) is related to conditional survival function F (y|x) by: A(y|x) = It is worth noting that for A 0 (y) = λy, that is constant hazard α 0 (y) = λ, this model gives e(y|x) = e -µ(x) /λ which is the same model as the first AFT model above.

• Example 4 : We can consider the case α 0 (y) = λy and A 0 (y) = λy 2 /2. Let Φ(u) = u -∞ exp(-v 2 /2)dv. Then we find

(4.3) e 4 (y|x) = 1 √ λ exp 1 2 (λy 2 e µ(x) -µ(x)) (1 -Φ( √ λye µ(x)
2 )).

4.3. Additive Hazards models. Additive Hazards models are sometimes useful and are defined, with the same notations as in section 4.2 by: α(y|x) = α 0 (y) + exp(f (x)). Simple calculations give:

F (y|x) = exp - y 0 α(u|x)du = exp[-A 0 (y) -yf (x)].
Then, we find

e(y|x) = +∞ y exp[A 0 (y) -A 0 (v) + f (x)(y -v)]dv.
• Example 5 : If we take an exponential baseline hazard with parameter λ, A 0 (y) = λy, we get: 5) and different sample size n = 100, 500 and 1000.

(4.4) e 5 (y|x) = +∞ y exp[(λ + f (x))(y -v)]dv = 1 λ + f (x) n = 100 n = 500 n =
4.4. Monte-Carlo study. We study the numerical performances of our penalized estimator by generating samples (X i , Y i ) n i=1 following the models described in the previous sections:

• Example 1 : e 1 (y|x) = e µ(x) with µ(x) = ax + b with a = 2, b = -2 and X ∼ U([0, 1]).
• Example 2 : e 2 (y|x) given by (4.1) with µ(x) = ax + b with a = 1, b = -2 and X ∼ U([0, 1]). • Example 3 : e 3 (y|x) given by (4.2) with µ(x) = ax + b with a = 0.5, b = -2 and X ∼ χ 2 (8)/16. • Example 4 : e 4 (y|x) given by (4.3) with λ = 2 µ(x) = ax with a = 5 and X ∼ χ 2 (8)/16. • Example 5 : e 5 (y|x) given by (4.4) with f (x) = x 5 , λ = 0.8 and X ∼ U([0, 1]).

The sets A = A 1 × A 2 are fixed intervals, roughly calibrated with respect to each distribution. In practice, we would have chosen the compact sets of estimation with respect to the data (and their extreme values). Here, we fixed them for reproducibility of the experiments in order to have the same set of estimation for all paths. This is of course only possible in a simulation setting. We illustrate the practical implementation of our estimator for histogram bases [H].

The penalty is chosen as follows:

(4.5) C max 1≤i≤n (Y i ) 3 D m 1 n .
It corresponds to the empirical version of (3.3) with constant C = κφ 1 / F0 calibrated as 10 (here, φ 1 = 1). Even if the generated observations come from R + -supported probability laws, we can consider in practice that the probability they fall outside a fixed bounded interval is very small. A preliminary and rough study indicates that for all five models considered here this value of κ has the adequate penalization effects. But, a more tedious calibration study maybe investigated in particular to compare both penalization bounds (3.3) and (3.1). The algorithm selects the x-dimension D

(1) m less than √ n whereas the y-dimension D

(2)

n is fixed to the maximal value n. We compute the empirical MISE (Mean Integrated Squared Error) over N = 500 replications of the samples, by averaging over the paths j = 1, . . . , N , the quantities

(4.6) (A 1 ) (A 2 ) K 2 K k, =1 (ẽ (j) (y |x k ) -e(y |x k )) 2 ,
where (A i ) is the length of the interval A i , i = 1, 2, (x k ) 1≤k≤K , (y k ) 1≤k≤K are uniform subdivisions of A 1 and A 2 respectively, and ẽ(j) is the estimator associated to the jth sample path. Note that the computed error given by (4.6) is the empirical version of the L 2 -risk

E A 1 ×A 2 (ẽ(y |x k ) -e(y |x k )) 2 dx k dy
which corresponds to integrated errors in both x-and y-directions instead of the empirical norm in the x-direction for which oracle-inequality is given in Section 3. The values of the average MISE's are not satisfactory in regard to their associated standard deviations for a sample size n = 100 which is to small in this context of (bivariate) estimation. We can see in Figure 1 that for larger sample sizes n = 500 and n = 1000, we obtain better values. However there are still extreme values. This is true for all examples and all the more noticeable for Example 3: the box is so flat (see Figure 1) because of only two extreme values whereas the standard deviations have the smallest values which indicates a good robustness of the estimation mechanism. On the whole, the automatic selection works well. We provide in Figure 2 a view of typical estimates and typical improvement between sizes n = 500 and n = 2000.

Concluding remark: the censored case

If the variable of interest Y is censored, we can generalize the contrast function. Let the observations be X

i , Z i = Y i ∧ C i , δ i = 1 I {Y i ≤C i }
where C is the censoring random variable. Assume that the strong independence assumption holds:

C is independent of (X, Y ). Then the contrast of interest is

(5.1) Γ C n (T ) = 1 n n i=1 δ i Ḡn (Z i ) T 2 (X i , y)1 I {Z i ≥y} dy -2Ψ T (X i , Z i )
where Ḡn is the modified [START_REF] Kaplan | Nonparametric estimation from incomplete observations[END_REF] estimator for Ḡ, the survival function of the censoring sequence (C i ), Ḡ(x) = P(C ≥ x), as given in [START_REF] Lo | Density and hazard rate estimation for censored data via strong representation of the Kaplan-Meier estimator[END_REF]. It is defined by

(5.2) Ḡn (x) =      n i=1, Z (i) ≤x n -i + 1 n -i + 2 1-δ (i) if x ≤ Z (n) Ḡn (Z ) if x > Z (n) .
This modification of the Kaplan Meier estimator is proposed because the estimate of Ḡ appears in a denominator. To justify the proposed contrast, it is easy to check, under the independence assumption, that the expectation of Γ C n is the same as the one of Γ n .

6. Proofs 6.1. Proof of Theorem 3.1. The line of the proof follows the line of the one given in [START_REF] Comte | Adaptive estimation of the conditional intensity of marker-dependent counting processes[END_REF] and many auxiliary results are borrowed from this work.

The following "empirical" norm is involved by the definition of the contrast. For T ∈ S m , let

T 2 n := 1 n n i=1 T 2 (X i , y)1 I {Y i ≥y} dy.
It is related with the scalar product defined by (2.1) by Next, we have the following relation between the norm . n and the contrast Γ n :

E( T 2 n ) = T 2 µ .
(6.1) Γ n (T ) -Γ n (S) = T -e 2 n -S -e 2 n -2ν n (T -S),
where (6.2)

ν n (T ) = 1 n n i=1 Ψ T (X i , Y i ) -T (X i , y)1 I {Y i ≥y} e(y|X i )dy .
We shall use in the proof the following sets:

Ĥm = {min Sp(G m ) ≥ max( F0 /3, n -1/2 )}, Ĥ := m∈Mn Ĥm , ∆ := ∀T ∈ S n : T 2 n T 2 µ -1 ≤ 1 2 , and Ω := F0 F0 -1 ≤ 1 2 . (6.3)
For m ∈ M n , we recall that e m is the orthogonal projection on F m ⊗ H n of e restricted to A.

The following bounds hold:

E( ê m -e 2 A ) ≤ 2 e -e m 2 A + 2E( ê m -e m 2 A 1 I(∆ ∩ Ω)) + 2E( ê m -e m 2 A 1 I(∆ c ∩ Ω)) + 2E( ê m -e m 2 A 1 I(Ω c )) ≤ 2 e -e m 2 A + 2E( ê m -e m 2 A 1 I(∆ ∩ Ω)) + 4E(( ê m 2 + e 2 A )1 I(∆ c ∩ Ω)) + 4E(( ê m 2 + e 2 A )1 I(Ω c )). (6.4)
We use the following results, whose proofs can be found in Section 6.2 hereafter for Proposition 6.1 and in Proposition 4 of [START_REF] Comte | Adaptive estimation of the conditional intensity of marker-dependent counting processes[END_REF] for Proposition 6.2.

Proposition 6.1. Provided that E[Y 6 1 ] < +∞, we have E( ê m 4 ) ≤ C n 3 , where C = φ 2 1 E(Y 6 1 )/9 is a positive constant.
Proposition 6.2. If (A1) and (M 1 ) are fulfilled, we have P(∆ c ) ≤ C k /n k for any k ≥ 1, when n is large enough, where C k is a constant depending on F0 and the basis.

Moreover, (A3) ensures that P(Ω c ) ≤ C k /n k for any integer k. Thus, using Propositions 6.1 and 6.2 and Assumption (A3), we get

E(( ê m 2 + e 2 A )1 I(∆ c ∩ Ω)) + E(( ê m 2 + e 2 A )1 I(Ω c )) ≤ e 2 A (P(Ω c ) + P(∆ c )) + E 1/2 ( ê m 4 )(P 1/2 (Ω c ) + P 1/2 (∆ c )) ≤ C 2 /n. (6.5)
Thus it remains to study E( ê m -e m 2 A 1 I(∆ ∩ Ω)). We state the following Lemma: Lemma 6.1. The following embedding holds:

∆ ∩ Ω ⊂ Γ ∩ Ω.
As a consequence, for all m ∈ M n , the matrices G m are invertible on ∆ ∩ Ω.

Proof of Lemma 6.1. Let m ∈ M n be fixed and let be an eigenvalue of G m . There exists

A m = 0 with coefficients (a λ ) λ such that G m A m = A m and thus A m G m A m = A m A m . Now, take T := λ a λ ϕ λ ∈ S m . We have T 2 n = A m G m A m and T 2 A = A m A m . Thus, on ∆: A m G m A m = T 2 n ≥ 1 2 T 2 µ ≥ 1 2 F0 T 2 A = 1 2 F0 A m A m .
Therefore, on ∆, for all m ∈ M n , we have min spec(G m ) ≥ F0 /2. Moreover, on Ω, we have F0 ≥ 2 F0 /3 and max( F0 /3, n -1/2 ) = F0 , for n ≥ 36/ F 

ν 2 n (T ) -p(m, m) + .
Taking the expectation of the last Inequality and using proposition 6.3, we get:

(6.7) 1 4 E( ê m -e m 2 µ 1 I(∆ ∩ Ω)) ≤ 4 e -e m 2 µ + 2pen(m) + C 1 n .
Gathering (6.4), (6.5) and (6.7) leads to

E( ê m -e 2 A ) ≤ 2 e m -e 2 A + 8 F0 4 e -e m 2 µ + 2pen(m) + C 1 n + C 2 n ≤ 2 1 + 16 F0 e m -e 2 A + 16 F0 pen(m) + C 3 n (6.8)
for any m ∈ M n . This concludes the proof of Theorem 3.1. 6.2. Proof of Proposition 6.1. Let us note that ê m is either 0 or arg min T ∈S m Γ n (T ). In the second case, min Sp(G m) ≥ max( F0 , n -1/2 ) and thus

ê m 2 = j,k (â m j,k ) 2 = A m 2 = G -1 m Υ m 2 ≤ (1/ min Sp(G m)) 2 Υ m 2 ≤ min(1/ F 2 0 , n) j,k 1 n n i=1 ϕ m j (X i ) A 2 1 I (0≤u≤Y i ) (Y i -u)ψ k (u)du 2 ≤ n 1 n n i=1 j (ϕ m j (X i )) 2 k A 2 1 I (0≤u≤Y i ) (Y i -u)ψ k (u)du 2 ≤ φ 1 D (1) n n i=1 A 2 1 I (0≤u≤Y i ) (Y i -u) 2 du ≤ φ 1 D (1) n n i=1 Y 3 i 3 .
Therefore, it follows that

E ê m 4 ≤ φ 2 1 (D (1) n ) 2 E   n i=1 Y 3 i 3 2   ≤ φ 2 1 (D (1) n ) 2 n 2 E(Y 6 1 )/9 ≤ φ 2 1 E(Y 6 1 ) 9 n 3 . 2 6.
3. Proof of Proposition 6.3. We use several times the same very useful inequality based on the property that the squared norm of the orthogonal projection of a function is less than the squared norm of the function itself. We use this property as follows:

k A 2 h(v)ψ k (v)dv 2 ≤ h 2 (6.9) for any function h ∈ L 2 (A 2 ). Let W = (X, Y ) and ξ T (W ) = Ψ T (X, Y ) -T (X, v)1 I {Y ≥v} e(v|X)dv.
To study the empirical process, we split ξ T (W ) in 3 parts:

ξ T (W ) = ξ T,1 (W ) + ξ T,2 (W ) -ξ T,3 (W ), with ξ T,1 (W ) = Ψ T (X, Y )1 I {Y ≤kn} -E(Ψ T (X, Y )1 I {Y ≤kn} ), ξ T,2 (W ) = Ψ T (X, Y )1 I {Y >kn} -E(Ψ T (X, Y )1 I {Y >kn} ), ξ T,3 (W ) = T (X, v)1 I {Y ≥v} e(v|X)dv -E T (X, v)1 I {Y ≥v} e(v|X)dv ,
where W = (X, Y ). Then ν n (T ) = (1/n) n i=1 ξ T (W i ) can be split in the same way:

ν n (T ) = ν n,1 (T ) + ν n,2 (T ) -ν n,3 (T ) with ν n,k (T ) = (1/n) n i=1 ξ T,k (W i ) for k = 1, 2, 3. We choose (6.10) k n = 3n log 4 (n) 1/3
, Now, the main tool of the proof is the checkout of Talagrand Inequality [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF]): Lemma 6.2. Let W 1 , • • • , W n be i.i.d. random variables and (ξ T ) T ∈B a set of bounded functions and B a unit ball of a finite dimensional subspace of L 2 (A). Let ν n (T ) = (1/n) n i=1 ξ T (W i ) where E[ξ T (W 1 )] = 0, and suppose that:

i) sup T ∈B ξ T ∞ ≤ M 1 , ii) sup T ∈B Var[ξ T (W 1 )] ≤ v iii) E sup T ∈B |ν n (T )| 2 ≤ H 2 .
Then, there exists constants K > 0, K 1 > 0 and K 2 > 0 such that:

E sup T ∈B |ν n (T )| 2 -2H 2 ≤ K v n e -K 1 nH 2 v + M 2 1 n 2 e -K 2 nH M 1
We apply Talagrand's Inequality given in Lemma 6.2 to the terms involving ν n,1 and ν n,3 in the following inequality:

E sup T ∈B µ m, m(0,1) ν 2 n (T ) -p(m, m) + 1 I(∆) ≤ 3E sup T ∈B µ m, m(0,1) ν 2 n,1 (T ) -p 1 (m, m)/6 + +3E sup T ∈B µ n (0,1) ν 2 n,2 (T ) +3E sup T ∈B µ m, m(0,1) ν 2 n,3 (T ) -p 3 (m, m)/6 + ,
where p(m, m ) = p 1 (m, m ) + p 3 (m, m ) and with B µ n (0, 1) = {T ∈ S n : T µ ≤ 1}.

• Study of ν n,2 .

Recall that E(Y 6 1 ) < +∞. We write:

E sup T ∈B µ n (0,1) ν 2 n,2 (T ) ≤ 1 F0 j,k E ν 2 n,2 (ϕ n j ⊗ ψ k ) ,
where (ϕ n j ⊗ ψ k ) j,k denotes here an orthonormal basis of S n w.r.t the norm . A . This implies, as E(ν 2 n,2 (T )) = (1/n)Var(ξ T,2 (W )) and using (6.9), that

E sup T ∈B µ n (0,1) ν 2 n,2 (T ) ≤ 2 n F0 j,k E (Y 1 -v)1 I {v≤Y 1 } ϕ n j (X 1 )ψ k (v)dv1 I {Y 1 >kn} 2 ,
and with (M2)

E sup T ∈B µ n (0,1) ν 2 n,2 (T ) ≤ 2φ 1 D (1) n n F0 E A 2 (Y 1 -v) 2 1 I {v≤Y 1 } dv1 I {Y 1 >kn} 2 ≤ 2φ 1 √ n F0 E(Y 3 1 1 I {Y 1 >kn} ) ≤ 2φ 1 √ n F0 E(Y 3+p 1 ) k p n ≤ 2φ 1 E(Y 3+p 1 ) 3 p/3 F0 (log(n)) 4p/3 n 1/2+p/3 ≤ C n
as soon as we take p > 3/2, e.g. p = 2.

• Study of ν n,1 . We apply Talagrand's Inequality, and for this purpose, we will have to check i), ii) and iii) and to compute M 1 , v and H 2 defined in Lemma 6.2. 

|Ψ T (x, y)| = j,k a j,k ϕ j (x) (y -v)1 I {v≤y} ψ k (v)dv1 I {y≤kn} ≤   j,k a 2 j,k j (ϕ j (x)) 2 k (y -v)1 I {v≤y} ψ k (v)dv1 I {y≤kn} 2   1/2 ≤ T A   j (ϕ j (x)) 2 (y -v) 2 1 I {v≤y} dv1 I {y≤kn}   1/2
with Inequality (6.9)

≤ φ 1 (k 3 n /3) max(D m , D m ) with (M1) -(M2), ≤ φ 1 (D m + D m )n/ log 2 (n)
for k n = (3n/ log 4 (n)) 1/3 as given by (6.10). Therefore sup

T ∈B µ m,m (0,1) ξ T ∞ ≤ 2 φ 1 (D m + D m )n log 2 (n) F0 := M 1 . ii) Search for bound v. First, let B = max(D m , D m ) 1/5 and write Var[ξ T,1 (W 1 )] ≤ E Ψ 2 T (X 1 , Y 1 )1 I {Y 1 <kn} ≤ E Ψ 2 T (X 1 , Y 1 ) ≤ E Ψ 2 T (X 1 , Y 1 )1 I {Y 1 ≤B} + E Ψ 2 T (X 1 , Y 1 )1 I {Y 1 >B} .
Now, we study each term. First, we have for T ∈ B µ m,m (0, 1)

E Ψ 2 T (X 1 , Y 1 )1 I {Y 1 ≤B} ≤ E T (X 1 , v)(Y 1 -v)1 I {v≤Y 1 } dv 2 1 I {Y 1 ≤B} ≤ (A 2 )B 2 E A 2 T 2 (X 1 , v)1 I {v≤Y 1 } dv = (A 2 )B 2 A T 2 (x, v) F1 (x, v)dxdv = (A 2 )B 2 T 2 µ = O(B 2 ) = O((max(D m , D m ) 2/5 ).
On the other hand, for T (x, y) = j,k a j,k ϕ j (x)ψ k (y), and T 2 µ ≤ 1 we have, where C is a constant depending on (A 2 ), φ 1 , F0 and E(Y 6 1 ).

E Ψ 2 T (X 1 , Y 1 )1 I {Y 1 >B} ≤ j,k a 2 j,k j,k E ϕ 2 j (X 1 ) (Y 1 -v)ψ k (v)1 I {v≤Y 1 } 1 I {Y 1 >B} dv 2 ≤ 1 F0 E   j ϕ 2 j (X 1 ) A 2 (Y 1 -v) 2 1 I {v≤Y 1 } 1 I {Y 1 >B} dv   ≤ φ 1 max(D m , D m ) F0 E A 2 (Y 1 -v) 2 1 I {v≤Y 1 } 1 I {Y 1 >B} dv = φ 1 max(D m , D m ) F0 E(Y 3 1 1 I {Y 1 >B} ) 3 ≤ φ 1 E(Y 6 
iii) Search for bound H 2 : Let us write here T = j,k a j,k ϕ j ψ k where (ϕ j ⊗ ψ k ) (j,k) is an orthonormal basis of (F m + F m ) ⊗ H n w.r.t. the norm . A .

E

  sup

T ∈B µ m,m (0,1)

|ν 2 n,1 (T )|   ≤ 1 F0 E sup
T ∈B m,m (0,1) e -K 2 log 2 (n)

|ν 2 n,1 (T )| ≤ 1 F0 j,k E ν 2 n,1 (ϕ j ⊗ ψ k ) ≤ 1 n F0 j,k E (Y 1 -v)1 I {v≤Y 1 } ϕ j (X 1 )ψ k (v)dv 2 ≤ 1 n F0 j E ϕ 2 j (X 1 ) (Y 1 -v) 2 1 I {v≤Y 1 } dv with (6.9) ≤ 1 n F0 j ϕ 2 j (x) (y -v) 2 1 I {v≤y} dvf (X,Y ) (x, y)dxdy ≤ 1 n F0 (
using that (x + y) a ≥ (x a + y a )/2 for a = 2/5 or a = 3/5. As k 2/5 exp(-Ck 3/5 ) is bounded and summable for k ∈ N and K"|M n |n -1/2 log -4 (n)e -K 2 log 2 (n) is O(1/n), it follows that

E   sup T ∈B µ m, m(0,1) ν 2 n,1 (T ) -2H 2   ≤ m ∈Mn E   sup
T ∈B µ m,m (0,1)

ν 2 n,1 (T ) -2H 2   ≤ C n .
• Study of ν n,3 .

(i) Search for M 1 . First, let T (x, y) = j,k a j,k ϕ j (x)ψ k (y) ∈ B µ m,m (0, 1), we note that

A 2 T 2 (x, v)dv = j,j ( k a j,k a j ,k )ϕ j (x)ϕ j (x)
For b j = ( k a 2 j,k ) 1/2 , we have j b 2 j ≤ j,k a 2 j,k ≤ 1/ F0 , and 

ν 2 n,3 (T ) -2H 2   ≤ K 1 n e -K 1 (Dm+D m ) + 1 n e -K 2 √ n ,
and this gives the result in the same manner as in the previous cases. 2

3. 1 .

 1 Mise bound. We can prove an oracle-type inequality under the following assumption: (A4) Y 1 , • • • , Y n are R + -supported and E(Y k 1 ) < +∞ for k = 6. Moreover, we denote by e m the L 2 -orthogonal projection on S m of e rectricted to A. Our main Theorem is the following. Theorem 3.1. Assume that (A0)-(A4) hold and the model collection satisfies (M1)-(M2)-(M3). Let (3.1) pen

  4.1. A.F.T. model (Accelerated Failure Time model). Let σ > 0 and µ : R → R and consider the model: ln(Y ) = µ(X) + σε, and ε independent of X.

  e µ(x) (A 0 (v) -A 0 (y)))dv.

Figure 1 .

 1 Figure 1. Distribution of the MISE's values computed for 500 sample replications for examples (1)-(5) for size n = 500 (left) and n = 1000 (right).

Figure 2 .

 2 Figure 2. Penalized estimator for Example 4 for sample size n = 500 and n = 2000: top-left: true conditional MRL e, bottom-left: estimator ẽ, top-right: x → e(y|x) and x → ẽ(y|x) for a fixed value of y, bottom-right: y → e(y|x) and y → ẽ(y|x) for a fixed value of x.

  Now, on ∆ ∩ Ω we have Γ n (ê m) + pen( m) ≤ Γ n (e m ) + pen(m), where ê m ∈ F m ⊗ H n and e m ∈ F m ⊗ H n . It follows from (6.1) and (6.2) and from the inequality 2xy ≤ x 2 /θ 2 + θ 2 y 2 , with x, y, θ ∈ R + (here θ = 2), that, on ∆ ∩ Ω,ê m -e m 2 n ≤ 2 ê m -e m , e -e m n + pen(m) + 2ν n (ê m -e m ) -pen( m) (0, 1) := {T ∈ (F m + F m ) ⊗ H n : T µ ≤ 1}. m, m) -pen( m),where p(m, m ) ≥ 0 is defined in the following Proposition.Proposition 6.3. Let p(m, m ) = κ E(Y 3 1 ) + (A 2 )E(Y 2 1 ) 4 F0 D m + D mn where κ is a numerical constant. Under the assumptions of Theorem 3.1, we have can see that the penalty is such that ∀m, m , 4p(m, m ) ≤ pen(m) + pen(m ), (6.6) and use the definition of ∆. We obtain on ∆ ∩ Ω

i)

  Search for bound M 1 . Under (A1), we have, sup |ξ T,1 (x, y)| Here B m,m (0, 1) = {T ∈ F m∨m ⊗ H n : T A ≤ 1} and T = j,k a j,k ϕ j ψ k where (ϕ j ⊗ ψ k ) (j,k) is an orthonormal basis of F m∨m ⊗ H n w.r.t. the norm . A , where F m∨m = F m + F m and dim(F m∨m ) = max(D m , D m ) under (M3) (nested collection).

  1 ) max(D m , D m ) 3 F0 B 3 = O((max(D m , D m ) 2/5 ). T,1 (W 1 )] ≤ C(D m + D m ) 2/5 := v,

  + D m ) 2/5 n e -K 1 (Dm+D m ) 3/5 + D m + D m n log 4 (n) e -K 2 log 2 (n) 

A 2 T 2

 22 (x, v)dv ≤ j,j b j b j |ϕ j (x)ϕ j (x)| = ( j b j |ϕ j (x)|) F0 )φ 1 max(D m , D m ).This yields| T (x, v)1 I {y≥v} e(v|x)dv| ≤ A 2 T 2 (x, v)dv A 2 e 2 (v|x)1 I A 1 (x)dv 1/2 ≤ [(1/ F0 )φ 1 max(D m , D m )] 1/2 sup X 1 , v)1 I {v≤Y 1 } e 2 (v|X 1 )dv ≤ A T 2 (x, v)e 2 (v|x) 1 I {v≤y} f (X,Y ) (x, y)dydvdx ≤ A T 2 (x, v)e 2 (v|x) F1 (x, v)dvdx ≤ e 2 ∞,A T 2 µ = e 2 ∞,A := v.(iii) Search for H 2 . We also have with the same argument,j,k E ϕ j (X 1 )ψ k (v)1 I {Y 1 ≥v} e(v|X 1 )dv {Y 1 ≥v} e 2 (v|X 1 )dv ≤ φ 1 max(D m , D m ) A 2 E(e 2 (v|X 1 ))dv ≤ φ 1 (D m + D m ) A 2 E[E((Y 1 -v) 2 |Y 1 > v, X 1 )]dv ≤ φ 1 (D m + D m ) (A 2 )E

Table 1 .

 1 1000 Empirical MISE's averaging over 500 sample replications with their standard deviations given in parenthesis for examples (1)-(

	Example 1 0.0372	0.0191	0.0124
		(0.0249)	(0.0093)	(0.0047)
	Example 2	0.198	0.067	0.0687
		(0.344)	(0.0645)	(0.0542)
	Example 3 0.0274	0.0191	0.0084
		(0.0854)	(0.1184)	(0.0533)
	Example 4 0.0045	0.0011	0.0007
		(0.0018)	(0.0003)	0.0001
	Example 5 0.3203	0.1291	0.1009
		(0.2691)	(0.0712)	(0.0577)