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Shear strength of granular materials

Farhang Radjai and Emilien Azéma

LMGC, CNRS-Université Montpellier 2
34095 Montpellier
France.

RESUME.La résitance des matériaux granulaires au cisaillementgéstéralement attribuée a
I'anisotropie de la microstructure granulaire. La questide savoir comment |'anisotropie, et
donc la résistance au cisaillement, dépend des propriétéspdrticules, reste ouverte. Dans
cet article, nous proposons d’abord une synthese sur le déeanisotropies de la texture et
des forces vis-a-vis de la résistance au cisaillement datet lcritique. Ensuite, un modéle des
tats géométriques accessibles en termes de la connedt@stparticules et de I'anisotropie de
la texture sera présenté. Ce modéle intégre d’'une maniegesimple le fait que, en raison des
exclusions stériques, les niveaux les plus élevés de lactwité et de I'anisotropie ne peuvent
pas étre atteints simultanément, ce qui influence d’'une énasignaificative les propriétés de
résistance. Nous analysons également I'anisotropie degda la lumiére du réle spécifique
des forces faibles par rapport aux chaines de force, ce dua &srigine de I'anisotropie des
forces. Enfin, nous discutons de I'effet de plusieurs pam@néels que le frottement entre par-
ticules, la forme des particules et I'adhésion.

ABSTRACT.The shear strength properties of granular materials reftbeir inherent force and
fabric anisotropy. We analyze the role of fabric and forcesatropies with respect to the
critical-state shear strength. Then, a model of accesgjblametrical states in terms of particle
connectivity and contact anisotropy is presented. Thisehwatorporates in a simple way the
fact that, due to steric exclusions, the highest levels aheotivity and anisotropy cannot be
reached simultaneously, a property that affects seriottedyshear strength. We also analyze
the force anisotropy in the light of the specific role of wealcds in sustaining strong force
chains and thus the main mechanism that underlies anisiotfgoce patterns. Finally, we
briefly discuss the effect of interparticle friction, paté shape, and adhesion.

MoTS-CLES :milieux granulaires, résistance au cisaillement, anispte de la texture, forces
faibles et forts.

KEYWORDSgranular media, shear strength, fabric anisotropy, weall atrong forces.
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1. Introduction

Since the early work of Coulomb in 1773, the plastic yield &gbr of granular
materials has remained an active research field in closeection with soil mechanics
and powder technology (Mitchedlt al, 2005; Nedderman, 1992). According to the
Mohr-Coulomb yield criterion, for normal and shear stressendr acting on a slip
plane, the plastic threshotd is the sum of two terms :

Te = c+ otang, [1]

wherec is a cohesive strength ands the internal angle of friction depending only on
the nature of the granular material. This criterion expgsshe pressure dependence
of shear strength which is a distinctive feature of granmadia. Given (1), the shear
strength of cohesionless materials=£ 0) can be represented by the (dimensionless)
stress ratior. /o = u. = tan . Since the angle is a bulk property, it can be ex-
pressed in terms of stress invariants. kgt(a = 1,2, 3) be stress principal values.
The average stressjs= (o1 + 02)/2 in 2D andp = (01 + 02 + 03)/3 in 3D. We
define the stress deviator y= (01 — 02)/2 in 2D andq = (o1 — 03)/3in 3D
under axisymmetric conditions{ = o3). With these notations, it can be shown that
sin ¢ = ¢/p in 2D andsin ¢ = 3¢q/(2p + q) in 3D.

This picture of shear strength in granular media holds ase ffiact although the
complex plastic behavior of granular media can not be reditiee single strength
parameter. In particular, the shear strength and plastic(fidatancy) depend on the
granular structure and direction of loading, the lattereatfhg the anisotropy of the
structure. Since the shear strength is state-depender@nitot be considered as a
material property unless attributed to a well-defined glanstate. The internal angle
of friction ¢ is often associated with the critical state (steady statesidual state)
reached after long monotonous shearing; see Fig. 1. This istaharacterized by
a solid fractionp. independent of the loading history and initial conditiokigopd,
1990).

The critical-state strength is below the peak shear stsesseurring for dense
states with solid fractiopy, > p., but these states are metastable and often lead to
strain localization (Darvet al., 2000; Vardoulakit al., 1995). For loose states with
po < pe, the critical state is reached asymptotically followinffue rearrangements.
Hence, apart from these transients, which are governedégwblution of internal
variables pertaining to the microstructure and are immoria formulating elasto-
plastic models, the critical-state shear strength reptesestable plastic threshold for
a granular material.

In this paper, we are interested in the critical-state gfiteas a material property
of cohesionless granular materials. The critical-stattidin angley. can be descri-
bed as a coarse-grained (or homogenized) friction angledset two granular layers
sliding past each other. Nevertheless, the macroscopisaép. as a Coulomb fric-
tion angle, on the same grounds as those of dry friction betveelid bodies, should
not eclipse the fact that the granular friction angle is &lproperty to which ade-
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quate tensorial stress analysis should be applied (thisndaed the contribution of
Mohr) and where the slip planes are raopriori defined, in contrast to solid friction
which is a surface property at the macroscopic scale (Radjal, 2004). Depen-
ding on the boundary conditions, the critical state occitreehomogeneously in the
whole volume of a granular sample or inside a thick layer eésal particle diameters
in the advent of strain localization (Bardettal., 1992; Herrmanret al., 1995; Ver-
meer, 1990; Moreau, 1997). In both configuratiops stems from various granular
phenomena such as friction between particles, anisotrbplyeomicrostructure, or-
ganization of force networks and dissipation due to inalasillisions. We consider
below these effects and their respective roles in enhameingstraining granular fric-
tion.

2. Effect of interparticle friction

While solid friction between particles underlies the fioctal behavior of granular
materials, it is not obvious how and through which physicathmnisms it comes into
play. If shear deformation took place as a result of slidiatneen all contacts along a
slip plane, the friction angle. would simply echo the friction between particles. An
example of such a configuration is a regular pile of cubic kbjected to a vertical
load. Horizontal shearing of this pile implies sliding betm at least two rows so that
the shear strength of the pile is a straightforward effedtiofion between the blocs.
However, discrete numerical simulations suggest that @asdd granular materials,
rolling prevails over sliding (Radjait al., 1998). In quasistatic shear, sliding occurs at
only ~ 10% of contacts, and these sliding contacts belong essertiaigak contacts
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Figure 1. Normalized shear stress as a function of cumulative sheainsin a 2D
simple shear simulation by the contact dynamics methodwordifferent values of
the initial solid fraction.
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(see below) oriented on average along the minor principasstdirections (Radjait
al., 1999; Staroret al,, 2005a; Staromet al,, 2005b). Hence, the relationship between
. and the local friction angle involves the inhomogeneous distribution of forces
and mobilization (or activation) of the friction force atling contacts.

This relationship is far from linear as shown in Fig. 2. Thiécal-state coefficient
e = tan g, is aboveu; = tan s at small values of the latter, and at larger values
it tends to a plateap., < us (Corriveauet al, 1997; Taboadat al, 2006). The
transition frompy,. — ps < 010 p. — ps > 0 occurs atu, = ps ~ 0.5. Beyond
us = 0.5, u. is practically independent gf,. The independence ¢f. with respect
to 5 at large values of the latter indicates that the role of paeticle friction is more
subtle than expected from simple models. Moreover, the @mnzalue ofp, shows
clearly that the interparticle friction is not the only soarf frictional behavior in the
critical state (Rowet al,, 2001).

The direct contribution of interparticle friction to shear strengtle. without in-
terposition by the microstructure as will be analyzed belmay be evaluated from
a decomposition of the shear stress. The stress tenggrin a control volume
V' can be expressed as (Rothenbatgal, 1981; Christofferseret al., 1981; Mo-
reau, 1997; Bagi, 1999; Starenal., 2005b)

oas = nu(ly fh), 2]

wheren, is the number density of bonds (contact),is the a-component of the
branch vecto¥! joining the centers of particles at contaandfé is theg-component
of the force vectoyf acting at the contagtbetween the two particles.
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Figure 2. The critical-state friction coefficient. as a function of sliding friction co-
efficientu; between particles in biaxial shearing of a sample of 500Qipkes.
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The contribution of friction forces can be estimated by aepig in equation (2f
by f-t t, wheret is the unit vector along the friction force. The contributaf normal
forces is the complementary tensor obtained by replagity f - n n, wheren is
the unit vector perpendicular to the contact plane. Theesponding shear strengths
q; and g, can then be calculated in the critical state. Numerical &trans show
that the ratiog;/q is quite low (below10%)(Cambou, 1993). This counterintuitive
finding underlines the role of interparticle friction as agraeter acting “behind the
scenes" rather than a direct actor of shear strength. Oulaiions show that, due to
disorder and force/moment balance conditions as well ankatic constraints such as
rotation frustration, the friction forces inside a gramyacking are strongly coupled
with normal forces. For example, highly mobilized frictitarces are rare events and
the distribution of friction forces reflects for the most prat of normal forces. We
consider below such effects in connection with granularastucture.

3. Harmonic representation of the microstructure

The microscopic expression of the stress tensor in equ@fipis an arithme-
tic mean involving the branch vectors and contact forcesiddefor analyzing the
particle-scale origins of the shear strength, we need igtitat description of the gra-
nular microstructure and force transmission. Noticing tha shear stress corresponds
to the deviation of stress components from the mean stresstr(o)/d (for space
dimensiond) along different space directions, the useful informafienthis analy-
sis is the density and average force of all contacts poiritinlge same direction as a
function of this direction. These functions can be expandé&aurier series in 2D and
in spherical harmonics in 3D(Rothenbwtal, 1989; Ouadfeét al,, 2001). Since the
contacts have no polarity, the periodris

For illustration, we consider here only the 2D expansionadated beyond the
second term:

Py0) = L{l+acos2(6—06,)},
(fa)(0) = ({1 + ancos2(0 —0,)}, 3]
(f0(0) = (flaisin2(0 —6y),

whereP, is the probability density function of contact normals, gihdand f, are the
force components along (radial) and perpendicular to ¢oethial) the branch vector,
respectively. The parametersa,, anda; are the anisotropies of branch vectors, radial
forces and orthoradial forces, respectivély,0,, andd; being the corresponding pri-
vileged directions. The sine function for the expansiorhef érthoradial component
fi is imposed by the requirement that the mean orthoradiagfisrzero to satisfy the
balance of force moments over particles whereas the meél fate (f) is positive
(repulsive). We also note that for circular and sphericaliglas the radial and ortho-
radial force components coincide with normal and tangéfaraes, respectively.
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This harmonic representatiowith only three anisotropy parameters provides a
good approximation for numerical data. Using the functi@)sthe stress components
043 Can be written as an integral over space directions :

7o =) | ) O)na(8) + () (0)5(6)) Po(6) db, 4]

wheren, = cos(#) andn, = sin(f), t, = —sin(#) andt, = cos(6). It has been also
assumed that the branch vector lengtlase not correlated with forces.

Equation (4) together with the harmonic approximation egped in equation (3)
yield the following expression for the normalized stresdater (Radjaiet al.,, 2004) :

1
% >3 {acos2(0, — 0p) + an cos2(0, — 0y) + a;cos2(0, — 0;)}, [5]

wheref,, is the major principal direction of the stress tensor. Irivdieg equation (5),
the cross products among the anisotropies have been resjléctthe critical state,
the privileged directions coincide, i.8, ~ 0,, ~ 6, ~ 6,, so that (Rothenburgt
al., 1989; Ouadfeét al., 2001)

c 1
% =~ 5 {ac+anc+atc}7 [6]
where the anisotropy parameters refer to the critical skat@D, a similar relation can
be established by means of spherical harmonics (Azrah, 2008) :

. 2
q; ~ B {ac + ane + aie} [7]

These relations exhibit two microscopic sources of thessteangth in a granular
packing : 1) fabric anisotropy, represented by the parameiad 2) force anisotropy,
captured into the parameters anda,. Hence, the material parameters influence the
shear strength via fabric and force anisotropies. For elaie saturation op. for
s > 0.5 (section 2 means that, increasing the interparticle ércbeyond this limit
does not enhance anisotropy.

4. Accessible geometrical states

In this section, we focus on the fabric anisotrapyhich represents the excess
and loss of contacts along different space directions \etspect to the average contact
density. The latter is commonly represented by the cootidinaumber: (mean num-
ber of contacts per particle). In a granular materak bounded between two limits
Zmin @Ndz,q.. The lower bound,,;,, is dictated by the force balance requirement.
For example, stable particles often involve more than teegacts in 2D and more
than four contacts in 3D. On the other hand, the upper baynd is constrained by
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steric exclusions (Troadest al, 2002). For example, in 2D for a system of monodis-
perse particles, a particle can not have more than 6 contagtsactice, this limit is
reduced to 4 as a result of disorder.

Within the harmonic approximation, the geometrical stdta granular system is
defined by its position in the space of coordingtes:). We define two limit states :
1) the loosest isotropic state, characterized by= z,,in, @ = 0), and 2) the densest
isotropic state, characterized By = z,...,a = 0). These states can be reached
only by complex loading. For example, it is generally difficto bring a granular
system towards a dense isotropic state via isotropic cotigpad he reason is that the
rearrangements occur mainly in the presence of shearidgharatter leads to fabric
anisotropy.

It is natural to assume that all accessible geometricastate enclosed between
the two isotropic limit states. In order to represent thergetical states, it is useful
to define thestate function

E(0) = 2Py(6) = %{1+acos2(9—9b)}. 8]

The two limit isotropic states ar&,,.;, = 2zmin/m™ @Nd Epay = Zmas/7. The as-
sumption that the geometrical states are constrainedydstaeen the two isotropic
limit states, implies that the anisotropycan not exceed a maximudn, ... depending
on the value of. With harmonic approximation (8), we obtain

rmas(2) :min{2 (1— Z"“'”) ,2(M - 1)} [9]
z z
T N T
a
,7 7C 7777777777 .
x
g — I —
© |
Lz
1 l C 1
Zmin ZmaX
Z

Figure 3. Domain of accessible geometrical states based on the hacmepresen-
tation of granular microstructure.
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This function is shown in Fig. 3. By constructioi, .. (zmin) = @maz(Zmaz) = 0.
The largest anisotropy is

Umaxz — Qmin

Qc Umax (Zc) 2amam T Goin ; [10]
with z. = (zmin + Zmaz)/2. According to equation (10),,,.; increases withe for
z < z., and it declines with for z < z.. Whena = a.. is reached along a monotonic
path, neither anisotropy nor coordination number evolaeesboth contact gain and
contact loss are saturated. In this picture, the criticgkstorresponds to the intersec-
tion between the two regimes with= z. anda = a.. In 2D with weakly polydis-
perse circular particles and > 0.5, a good fit is provided by assuming,;,, = 3 and
Zmaz = 4. This yieldsz, = 3.5 anda. = 2/7. For lower values ofi,, a. declines.

Fig. 4 shows the evolution af with z in simulated biaxial compression of two
initially isotropic samples with initial coordination numarsz, = 3.1 andzy = 3.7.
In both simulations; tends to the same critical-state value~ 3.35 with a. ~ 0.24.
Remarkably, the anisotropy of the dense packing reachethandollows closely the
limit states. Equation (9) provides here an excellent fihtodata with only one fitting
parametet,,..... In the loose case, the trajectory remains entirely indideiomain of
accessible states and the limit states are reached only atitital state

Equation (10) predicts that the critical state anisotrepyncreases with,,, ., —
Zmin- The shape, size and frictional characteristics of theigdastmay therefore in-
fluencea, via z,,:, andz,,... For example, increasing the sliding friction between

0.3

0.2 N
. !
« \\

0.1

0.0
28 30 32 34 36 38
z

Figure 4. Evolution of the geometrical state of a sheared packing ar tifferent
initial states simulated by the contact dynamics method.
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the particles allows for lower values of,;,, (stable configurations with less contacts)
without changing,,,... (which depends only on steric exclusions) and leads to targe
values ofa..

One interesting aspect of the model of accessible statsemed in this section
is to show that the largest values@fndz can not be reached simultaneously. The
critical valuea,. is not obtained with,,, .. but with z, which is belowz,, ... But higher
levels of force anisotropies,. anda,. can be achieved with higher values:of

5. Weak and strong force networks

According to equation (10), the shear strength is propoalido force anisotro-
piesa,. anday. in the critical state. As for fabric anisotropy which was discussed
in the last section, we would like to analyze here the medmasithat underly force
anisotropies. A basic feature of force distribution in gran media is the occurrence
of numerous weak forces together with a subnetwork of stforges appearing often
sequentially (force chains). The probability density fiime (pdf) P, (f,,) of normal
forces in a macroscopically homogeneous system in theargtate is such that more
than 58% of contact forces are below the mean fokgg) and they have a nearly
uniform distribution (Radjaét al, 1996; Muethet al,, 1998; Tsoungueét al,, 1998).
Theseweakforces contribute only~ 29% to the mean stress. The pdf ofstrong
forces (above the mean normal forgk,)) decays exponentially Radjail996a, Cop-
persmith1996a, Radjai1999, Majmudar2005, Metzger200#. viery large number
of weak forces, reflecting the arching effect, is a source edkmess for the system.
Weak regions inside a packing correspond to locally weakqunees and they are more

0.20

0.15 -

0.10 -

a/p

0.05 -

0.00

-0.05

Figure 5. The partial shear stress, normalized by the mean stress, fagaion of
force threshold.
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susceptible to fail. A quantitative analysis of grain reagements indicates that du-
ring a quasistatic evolution those weak regions undergal lczarrangements, and
nearly all sliding contacts are localized in weak regiortaf@et al,, 2002; Staroret
al., 2005b; Nicotet al., 2007).

Let S(§) be the set of contacts with a normal forfe < £(f,,). The setS(c0) is
the whole contact set. The weak and strong set§sargandS(oco) — S(1), respecti-
vely. The partial shear stregé&S) /p and the fabric and force anisotropie), a,(§)
anda.(¢) can be calculated as a functiono{Radjaiet al., 1998). Our simulations
show thatg(£) ~ 0; see Fig. 5. This means that nearly the whole stress devgtor
carried by the strong contact network, the weak contactsiboiting only to the mean
stress. Hence, the total stress tensds a sum of two terms :

o =pul + oy, [11]

where I is the unit tensorp,, is the weak pressure, angl, represents the strong
stress tensor. Hence, from the stress transmission vietygbe weak contact set is
a “liquidlike" phase whereas the strong contact set app@sass‘solidlike" backbone
transmitting shear stresses. The weak and strong netw@lshawn in Fig. 6 in thi-
ckness of segments joining particle centers for an assenfiB00 particles subjected
to biaxial compression.

Figure 6. Weak and strong normal forces represented in two differesyt gvels (co-
lor online). Line thickness is proportional to the normaide.
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The zero shear stress in the weak network implies that, dapto equation (6), at
least one of the corresponding anisotropies is negatimeeShe critical-state angles
are assumed to be equéd} (~ 0,, ~ 0, ~ 6,), a negative value corresponds to a
rotations /2 of the principal axes. Indeed, our numerical data show thaptivile-
ged direction of weak contacts is perpendicular to the najioicipal stress direction
(Radjaiet al,, 1998). The strong forces occur at contacts that are, orageeali-
gned with the major principal direction of the stress tenkateral weak forces prop
the particles against deviations from alignment at strangacts. In other words, the
weak contacts play the same stabilizing role with respethéoparticles sustaining
strong forces as the counterforts with respect to an awthitgl arch. Thisbimodal
transmission of shear stresses corresponds thus to disstiescription of arching
effect in granular media.

This stress-fabric correlation can be interpreted as a wag firanular system to
optimize the shear strength. Indeed, the stress devjatmreases if a larger number
of strong forces occur at contacts aligned with the majorgipial direction, implying
thus a surplus of weak contacts in the perpendicular dorctrhis weakeningof
forces at contacts pointing in one direction has the sanetefbr force anisotropy
as the loss of contacts in the same direction for fabric &rpy. As a result, force
weakening in the weak network is all the more efficient asatlketo lower amount of
contact loss. This condition can, for example, be achiegediifjher level of connec-
tivity, i.e. larger values of in the critical state.

6. Effect of material parameters

In this section, we briefly discuss the effect of several mi@t@arameters with
respect to the mechanisms that underly shear strengthiiniigranedia. More details
will be given elsewhere.

There are several shape parameters that may lead to enhsimead strength
through force anisotropy or fabric anisotropy. We constaere polygonal particles
as compared to circular particles (Azémtaal., 2007). The first sample, denoted S1,
is composed of 14400 regular pentagons of three differeméiers 50% of diame-
ter2.5 cm, 34% of diameter3.75 cm and16% of diameter5 cm. The second sample,
denoted S2, is composed of 10000 disks with the same pobyditp The coeffi-
cient of friction is 0.4 between particles and 0 with the walAt equilibrium, both
numerical samples are in isotropic stress state. The salaién is0.80 for S1 and
0.82 for S2. The isotropic samples are subjected to vertical cesgion by downward
displacement of the top wall.

Figure 7 displays the evolution afas a function of the cumulative shear strajn
in both packings. In both cases,jncreases from O to its largest value in the critical
state. Surprisingly, the fabric anisotropy is quite weakhi@ pentagon packing whe-
reas the disk packing is marked by a much larger anisotrep.8). Fig. 8 shows
the evolution ofa,, anda;. We see that, in contrast to fabric anisotropies, the force
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Figure 7. Evolution of the anisotropy with cumulative shear straig, for a packing
of pentagons (S1) and a packing of disks (S2).

anisotropies in the pentagon packing are always above thaise disk packing. This
means that the aptitude of the pentagon packing to develge farce anisotropy and
strong force chains is more dependent on particle shapedhahe buildup of an
anisotropic structure.

According to equation (6), in spite of the weak fabric armispya, the larger force
anisotropies:,, anda, allow the pentagon packing to achieve higher levels of shear
strength compared to the disk packing, as shown in Fig. 9.nDorerical data show
that the strong force anisotropy of the polygon packingltedtom the edge-to-edge
contacts that capture most strong force chains, wheretexvier-edge contacts belong
mostly to the weak network. The pentagons provide thus angsting example where
the role of fabric anisotropy in shear strength is margi&ahilar conclusions hold for
polyhedral particles in 3D (Azémet al,, 2008).

The effect of the coefficient of frictiop, between particles on the shear strength
was discussed in section 2. The saturation of the critizagdriction anglep,. with
increasingus is related to the fact that, due to disorder, particle eljtdiare funda-
mentally controlled by normal forces. Ideal situations veiction needs to be fully
mobilized over a large number of contacts exist but are matgior example, a co-
lumn of particles each with two contacts may in principalséxbut is of practically
zero chance to occur within a disordered granular matérta. effect ofu.s overa,
manifests itself through,,,;,, which decreases with,. On the other hand, larger va-
lues of s allow for reinforced stabilizing effect of weak contactsgiieasing thereby
force anisotropies and thus shear strength.

The effect of adhesion is to allow for tensile forces maimthe direction of ex-
tension between the particles. We find that the tensile fobsgween particles play
the same stabilizing role with respect to the strong congiredorces as the weak
network (Radjaket al, 2001). Remark that the privileged direction of weak corspre
sive forces coincides with that of tensile forces. As a riesiné main contribution to
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Figure 8. Evolution of force anisotropies, (a) anda, (b) as a function of cumulative
shear straing, in samples S1 and S2.
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the shear strength comes from force anisotropy. The fahrso&opy is generally low
and partially inhibited by the presence of adhesion. Nate #iat adhesion between
particles involves a force scale so that its contributiothe®shear strength is mainly
expressed through the Coulomb cohesidaquation (1)), but it can also influence the
internal angle of frictionp. through fabric anisotropy.

7. Conclusion

In this paper, we presented a brief account of physical mestre that underly the
critical-state shear strength of granular materials. Trogtscomings of the picture of
granular friction in direct analogy with solid friction wakscussed. Recalling the ex-
pansion of the stress tensor in force and fabric anisotsppiemodel was presented for
the accessible geometrical states within a harmonic reptaon of the microstruc-
ture. This model, consistent with numerical simulatiorfates the critical-state fabric
anisotropy to two isotropic limit states correspondingte iowest and highest contact
densities of a granular packing. The force anisotropy wadyard in the light of the
bimodal character of force transmission. It was shown thashear strength is mainly
sustained by the strong force network so that force anipgtiomainly related to the
aptitude of a granular assembly to build up strong forcerchdtinally, the effect of
material parameters with respect to fabric and force amipas was discussed.
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