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Shear strength of granular materials

Farhang Radjai and Emilien Azéma

LMGC, CNRS-Université Montpellier 2
34095 Montpellier
France.

RÉSUMÉ.La résitance des matériaux granulaires au cisaillement estgénéralement attribuée à
l’anisotropie de la microstructure granulaire. La question de savoir comment l’anisotropie, et
donc la résistance au cisaillement, dépend des propriétés des particules, reste ouverte. Dans
cet article, nous proposons d’abord une synthèse sur le rôledes anisotropies de la texture et
des forces vis-à-vis de la résistance au cisaillement dans l’état critique. Ensuite, un modèle des
t́ats géométriques accessibles en termes de la connectivitédes particules et de l’anisotropie de
la texture sera présenté. Ce modèle intègre d’une manière très simple le fait que, en raison des
exclusions stériques, les niveaux les plus élevés de la connectivité et de l’anisotropie ne peuvent
pas être atteints simultanément, ce qui influence d’une manière signaificative les propriétés de
résistance. Nous analysons également l’anisotropie des forces à la lumière du rôle spécifique
des forces faibles par rapport aux chaînes de force, ce qui est à l’origine de l’anisotropie des
forces. Enfin, nous discutons de l’effet de plusieurs paramètres tels que le frottement entre par-
ticules, la forme des particules et l’adhésion.

ABSTRACT.The shear strength properties of granular materials reflecttheir inherent force and
fabric anisotropy. We analyze the role of fabric and force anisotropies with respect to the
critical-state shear strength. Then, a model of accessiblegeometrical states in terms of particle
connectivity and contact anisotropy is presented. This model incorporates in a simple way the
fact that, due to steric exclusions, the highest levels of connectivity and anisotropy cannot be
reached simultaneously, a property that affects seriouslythe shear strength. We also analyze
the force anisotropy in the light of the specific role of weak forces in sustaining strong force
chains and thus the main mechanism that underlies anisotropic force patterns. Finally, we
briefly discuss the effect of interparticle friction, particle shape, and adhesion.

MOTS-CLÉS :milieux granulaires, résistance au cisaillement, anisotropie de la texture, forces
faibles et forts.

KEYWORDS:granular media, shear strength, fabric anisotropy, weak and strong forces.
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1. Introduction

Since the early work of Coulomb in 1773, the plastic yield behavior of granular
materials has remained an active research field in close connection with soil mechanics
and powder technology (Mitchellet al., 2005; Nedderman, 1992). According to the
Mohr-Coulomb yield criterion, for normal and shear stresses σ andτ acting on a slip
plane, the plastic thresholdτc is the sum of two terms :

τc = c + σ tanϕ, [1]

wherec is a cohesive strength andϕ is the internal angle of friction depending only on
the nature of the granular material. This criterion expresses the pressure dependence
of shear strength which is a distinctive feature of granularmedia. Given (1), the shear
strength of cohesionless materials (c = 0) can be represented by the (dimensionless)
stress ratioτc/σ = µc = tanϕ. Since the angleϕ is a bulk property, it can be ex-
pressed in terms of stress invariants. Letσα (α = 1, 2, 3) be stress principal values.
The average stress isp = (σ1 + σ2)/2 in 2D andp = (σ1 + σ2 + σ3)/3 in 3D. We
define the stress deviator byq = (σ1 − σ2)/2 in 2D andq = (σ1 − σ3)/3 in 3D
under axisymmetric conditions (σ2 = σ3). With these notations, it can be shown that
sin ϕ = q/p in 2D andsin ϕ = 3q/(2p + q) in 3D.

This picture of shear strength in granular media holds as a basic fact although the
complex plastic behavior of granular media can not be reduced to a single strength
parameter. In particular, the shear strength and plastic flow (dilatancy) depend on the
granular structure and direction of loading, the latter reflecting the anisotropy of the
structure. Since the shear strength is state-dependent, itcannot be considered as a
material property unless attributed to a well-defined granular state. The internal angle
of friction ϕ is often associated with the critical state (steady state orresidual state)
reached after long monotonous shearing ; see Fig. 1. This state is characterized by
a solid fractionρc independent of the loading history and initial conditions (Wood,
1990).

The critical-state strength is below the peak shear stresses occurring for dense
states with solid fractionρ0 > ρc, but these states are metastable and often lead to
strain localization (Darveet al., 2000; Vardoulakiset al., 1995). For loose states with
ρ0 < ρc, the critical state is reached asymptotically following diffuse rearrangements.
Hence, apart from these transients, which are governed by the evolution of internal
variables pertaining to the microstructure and are important in formulating elasto-
plastic models, the critical-state shear strength represents a stable plastic threshold for
a granular material.

In this paper, we are interested in the critical-state strength as a material property
of cohesionless granular materials. The critical-state friction angleϕc can be descri-
bed as a coarse-grained (or homogenized) friction angle between two granular layers
sliding past each other. Nevertheless, the macroscopic status ofϕc as a Coulomb fric-
tion angle, on the same grounds as those of dry friction between solid bodies, should
not eclipse the fact that the granular friction angle is a bulk property to which ade-
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quate tensorial stress analysis should be applied (this wasindeed the contribution of
Mohr) and where the slip planes are nota priori defined, in contrast to solid friction
which is a surface property at the macroscopic scale (Radjaiet al., 2004). Depen-
ding on the boundary conditions, the critical state occurs either homogeneously in the
whole volume of a granular sample or inside a thick layer of several particle diameters
in the advent of strain localization (Bardetet al., 1992; Herrmannet al., 1995; Ver-
meer, 1990; Moreau, 1997). In both configurations,ϕc stems from various granular
phenomena such as friction between particles, anisotropy of the microstructure, or-
ganization of force networks and dissipation due to inelastic collisions. We consider
below these effects and their respective roles in enhancingor restraining granular fric-
tion.

2. Effect of interparticle friction

While solid friction between particles underlies the frictional behavior of granular
materials, it is not obvious how and through which physical mechanisms it comes into
play. If shear deformation took place as a result of sliding between all contacts along a
slip plane, the friction angleϕc would simply echo the friction between particles. An
example of such a configuration is a regular pile of cubic blocs subjected to a vertical
load. Horizontal shearing of this pile implies sliding between at least two rows so that
the shear strength of the pile is a straightforward effect offriction between the blocs.
However, discrete numerical simulations suggest that in sheared granular materials,
rolling prevails over sliding (Radjaiet al., 1998). In quasistatic shear, sliding occurs at
only≃ 10% of contacts, and these sliding contacts belong essentiallyto weak contacts
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Figure 1. Normalized shear stress as a function of cumulative shear strain in a 2D
simple shear simulation by the contact dynamics method for two different values of
the initial solid fraction.
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(see below) oriented on average along the minor principal stress directions (Radjaiet
al., 1999; Staronet al., 2005a; Staronet al., 2005b). Hence, the relationship between
ϕc and the local friction angleϕs involves the inhomogeneous distribution of forces
and mobilization (or activation) of the friction force at rolling contacts.

This relationship is far from linear as shown in Fig. 2. The critical-state coefficient
µc = tanϕc is aboveµs = tanϕs at small values of the latter, and at larger values
it tends to a plateauµ∞ < µs (Corriveauet al., 1997; Taboadaet al., 2006). The
transition fromµc − µs < 0 to µc − µs > 0 occurs atµc = µs ≃ 0.5. Beyond
µs = 0.5, µc is practically independent ofµs. The independence ofϕc with respect
to ϕs at large values of the latter indicates that the role of interparticle friction is more
subtle than expected from simple models. Moreover, the nonzero value ofϕ0 shows
clearly that the interparticle friction is not the only source of frictional behavior in the
critical state (Rouxet al., 2001).

The direct contribution of interparticle friction to shear strength,i.e. without in-
terposition by the microstructure as will be analyzed below, may be evaluated from
a decomposition of the shear stress. The stress tensorσαβ in a control volume
V can be expressed as (Rothenburget al., 1981; Christoffersenet al., 1981; Mo-
reau, 1997; Bagi, 1999; Staronet al., 2005b)

σαβ = nb〈ℓ
i
αf i

β〉, [2]

wherenb is the number density of bonds (contacts),ℓi
α is theα-component of the

branch vectorℓi joining the centers of particles at contacti andf i
β is theβ-component

of the force vectorf acting at the contacti between the two particles.
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Figure 2. The critical-state friction coefficientµc as a function of sliding friction co-
efficientµs between particles in biaxial shearing of a sample of 5000 particles.
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The contribution of friction forces can be estimated by replacing in equation (2)f
by f ·t t, wheret is the unit vector along the friction force. The contribution of normal
forces is the complementary tensor obtained by replacingf by f · n n, wheren is
the unit vector perpendicular to the contact plane. The corresponding shear strengths
qt and qn can then be calculated in the critical state. Numerical simulations show
that the ratioqt/q is quite low (below10%)(Cambou, 1993). This counterintuitive
finding underlines the role of interparticle friction as a parameter acting “behind the
scenes" rather than a direct actor of shear strength. Our simulations show that, due to
disorder and force/moment balance conditions as well as kinematic constraints such as
rotation frustration, the friction forces inside a granular packing are strongly coupled
with normal forces. For example, highly mobilized frictionforces are rare events and
the distribution of friction forces reflects for the most part that of normal forces. We
consider below such effects in connection with granular microstructure.

3. Harmonic representation of the microstructure

The microscopic expression of the stress tensor in equation(2) is an arithme-
tic mean involving the branch vectors and contact forces. Hence, for analyzing the
particle-scale origins of the shear strength, we need a statistical description of the gra-
nular microstructure and force transmission. Noticing that the shear stress corresponds
to the deviation of stress components from the mean stressp = tr(σ)/d (for space
dimensiond) along different space directions, the useful informationfor this analy-
sis is the density and average force of all contacts pointingin the same direction as a
function of this direction. These functions can be expandedin Fourier series in 2D and
in spherical harmonics in 3D(Rothenburget al., 1989; Ouadfelet al., 2001). Since the
contacts have no polarity, the period isπ.

For illustration, we consider here only the 2D expansions truncated beyond the
second term :







Pθ(θ) = 1

π
{1 + a cos 2(θ − θb)},

〈fn〉(θ) = 〈f〉{1 + an cos 2(θ − θn)},
〈ft〉(θ) = 〈f〉at sin 2(θ − θt),

[3]

wherePθ is the probability density function of contact normals, andfn andft are the
force components along (radial) and perpendicular to (orthoradial) the branch vector,
respectively. The parametersa, an andat are the anisotropies of branch vectors, radial
forces and orthoradial forces, respectively,θb, θn andθt being the corresponding pri-
vileged directions. The sine function for the expansion of the orthoradial component
ft is imposed by the requirement that the mean orthoradial force is zero to satisfy the
balance of force moments over particles whereas the mean radial force〈f〉 is positive
(repulsive). We also note that for circular and spherical particles the radial and ortho-
radial force components coincide with normal and tangential forces, respectively.



6 Revue, Volume X – n˚x/année

This harmonic representationwith only three anisotropy parameters provides a
good approximation for numerical data. Using the functions(3), the stress components
σαβ can be written as an integral over space directions :

σαβ = nb〈ℓ〉

∫ π

0

{〈fn〉(θ)nα(θ) + 〈ft〉(θ)tβ(θ)}Pθ(θ) dθ, [4]

wherenx = cos(θ) andny = sin(θ), tx = − sin(θ) andty = cos(θ). It has been also
assumed that the branch vector lengthsℓ are not correlated with forces.

Equation (4) together with the harmonic approximation expressed in equation (3)
yield the following expression for the normalized stress deviator (Radjaiet al., 2004) :

q

p
≃

1

2
{a cos 2(θσ − θb) + an cos 2(θσ − θn) + at cos 2(θσ − θt)} , [5]

whereθσ is the major principal direction of the stress tensor. In deriving equation (5),
the cross products among the anisotropies have been neglected. In the critical state,
the privileged directions coincide, i.e.θb ≃ θn ≃ θt ≃ θσ, so that (Rothenburget
al., 1989; Ouadfelet al., 2001)

qc

p
≃

1

2
{ac + anc + atc} , [6]

where the anisotropy parameters refer to the critical state. In 3D, a similar relation can
be established by means of spherical harmonics (Azémaet al., 2008) :

qc

p
≃

2

5
{ac + anc + atc} [7]

These relations exhibit two microscopic sources of the shear strength in a granular
packing : 1) fabric anisotropy, represented by the parameter a and 2) force anisotropy,
captured into the parametersan andat. Hence, the material parameters influence the
shear strength via fabric and force anisotropies. For example, the saturation ofϕc for
ϕs > 0.5 (section 2 means that, increasing the interparticle friction beyond this limit
does not enhance anisotropy.

4. Accessible geometrical states

In this section, we focus on the fabric anisotropya which represents the excess
and loss of contacts along different space directions with respect to the average contact
density. The latter is commonly represented by the coordination numberz (mean num-
ber of contacts per particle). In a granular material,z is bounded between two limits
zmin andzmax. The lower boundzmin is dictated by the force balance requirement.
For example, stable particles often involve more than threecontacts in 2D and more
than four contacts in 3D. On the other hand, the upper boundzmax is constrained by
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steric exclusions (Troadecet al., 2002). For example, in 2D for a system of monodis-
perse particles, a particle can not have more than 6 contacts. In practice, this limit is
reduced to 4 as a result of disorder.

Within the harmonic approximation, the geometrical state of a granular system is
defined by its position in the space of coordinates(z, a). We define two limit states :
1) the loosest isotropic state, characterized by(z = zmin, a = 0), and 2) the densest
isotropic state, characterized by(z = zmax, a = 0). These states can be reached
only by complex loading. For example, it is generally difficult to bring a granular
system towards a dense isotropic state via isotropic compaction. The reason is that the
rearrangements occur mainly in the presence of shearing, and the latter leads to fabric
anisotropy.

It is natural to assume that all accessible geometrical states are enclosed between
the two isotropic limit states. In order to represent the geometrical states, it is useful
to define thestate function

E(θ) = zPθ(θ) =
z

π
{1 + a cos 2(θ − θb)}. [8]

The two limit isotropic states areEmin = zmin/π andEmax = zmax/π. The as-
sumption that the geometrical states are constrained to stay between the two isotropic
limit states, implies that the anisotropya can not exceed a maximumamax depending
on the value ofz. With harmonic approximation (8), we obtain

amax(z) = min
{

2
(

1 −
zmin

z

)

, 2
(zmax

z
− 1

)}

. [9]

z

a m
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z
maxz
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z
c
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c

Figure 3. Domain of accessible geometrical states based on the harmonic represen-
tation of granular microstructure.
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This function is shown in Fig. 3. By construction,amax(zmin) = amax(zmax) = 0.
The largest anisotropy is

ac = amax(zc) = 2
amax − amin

amax + amin

, [10]

with zc = (zmin + zmax)/2. According to equation (10),amax increases withz for
z < zc, and it declines withz for z < zc. Whena = ac is reached along a monotonic
path, neither anisotropy nor coordination number evolve since both contact gain and
contact loss are saturated. In this picture, the critical state corresponds to the intersec-
tion between the two regimes withz = zc anda = ac. In 2D with weakly polydis-
perse circular particles andµs > 0.5, a good fit is provided by assumingzmin = 3 and
zmax = 4. This yieldszc = 3.5 andac = 2/7. For lower values ofµs, ac declines.

Fig. 4 shows the evolution ofa with z in simulated biaxial compression of two
initially isotropic samples with initial coordination numbersz0 = 3.1 andz0 = 3.7.
In both simulations,z tends to the same critical-state valuezc ≃ 3.35 with ac ≃ 0.24.
Remarkably, the anisotropy of the dense packing reaches andthen follows closely the
limit states. Equation (9) provides here an excellent fit to the data with only one fitting
parameterzmax. In the loose case, the trajectory remains entirely inside the domain of
accessible states and the limit states are reached only at the critical state

Equation (10) predicts that the critical state anisotropyac increases withzmax −
zmin. The shape, size and frictional characteristics of the particles may therefore in-
fluenceac via zmin andzmax. For example, increasing the sliding friction between

Figure 4. Evolution of the geometrical state of a sheared packing for two different
initial states simulated by the contact dynamics method.
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the particles allows for lower values ofzmin (stable configurations with less contacts)
without changingzmax (which depends only on steric exclusions) and leads to larger
values ofac.

One interesting aspect of the model of accessible states presented in this section
is to show that the largest values ofa andz can not be reached simultaneously. The
critical valueac is not obtained withzmax but withzc which is belowzmax. But higher
levels of force anisotropiesanc andatc can be achieved with higher values ofz.

5. Weak and strong force networks

According to equation (10), the shear strength is proportional to force anisotro-
piesanc andatc in the critical state. As for fabric anisotropya, which was discussed
in the last section, we would like to analyze here the mechanisms that underly force
anisotropies. A basic feature of force distribution in granular media is the occurrence
of numerous weak forces together with a subnetwork of strongforces appearing often
sequentially (force chains). The probability density function (pdf) Pn(fn) of normal
forces in a macroscopically homogeneous system in the critical state is such that more
than58% of contact forces are below the mean force〈fn〉 and they have a nearly
uniform distribution (Radjaiet al., 1996; Muethet al., 1998; Tsounguiet al., 1998).
Theseweakforces contribute only≃ 29% to the mean stressp. The pdf ofstrong
forces (above the mean normal force〈fn〉) decays exponentially Radjai1996a, Cop-
persmith1996a, Radjai1999, Majmudar2005, Metzger2004. The very large number
of weak forces, reflecting the arching effect, is a source of weakness for the system.
Weak regions inside a packing correspond to locally weak pressures and they are more
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Figure 5. The partial shear stress, normalized by the mean stress, as afunction of
force thresholdξ.



10 Revue, Volume X – n˚x/année

susceptible to fail. A quantitative analysis of grain rearrangements indicates that du-
ring a quasistatic evolution those weak regions undergo local rearrangements, and
nearly all sliding contacts are localized in weak regions (Staronet al., 2002; Staronet
al., 2005b; Nicotet al., 2007).

Let S(ξ) be the set of contacts with a normal forcefn < ξ〈fn〉. The setS(∞) is
the whole contact set. The weak and strong sets areS(1) andS(∞) − S(1), respecti-
vely. The partial shear stressq(ξ)/p and the fabric and force anisotropiesa(ξ), an(ξ)
andat(ξ) can be calculated as a function ofξ (Radjaiet al., 1998). Our simulations
show thatq(ξ) ≃ 0 ; see Fig. 5. This means that nearly the whole stress deviatoris
carried by the strong contact network, the weak contacts contributing only to the mean
stress. Hence, the total stress tensorσ is a sum of two terms :

σ = pwI + σs, [11]

whereI is the unit tensor,pw is the weak pressure, andσs represents the strong
stress tensor. Hence, from the stress transmission viewpoint, the weak contact set is
a “liquidlike" phase whereas the strong contact set appearsas a “solidlike" backbone
transmitting shear stresses. The weak and strong networks are shown in Fig. 6 in thi-
ckness of segments joining particle centers for an assemblyof 4000 particles subjected
to biaxial compression.

Figure 6. Weak and strong normal forces represented in two different grey levels (co-
lor online). Line thickness is proportional to the normal force.
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The zero shear stress in the weak network implies that, according to equation (6), at
least one of the corresponding anisotropies is negative. Since the critical-state angles
are assumed to be equal (θb ≃ θn ≃ θt ≃ θσ), a negative value corresponds to a
rotationπ/2 of the principal axes. Indeed, our numerical data show that the privile-
ged direction of weak contacts is perpendicular to the majorprincipal stress direction
(Radjai et al., 1998). The strong forces occur at contacts that are, on average, ali-
gned with the major principal direction of the stress tensor. Lateral weak forces prop
the particles against deviations from alignment at strong contacts. In other words, the
weak contacts play the same stabilizing role with respect tothe particles sustaining
strong forces as the counterforts with respect to an architectural arch. Thisbimodal
transmission of shear stresses corresponds thus to a statistical description of arching
effect in granular media.

This stress-fabric correlation can be interpreted as a way for a granular system to
optimize the shear strength. Indeed, the stress deviatorq increases if a larger number
of strong forces occur at contacts aligned with the major principal direction, implying
thus a surplus of weak contacts in the perpendicular direction. Thisweakeningof
forces at contacts pointing in one direction has the same effect for force anisotropy
as the loss of contacts in the same direction for fabric anisotropy. As a result, force
weakening in the weak network is all the more efficient as it leads to lower amount of
contact loss. This condition can, for example, be achieved for higher level of connec-
tivity, i.e. larger values ofz in the critical state.

6. Effect of material parameters

In this section, we briefly discuss the effect of several material parameters with
respect to the mechanisms that underly shear strength in granular media. More details
will be given elsewhere.

There are several shape parameters that may lead to enhancedshear strength
through force anisotropy or fabric anisotropy. We considerhere polygonal particles
as compared to circular particles (Azémaet al., 2007). The first sample, denoted S1,
is composed of 14400 regular pentagons of three different diameters :50% of diame-
ter2.5 cm,34% of diameter3.75 cm and16% of diameter5 cm. The second sample,
denoted S2, is composed of 10000 disks with the same polydispersity. The coeffi-
cient of friction is 0.4 between particles and 0 with the walls. At equilibrium, both
numerical samples are in isotropic stress state. The solid fraction is0.80 for S1 and
0.82 for S2. The isotropic samples are subjected to vertical compression by downward
displacement of the top wall.

Figure 7 displays the evolution ofa as a function of the cumulative shear strainεq

in both packings. In both cases,a increases from 0 to its largest value in the critical
state. Surprisingly, the fabric anisotropy is quite weak inthe pentagon packing whe-
reas the disk packing is marked by a much larger anisotropy (≃ 0.3). Fig. 8 shows
the evolution ofan andat. We see that, in contrast to fabric anisotropies, the force
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Figure 7. Evolution of the anisotropya with cumulative shear strainεq for a packing
of pentagons (S1) and a packing of disks (S2).

anisotropies in the pentagon packing are always above thosein the disk packing. This
means that the aptitude of the pentagon packing to develop large force anisotropy and
strong force chains is more dependent on particle shape thanon the buildup of an
anisotropic structure.

According to equation (6), in spite of the weak fabric anisotropya, the larger force
anisotropiesan andat allow the pentagon packing to achieve higher levels of shear
strength compared to the disk packing, as shown in Fig. 9. Ournumerical data show
that the strong force anisotropy of the polygon packing results from the edge-to-edge
contacts that capture most strong force chains, whereas vertex-to-edge contacts belong
mostly to the weak network. The pentagons provide thus an interesting example where
the role of fabric anisotropy in shear strength is marginal.Similar conclusions hold for
polyhedral particles in 3D (Azémaet al., 2008).

The effect of the coefficient of frictionµs between particles on the shear strength
was discussed in section 2. The saturation of the critical-state friction angleϕc with
increasingµs is related to the fact that, due to disorder, particle equilibria are funda-
mentally controlled by normal forces. Ideal situations where friction needs to be fully
mobilized over a large number of contacts exist but are marginal. For example, a co-
lumn of particles each with two contacts may in principal exist, but is of practically
zero chance to occur within a disordered granular material.The effect ofµs overac

manifests itself throughzmin which decreases withµs. On the other hand, larger va-
lues ofµs allow for reinforced stabilizing effect of weak contacts, increasing thereby
force anisotropies and thus shear strength.

The effect of adhesion is to allow for tensile forces mainly in the direction of ex-
tension between the particles. We find that the tensile forces between particles play
the same stabilizing role with respect to the strong compressive forces as the weak
network (Radjaiet al., 2001). Remark that the privileged direction of weak compres-
sive forces coincides with that of tensile forces. As a result, the main contribution to
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Figure 8. Evolution of force anisotropiesan (a) andat (b) as a function of cumulative
shear strainεq in samples S1 and S2.
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the shear strength comes from force anisotropy. The fabric anisotropy is generally low
and partially inhibited by the presence of adhesion. Note also that adhesion between
particles involves a force scale so that its contribution tothe shear strength is mainly
expressed through the Coulomb cohesionc (equation (1)), but it can also influence the
internal angle of frictionϕc through fabric anisotropy.

7. Conclusion

In this paper, we presented a brief account of physical mechanisms that underly the
critical-state shear strength of granular materials. The short-comings of the picture of
granular friction in direct analogy with solid friction wasdiscussed. Recalling the ex-
pansion of the stress tensor in force and fabric anisotropies, a model was presented for
the accessible geometrical states within a harmonic representation of the microstruc-
ture. This model, consistent with numerical simulations, relates the critical-state fabric
anisotropy to two isotropic limit states corresponding to the lowest and highest contact
densities of a granular packing. The force anisotropy was analyzed in the light of the
bimodal character of force transmission. It was shown that the shear strength is mainly
sustained by the strong force network so that force anisotropy is mainly related to the
aptitude of a granular assembly to build up strong force chains. Finally, the effect of
material parameters with respect to fabric and force anisotropies was discussed.
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