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SUMMARY

In this paper, we consider the design of an H∞ trade-off dependent controller, that is, a controller
such that, for a given Linear Time-Invariant plant, a set of performance trade-offs parameterized
by a scalar θ is satisfied. The controller state space matrices are explicit functions of θ. This new
problem is a special case of the design of a parameter dependent controller for a parameter dependent
plant, which has many application in Automatic Control. This last design problem can be naturally
formulated as a convex but infinite dimensional optimization problem involving parameter dependent
Linear Matrix Inequality (LMI) constraints. In this paper, we propose finite dimensional (parameter
independent) LMI constraints which are equivalent to the parameter dependent LMI constraints.
The parameter dependent controller design is then formulated as a convex finite dimensional LMI
optimization problem. The obtained result is then applied to the trade-off dependent controller design.
A numerical example emphasizes the strong interest of our finite dimensional optimization problem
with respect to the trade-off dependent control application. Copyright c© 2004 John Wiley & Sons,
Ltd.

key words: parameter dependent LMI, parameter dependent H∞ control, trade-off dependent

control, gain scheduling control, parameter dependent Lyapunov function.

1. INTRODUCTION

Trade-off dependent controller design During the last twenty years, dramatic advances
were accomplished in the design of Linear Time-Invariant (LTI) controllers for LTI plants using
the frequency domain approach. The so-called H∞ control approach [48, 16, 42] is at now a
mature design method. The existing methods focus on designing one particular LTI controller
for one particular set of design specifications corresponding to one particular performance
trade-off.

Nevertheless, in some control problems, for a given plant, an important issue is to retune in
situ the controller in order to ensure different performance trade-offs. Such retunings can be
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performed during the controller exploitation [1]. In these conditions, a new controller design
by an Automatic Control engineer has to be avoided. A promising solution to this practical
problem is the design of a trade-off dependent controller, that is, a controller whose gains are
explicit functions on a continuous set of trade-offs. Retuning the controller just amounts to
select a different trade-off which is easy and affordable without expertise in Automatic Control.
Another possible application can be the on-line performance retuning for e.g. ship control with
the rejection of wave disturbances which depend on the sea conditions [30], active suspension
in order to adapt it to road conditions [20], etc.. In these cases, the trade-off parameter is in a
continuous interval. This is the key fact for using a trade off dependent controller instead of,
e.g., a finite number of controllers.

Using classical design methods, when specifications can be ensured using a low complexity
controller, e.g. Proportional Integral, engineers use to investigate the link between controller
gains and design specifications (such as time response, control input energy..) in order to obtain
(re)tuning rules. This link (generally qualitative) can be established based on e.g. know-how,
classical rules of automatic control.. Nevertheless, for ensuring more stringent specifications,
more complex (multivariable) controllers are usually designed using modern methods (such as
Linear Quadratic Gaussian, Model Predictive Control, H∞ control..). The obtained controllers
are defined by numerous parameters whose links with the design specifications are not crystal
clear. This prevents the controller (re)tuning in order to ensure different trade-offs. Here again,
if a trade-off dependent controller has been designed, the controller (re)tuning just amounts
to choose the trade-off.

To our best knowledge, a complete solution to the trade-off dependent controller design
was not previously proposed. Let us introduce a parameter θ ∈ [0, 1] which parameterizes the
performance trade-offs. The problem is then to design a controller whose gains explicitly depend
on this parameter θ. In the H∞ control approach, the design of a controller is formulated as an
optimization problem on weighted closed loop transfer functions. The considered closed loop
transfer functions and the weighting functions are defined by the generalized plant [16]. The
desired performance specifications are introduced through the choice of the weighting functions.
As a consequence, the performance trade-off can be defined by choosing the weighting functions
depending on θ. Even if, in our case, the plant does not depend on θ, the generalized plant
depends on.

Parameter dependent controller design Our problem is thus a subcase of the design of
a parameter dependent controller for a (generalized) parameter dependent plant. In the first
part of this paper, we focus on this problem. Performance is considered through the use of
the H∞ norm. Nevertheless, other performance criteria (such as H2, multiobjective...) can be
considered in a similar way.

The design of a parameter dependent controller for a (generalized) parameter dependent
plant has a strong interest since it encompasses numerous control design problems such as:
gain scheduled control [43, 22], saturated system control [32], spatial system control [11],
adaptive control [19], low cost identification [8] to cite a few.

In this paper, we propose a solution to the parameter dependent control with an application
to the trade-off dependent control. Some other applications of this solution, listed above, are
probably more important or challenging. Nevertheless, in addition to its own interest, the
performance of the obtained trade-off dependent controllers can be analyzed in the numerical
examples using basic automatic control knowledge. Furthermore, the “best performance” can
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PARAMETER DEPENDENT H∞ CONTROL 3

be readily evaluated. Thus, we prefer to focus on the trade-off dependent control since it allows
to clearly evaluate the benefit of our solution.

Infinite dimensional optimization The parameter dependent controller design can be
naturally formulated as a convex but infinite dimensional optimization problem as it involves
parameter dependent Linear Matrix Inequalities. Its decision variables are (unknown) functions
of the parameter. This infinite dimensional nature forbids a practical computation of a solution.
The same difficulty arises in robustness analysis [18, 23] or Linear Parameter Varying (LPV)
control [34, 3]. For these particular problems, the basic idea is to derive finite dimensional
Linear Matrix Inequality (LMI) optimization problems [9]. Different approaches were proposed
with possibly introducing conservatism, see section 2.5 for a discussion. One of the main
features of these approaches is the choice of function sets for the decision variables. The most
general choice was, up to now, rational with a priori chosen degree and denominator.

Proposed approach In this paper, we consider the more general problem of replacing a
parameter dependent LMI by a finite number of parameter independent LMIs. Our approach
is based on an extended version of the Kalman-Yakubovich-Popov Lemma and an elementary
property of the real valued polynomials. Due to its potential important applications, some
extension of Kalman-Yakubovich-Popov Lemma was recently largely investigated [36], with an
emphasis on the necessity [28, 27, 39]. It is strongly related to the µ computation for special
uncertainty sets where the µ upper bound [17, 33] gives the actual value of µ. Moreover, recent
papers focus on numerical algorithms dedicated to the LMI based condition of the Kalman-
Yakubovich-Popov Lemma (see [45] and the references therein). This solution is dramatically
more efficient than a direct use of general purpose LMI solvers such as [24].

In this paper, we investigate applications of the extended Kalman-Yakubovich-Popov Lemma
to problems of interest. We first reveal that a rational dependent parameter LMI with rational
decision variables can be equivalently recast as a finite number of parameter independent
LMIs in the case of one parameter†. In contrast with previous results, the denominator of
the rational decision variables is e.g. no longer a priori chosen (Lemma 2.1, section 2.4). Such
a contribution allows to dramatically improve the obtained result. This solution is part of
our continuing investigation into the transformation of an infinite dimensional optimization
problem into a finite one [40, 7, 36, 41].

The obtained result is applied to propose a solution to the parameter dependent controller
design in the form of a finite dimensional optimization problem involving LMIs. In this
application, the interest of rational decision variables is crystal clear: the state space matrices
of the parameter dependent controller are then rational functions in θ, which is a desirable
feature for real-time implementation. This solution is the second contribution of this paper,
perhaps one of the most interesting. The third contribution of the paper is then to derive
a solution to the trade-off dependent controller design problem. This paper is based on the
conference paper [15]. An extended version of this paper is available [14].

†In the case of several parameters, the proposed conditions are only sufficient, see the Appendix.
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Paper outline Section 2 focus on the parameter dependent controller design problem: the
problem is formulated in section 2.1. In section 2.2, its solution as an infinite dimensional
optimization problem is presented. An equivalent finite dimensional optimization problem is
then proposed in section 2.3. The proof, developed in section 2.4, is based on a solution to
the general problem of replacing a parameter dependent LMI by a finite number of parameter
independent LMIs. Section 3 is an application to the trade-off dependent controller design
with a numerical example.

Notations and definitions In and 0m×p denotes respectively the n×n identity matrix and
the zero matrix of size m × p. The subscript is omitted when it is evident from the context.
P > 0 denotes that the matrix P is positive definite. dim(T ) is the dimension of the matrix T .
The Redheffer star product [49] is denoted by ⋆. A Linear Fractional Transformation (LFT)
is a particular Redheffer star product defined, with (I − A∆) invertible, by:

∆ ⋆

[

A B
C D

]

= D + C∆(I − A∆)−1B.

Elementary operations on LFT (addition, product, etc..) are defined, see e.g. [49].

2. PARAMETER DEPENDENT CONTROLLER DESIGN FOR A PARAMETER
DEPENDENT PLANT

2.1. Problem formulation

Let us consider the LTI system P (s, θ) defined by a parameter dependent state space
representation:







ẋ(t) = A(θ)x(t) + Bw(θ)w(t) + Bu(θ)u(t)
z(t) = Cz(θ)x(t) + Dzw(θ)w(t) + Dzu(θ)u(t)
y(t) = Cy(θ)x(t) + Dyw(θ)w(t)

(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

nu the command input, y(t) ∈ R
ny the measured

output, z(t) ∈ R
nz the controlled output, w(t) ∈ R

nw the disturbance input and θ a time-
invariant scalar parameter (conventionally θ ∈ [0, 1]). The state space matrices of P (s, θ) are
assumed to be rational functions of θ, well-posed on [0, 1]. We then consider the following
problem.

Extended H∞ control problem Given P (s, θ) as defined in (1) and γ > 0 find, if there
exist, a parameter dependent controller

K(s, θ) =
1

s
In ⋆

[

AK(θ) BK(θ)
CK(θ) DK(θ)

]

(2)

where AK(θ), BK(θ), CK(θ) and DK(θ) are rational functions of θ, of limited degree and
well-posed on [0, 1], such that, for any θ ∈ [0, 1]:

1. the closed loop system P (s, θ) ⋆ K(s, θ) is asymptotically stable;
2. ‖P (s, θ) ⋆ K(s, θ)‖∞ < γ.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 00:1–6
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The state space matrices AK(θ), BK(θ), CK(θ) and DK(θ) of the controller (2) are required
to be rational in θ of limited degree in order to obtain a controller implementation of reasonable
complexity. A more complex dependence on θ is useless since it would be necessary to
approximate these functions by, for example, rational or polynomial ones of limited degree
for a practical implementation. For the sake of briefness, the control objective is defined using
the H∞ norm. Nevertheless, the proposed approach can be readily applied e.g. to the H2

control problem [16] or to the multiobjective control problem [38].

2.2. Proposed approach

In the following theorem, the design of a parameter dependent H∞ controller is formulated
as an optimization problem. It is obtained by a direct extension of the standard H∞ control
solution proposed in [38].

Theorem 2.1. Given γ > 0, there exists a parameter dependent controller

K(s, θ) =
1

s
In ⋆

[

AK(θ) BK(θ)
CK(θ) DK(θ)

]

such that, for any θ ∈ [0, 1]:

1. the closed loop system P (s, θ) ⋆ K(s, θ) is asymptotically stable;
2. ‖P (s, θ) ⋆ K(s, θ)‖∞ < γ

if and only if there exist

• symmetric parameter dependent matrices X (θ) ∈ R
n×n and Y(θ) ∈ R

n×n well-posed on [0, 1];
• parameter dependent matrices A(θ) ∈ R

n×n, B(θ) ∈ R
n×ny , C(θ) ∈ R

nu×n and D(θ) ∈ R
nu×ny

well-posed on [0, 1]

satisfying (3) and (4) for any θ ∈ [0, 1]:
[

X (θ) I
I Y(θ)

]

> 0 (3)















A(θ)X (θ) + X (θ)A(θ)T + . . .

Bu(θ)C(θ) + (Bu(θ)C(θ))T
(.)T (.)T (.)T

A(θ) + . . .

(A(θ) + Bu(θ)D(θ)Cy(θ))T

A(θ)TY(θ) + Y(θ)A(θ) + . . .

B(θ)Cy(θ) + (B(θ)Cy(θ))T
(.)T (.)T

(Bw(θ) + Bu(θ)D(θ)Dyw(θ))T (Y(θ)Bw(θ) + B(θ)Dyw(θ))T −γI (.)T

Cz(θ)X (θ) + Dzu(θ)C(θ) Cz(θ) + Dzu(θ)D(θ)Cy(θ) Dzw(θ) + Dzu(θ)D(θ)Dyw(θ) −γI















< 0

(4)
where (.)T denotes the transpose of the symmetric block.
A state space representation of a parameter dependent controller is then obtained with

[

AK(θ) BK(θ)
CK(θ) DK(θ)

]

=

[

L(θ) −J(θ) 0
0 0 Inu

]

× . . .








In 0
0 Bu(θ)
0 Inu



V(θ)

[

X (θ)−1 0
−Cy(θ) Iny

]

+





0 0
A(θ) 0

0 0









(5)

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 00:1–6
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6 M. DINH, G. SCORLETTI, V. FROMION AND E. MAGAROTTO

where
[

L(θ) −J(θ)
]

=

([

In

In

]

X (θ)
[

In Y(θ)
]

[

In 0 0
0 −In In

])

⋆ In

and where

V(θ) =

[

A(θ) B(θ)
C(θ) D(θ)

]

.

The optimization problem involving constraint (3) and constraint (4) is convex in the
decision variables X (θ), Y(θ) and V(θ), which is a desirable feature. Unfortunately, it is also
infinite dimensional. As parameterized by θ, there is an infinite number of constraints. As
functions of θ, the decision variables are in an infinite dimensional space. In this form, this
prevents an efficient computation of the solution.

However, the problem considered in Theorem 2.1 is a little bit more general than the one
considered in Extended H∞ control problem. Remind that the controller state space
matrices AK(θ), BK(θ), CK(θ) and DK(θ) of the controller (2) are required to be rational
functions of θ of limited degree. From equation (5), the decision variables X (θ), Y(θ) and
V(θ) are then enforced to be rational functions in θ of limited degree. To this purpose, the
optimization problem introduced in Theorem 2.1 is modified with:

X (θ) =

∑N

i=0 θiXi

1 +
∑N

i=1 θidi

, Y(θ) =

∑N

i=0 θiYi

1 +
∑N

i=1 θidi

, V(θ) =

∑N

i=0 θiVi

1 +
∑N

i=1 θidi

, (6)

where for i = 0, . . . , N , Xi = X T
i ∈ R

n×n, Yi = YT
i ∈ R

n×n, Vi ∈ R
(n+nu)×(n+ny), and

for i = 1, . . . , N , di ∈ R. In (6), only N is a priori chosen‡. The integer N is a trade-off
parameter. A small N allows to obtain a low complexity controller, that is, a controller whose
state space matrices are rational functions of small degree, with the possible drawback of a
poor performance. Performance can be improved by increasing N , with the possible drawback
of a large complexity controller. The example presented in section 3.2 illustrate that good
performance can be obtained with a small N .

With respect to Extended H∞ control problem, an interesting optimization problem
is thus :

Given N , find the decision variables X (θ), Y(θ) and V(θ) defined by (6) such that for any
θ ∈ [0, 1], constraint (3) and constraint (4) are satisfied.

In the next section, this infinite dimensional optimization problem is equivalently recast as
a finite dimensional convex optimization problem involving Linear Matrix Inequalities which
can be efficiently computed.

‡N is the degree of the denominator when the rational function is written as the fraction of two polynomials
in 1

θ
. Thus, it is not necessary that dN 6= 0 since the higher term coefficient is 1.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 00:1–6
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2.3. Finite dimensional solution

Before presenting the result, let us first associate to (6):

RX =
[

XN · · · X1 X0

]

RY =
[

YN · · · Y1 Y0

]

RV =
[

VN · · · V1 V0

]

Rd,p =
[

dNIp · · · d1Ip Ip

]

Jp(ci) =















































0 Ip 0 · · · 0 0
...

. . .
. . .

. . .
...

...
...

. . .
. . . 0

...
0 · · · · · · 0 Ip 0

−cNIp · · · · · · · · · −c1Ip Ip

Ip 0 · · · · · · 0 0

0
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . . 0

...
0 · · · · · · 0 Ip 0

−cNIp · · · · · · · · · −c1Ip Ip















































(7)

where ci, i = 1, . . . , N are real scalars such that, for any θ ∈ [0, 1], 1 +
∑N

i=1 θici 6= 0. Let us
introduce L(AΦ, BΦ, CΦ, DΦ,M,S,G), with dim(S) = dim(G) = dim(AΦ), defined by:

[

CT
Φ

DT
Φ

]

M
[

CΦ DΦ

]

+

[

AT
Φ(S − G) + (S + G)AΦ − 2S (S + G)BΦ

BT
Φ(S − G) 0

]

.

Theorem 2.2. Given N , there exist decision variables X (θ), Y(θ) and V(θ) defined by (6)
and well-posed on [0, 1] such that, for any θ ∈ [0, 1], constraint (3) and constraint (4) are
satisfied if and only if there exist

• symmetric matrices Xi ∈ R
n×n and Yi ∈ R

n×n, and matrices Vi ∈ R
(n+nu)×(n+ny),

i = 0, . . . , N ;
• scalars di, i = 1, . . . , N

such that

(i) there exist a symmetric positive definite matrix S0 and a skew-symmetric matrix G0 such
that

L

(

AΩ0
, BΩ0

, CΩ0
, DΩ0

,

[

0 −W
−WT 0

]

,S0,G0

)

< 0 (8)

with

W
∆
=

[

RX 2Rd,n

0 RY

]

and θI ⋆

[

AΩ0
BΩ0

CΩ0
DΩ0

]

∆
=





I2n

θI ⋆ Jn(ci) 0
0 θI ⋆ Jn(ci)



 .

(ii) there exist a symmetric positive definite matrix S and a skew-symmetric matrix G such
that

L

(

AΩ, BΩ, CΩ, DΩ,

[

0 Z(γ)
Z(γ)T 0

]

,S,G

)

< 0 (9)

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 00:1–6
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8 M. DINH, G. SCORLETTI, V. FROMION AND E. MAGAROTTO

with

Z(γ) =























RV 0 0 0 0

0 RX Rd,n 0 0
0 0 RY 0 0

0 Rd,n 0 0 0
0 0 0 Rd,nw

0
0 0 0 γRd,nw

0
0 0 0 0 γRd,nz























and with

θI ⋆

[

AΩ BΩ

CΩ DΩ

]

∆
=

[

F1(θ)
T

F2(θ)F3(θ)

]

where

F1(θ) =









0 Bu(θ) A(θ) 0 0 0 0 0
In 0 0 A(θ)T 0 0 0 0
0 0 0 Bw(θ)T Bw(θ)T 0 − 1

2Inw
0

0 Dzu(θ) Cz(θ) 0 0 Dzw(θ) 0 − 1
2Inz









F2(θ) =













θI ⋆ Jn+ny
(ci) 0 0 0 0

0 θI ⋆ Jn(ci) 0 0 0
0 0 θI ⋆ Jn(ci) 0 0
0 0 0 θI ⋆ Jnw

(ci) 0
0 0 0 0 θI ⋆ Jnz

(ci)













F3(θ) =





In 0 0 0
0 Cy(θ) Dyw(θ) 0

In+n+nw+nz





The state space representation of a parameter dependent controller is then obtained using (5)
with

X (θ) =

∑N

i=0 θiXi

1 +
∑N

i=1 θidi

, Y(θ) =

∑N

i=0 θiYi

1 +
∑N

i=1 θidi

, V(θ) =

∑N

i=0 θiVi

1 +
∑N

i=1 θidi

.

Computation: for a given value of γ, the optimization problem defined by (8) and (9) is an
LMI feasibility problem since W and Z(γ) are affine in the decision variables RX , RY , RV

and di, i = 1, . . . , N . Another interesting problem is to minimize γ over LMI constraints (8)
and (9). This minimization is a quasi convex optimization problem§, the minimum value of γ
can be found by performing a dichotomy on γ.

§Quasi convexity can be proved by a simple adaptation of the proof of the (LMI) Generalized Eignevalue
Problems, see [9].
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Remark The results presented in Theorem 2.2 do not depend on the choice of the scalars ci.
They can be chosen in order to improve the numerical resolution of the optimization problem
defined by (8) and (9). For instance, it is chosen in order to limit the order of an LFT realization
of Ω(θ), thus reducing the computational burden of (9). As the obtained result is insensitive

to this choice as long as 1 +
∑N

i=1 ciθ
i does not vanish on [0, 1], the introduction of the scalars

ci comes from purely computational considerations.

2.4. Proof of Theorem 2.2

The problem considered in Theorem 2.1 is a particular case of an infinite dimensional convex
optimization problem involving parameter dependent LMI constraints. Following [36], the finite
dimensional optimization problem of Theorem 2.2 is derived from Theorem 2.1 along two steps.
The first step is the introduction of a finite parameterization of the decision variables. From
equation (6), the decision variables X (θ), Y(θ) and V(θ) are naturally parameterized by a finite
number of coefficients: the matrices Xi, Yi Vi, i = 0, · · · , N and the scalars di, i = 1, · · · , N .
In order to obtain a finite number of optimization constraints, the second step is the application
of the following lemma.

Lemma 2.1. Let H1(θ) and H2(θ) be two matrices of rational functions of θ, well-posed on
[0, 1]. Let C be a matrix and N an integer.

There exists Υ(θ) a (possibly structured) matrix of rational functions of θ of degree N ,
well-posed on [0, 1]:

Υ(θ) =

∑N

i=0 θiΥi

1 +
∑N

i=1 θidi

such that

∀θ ∈ [0, 1], H1(θ)(C + Υ(θ))H2(θ) + (H1(θ)(C + Υ(θ))H2(θ))
T < 0 (10)

if and only if there exist N + 1 matrices Υi, i = 0, . . . , N , and N scalar di, i = 1, . . . , N , such
that the two following conditions are satisfied:

(i) there exist a symmetric positive definite matrix Sd and a skew symmetric matrix Gd such
that:

L











































0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1

−cN · · · · · · · · · −c1

















,

















0
...
...
0
1

















,



























0
1 0 · · · · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1

−cN · · · · · · · · · −c1



























,



























1
0
...
...
...
0
1



























, · · ·

· · ·

[

0 −Rd,1

−RT
d,1 0

]

,Sd,Gd

)

< 0

(11)
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10 M. DINH, G. SCORLETTI, V. FROMION AND E. MAGAROTTO

(ii) there exist a symmetric positive definite matrix S and a skew symmetric matrix G such
that

L

(

AH , BH , CH , DH ,

[

0 U(Υi, di)
U(Υi, di)

T 0

]

,S,G

)

< 0 (12)

where

θI ⋆

[

AH BH

CH DH

]

∆
=

[

H1(θ)
T

H̄(θ)H2(θ)

]

and where U(Υi, di) is an affine function of Υi and of di such that

U(Υi, di)H̄(θ) =
(Υ0 + C) +

∑N

i=1 θi(Υi + diC)

1 +
∑N

i=1 θici

(13)

Remark The factorization (13) is always possible. Such a factorization is not unique. For
instance, a factorization is given by H̄(θ) = θI ⋆Jp(ci), with p the number of columns of Υ(θ),
Jp(ci) defined by (7) and U(Υi, di) =

[

ΥN + dNC · · · Υ1 + d1C Υ0 + C
]

.

Interpretation Lemma 2.1 conditions are obtained through an extension of the Kalman-
Yakubovich-Popov Lemma. The first point is that any matrix Φ(θ) of rational functions of θ,
well-posed for θ = 0, has an LFT representation, that is, there exists four matrices AΦ, BΦ,
CΦ and DΦ such that[49]:

Φ(θ) = θI ⋆

[

AΦ BΦ

CΦ DΦ

]

. (14)

Lemma 2.2 (Extended Kalman-Yakubovich-Popov Lemma) Let Φ(θ) be a rational
matrix function of θ, well-posed on [0, 1], defined by its LFT realization as in (14). Let M
be a matrix.
Then the condition

∀θ ∈ [0, 1], Φ(θ)T MΦ(θ) < 0

holds if and only if there exist a symmetric positive definite matrix S and a skew-symmetric
matrix G such that

L(AΦ, BΦ, CΦ, DΦ,M,S,G) < 0.

Let us discuss the application of Lemma 2.2 for proving Lemma 2.1 :

• Condition (11) is equivalent to the strict positivity of the rational function
1 +

∑N

i=1 θidi

1 +
∑N

i=1 θici

for any θ ∈ [0, 1]. The polynomial 1 +
∑N

i=1 θici has a constant sign on [0, 1] as it does

not vanish on [0, 1]. The polynomial 1 +
∑N

i=1 θidi is enforced to get a constant sign on
[0, 1] : well posed of Υ(θ) is thus ensured.

• Condition (12) is equivalent to:

∀θ ∈ [0, 1], H1(θ)

(

(Υ0 + C) +
∑N

i=1 θi(Υi + diC)

1 +
∑N

i=1 θici

)

H2(θ) + · · ·

· · · +

(

H1(θ)

(

(Υ0 + C) +
∑N

i=1 θi(Υi + diC)

1 +
∑N

i=1 θici

)

H2(θ)

)T

< 0.

(15)

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 00:1–6
Prepared using rncauth.cls



PARAMETER DEPENDENT H∞ CONTROL 11

Thus, combining both items, condition (10) is obtained. Note that the contribution of Lemma
2.1 is allowed by the following fact: the sign of a real valued polynomial with no roots on
an interval is constant on this interval. This elementary property was intensively used for
formulating the approximation of real valued functions by real valued rational functions as
a convex optimization problem (see e.g. [10]). It explains why the extension to the rational
approximation of complex valued functions (and the model reduction problem) is a much more
difficult problem.

Proof of Lemma 2.1 From the previous discussion, condition (i) is a necessary and sufficient
condition for the well-posedness of Υ(θ) on [0, 1]. Condition (ii) ensures that condition (10) is
satisfied.

Let us focus on condition (i). Υ(θ) is well-posed on [0, 1] if and only if the polynomial

1+
∑N

i=1 diθ
i does not vanish on [0, 1]. As the polynomial is real valued, with real coefficients,

its sign is then constant for any θ ∈ [0, 1]. The sign is positive since for θ = 0, the value of the

polynomial is 1. Let us introduce the polynomial 1 +
∑N

i=1 ciθ
i that does not vanish on [0, 1].

Then, the polynomial 1 +
∑N

i=1 diθ
i does not vanish on [0, 1] if and only if

∀θ ∈ [0, 1],
1 +

∑N

i=1 diθ
i

1 +
∑N

i=1 ciθ
i

> 0. (16)

Since
1 +

∑N

i=1 diθ
i

1 +
∑N

i=1 ciθ
i

= Rd,1 × θ ⋆ J1(ci), condition (16) is then equivalent to

∀θ ∈ [0, 1],

[

1
θ ⋆ J1(ci)

]T [

0 −Rd,1

−RT
d,1 0

] [

1
θ ⋆ J1(ci)

]

< 0 (17)

Lemma 2.2 is now applied with

M =

[

0 −Rd,1

−RT
d,1 0

]

and Φ(θ) =

[

1
θ ⋆ J1(ci)

]

.

Condition (17) is satisfied if and only if there exist a symmetric positive definite matrix Sd

and a skew symmetric matrices Gd such that condition (11) is satisfied.

Let us now consider condition (ii). Using (16), condition (10) is equivalent to condition (15).
Since

(Υ0 + C) +
∑N

i=1 θi(Υi + diC)

1 +
∑N

i=1 θici

= U(Υi, di)H̄(θ)

condition (15) is equivalent to

∀θ ∈ [0, 1],

[

H1(θ)
T

H(θ)H2(θ)

]T [

0 U(Υi, di)
U(Υi, di)

T 0

] [

H1(θ)
T

H(θ)H2(θ)

]

< 0. (18)

Lemma 2.2 is now applied with

M =

[

0 U(Υi, di)
U(Υi, di)

T 0

]

and Φ(θ) =

[

H1(θ)
T

H(θ)H2(θ)

]

Condition (18) is satisfied if and only if there exist a symmetric positive definite matrix S and
a skew symmetric matrices G such that condition (12) is satisfied. ✷
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12 M. DINH, G. SCORLETTI, V. FROMION AND E. MAGAROTTO

Remark Lemma 2.1 can be extended to the case when H1, H2 and Υ are rational functions
of several parameters θ1, · · · , θm, see Appendix. In this case, the conditions corresponding to
(11) and (12) are no longer necessary.

The interest of Lemma 2.1 with respect to previously published results will be discussed in
section 2.5. Theorem 2.2 is now proved by applying Lemma 2.1.

Proof of Theorem 2.2 Lemma 2.1 is first applied to condition (4). Condition (4) can be
factorized in the form of (10) with H1(θ) = F1(θ), H2(θ) = F3(θ) and

C + Υ(θ) =





















V(θ) 0

0
X (θ)

0
In

Y(θ)
0
0

0
0

0

In

0
0
0

0
0
0
0

0
Inw

γInw

0

0
0
0

γInz





















.

Lemma 2.1 is then applied with H̄(θ) = F2(θ) and U(Υi, di) = Z(γ). Note that, in the special
case of (4), condition (16) is implied by condition (15) and thus can be dropped. It only remains
condition (12) in Lemma 2.1, which leads to condition (9).

Condition (3) can be factorized in the form of (10) with H1(θ) = I, H2(θ) = I and

C + Υ(θ) =

[

−X (θ) −2In

0 −Y(θ)

]

.

Lemma 2.1 is then applied with H̄(θ) =

[

θI ⋆ Jn(ci) 0
0 θI ⋆ Jn(ci)

]

and U(Υi, di) = −W.

Note that we use the same scalars ci for both conditions (3) and (4). Here again, it only
remains (12) in Lemma 2.1, which is (8). ✷

2.5. Discussion of Lemma 2.1

We discuss Lemma 2.1 with respect to existing results on infinite dimensional optimization
problems. (A more detailed discussion is presented in [14].) Infinite dimensional optimization
problems also arise in robust/LPV analysis and control. First, general parameter dependent
LMI constraints are considered in (10). In robust/LPV analysis and control, existing results
usually consider special cases of parameter dependent LMI constraints,e.g. homogeneous in the
decision variable, see [13, 18, 6]. Second, the set of rational functions with free denominator
is considered for the decision variables. In robust/LPV analysis and control, existing results
consider subset of ours, such as the set of functions independent of θ (see [34, 2]), or the set
of affine functions (see [3, 23, 18]), or the set of polynomial functions of a given degree (see
[6]) or the set of rational functions with a priori fixed denominator and of a given degree (see
[13, 29]). Thus, for a given degree, the set considered in this paper includes previous ones,
leading to less conservative conditions.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 00:1–6
Prepared using rncauth.cls



PARAMETER DEPENDENT H∞ CONTROL 13

Third, the transformation of an infinite number of constraints into a finite one does not
introduce conservatism for one parameter. The case of several parameters can also be treated
with a reasonable computation burden. Other approaches can be used, such as gridding ones
[46] or polytopic-like ones [5, 3, 23, 47, 44]. The gridding class does not ensure the LMI
constraint to hold over its whole range, unless at the price of an extremely high computation
burden. The polytopic-like class generally suffers of conservatism. Moreover, it cannot be
directly applied to rational dependent LMI constraints; generally, it is applied to quadratic
parameter dependent LMI constraints. Finally, for several parameters, the computation burden
explodes with the exponential growth in the number of parameter independent constraints.

3. APPLICATION TO THE DESIGN OF A PARAMETER DEPENDENT CONTROLLER
FOR A SET OF PARAMETERIZED TRADE-OFFS

In this section, the solution to the parameter dependent controller design presented in section
2.3 is applied to the design of a trade-off dependent controller.

3.1. Problem formulation

In the H∞ control approach, the design of a controller K is recast as an optimization problem
on weighted closed loop transfer functions. The considered closed loop functions are defined
by Pw (which depends on the plant):







ẋw(t) = Awxw(t) + Bw
p p(t) + Bw

u u(t)
q(t) = Cw

q xw(t) + Dw
qpp(t) + Dw

zuu(t)
y(t) = Cw

y xw(t) + Dw
ypp(t)

.

The desired performance specifications are introduced through the choice of the weighting
functions Wi and Wo.

A set of performance trade-offs parameterized by a scalar θ ∈ [0, 1] is then defined by
weighting functions that are depending on θ:

Wi(s, θ) = 1
sI ⋆

[

AWi
(θ) BWi

(θ)
CWi

(θ) DWi
(θ)

]

, and Wo(s, θ) = 1
sI ⋆

[

AWo
(θ) BWo

(θ)
CWo

(θ) DWo
(θ)

]

whose state space representation are assumed rational functions of θ, well-posed on [0, 1]. The
generalized plant is then defined as (see Figure 1):

P (s, θ) =

[

Wo(s, θ) 0
0 I

]

Pw(s)

[

Wi(s, θ) 0
0 I

]

. (19)

The problem is, given γ > 0, to compute a trade-off dependent controller, that is, a controller
K(s, θ) whose state space representation are (explicit) rational functions of θ such that

∀θ ∈ [0, 1], ‖P (s, θ) ⋆ K(s, θ)‖∞ < γ with P (s, θ) given by (19). (20)

As the state space matrices of P (s, θ) are rational in θ, the trade-off dependent control problem
is a subcase of the parameter dependent control problem, problem considered in section 2. The
solution presented in Theorem 2.2 can then be applied.
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14 M. DINH, G. SCORLETTI, V. FROMION AND E. MAGAROTTO

✲

✲

✲

Wi1(s, θ)

Wij(s, θ)

Winw
(s, θ)

w1

wj

wnw

✲

✲

✲

...

... pnw

q1
✲

✲

✲

Wo1(s, θ)

Wok(s, θ)

Wonz (s, θ)

✲

✲

✲

qk

qnz

...

...

z1

zk

znz

Wi(s, θ) Wo(s, θ)

P
w(s)

K(s, θ)?

✲

✛
yu

p1

pj

P (s, θ)

Figure 1. Trade-off dependent controller design problem

Remind that in order to get a controller whose state space matrices are reasonably complex
functions of θ, the decision variables in Theorem 2.2 are enforced to be rational functions of
θ of limited degree. The question of the performance loss introduced by this constraint arises.
A possible evaluation can be obtained by (i) finding the smallest γ, denoted γr, such that
there exists K(s, θ) of the considered structure satisfying (20), (ii) comparing γr with the
obtained γ, denoted γbest (“best achievable performance”), by considering a controller without
any constraint on its state space matrices (except well-posedness). Of course, the effective
computation of γbest with its corresponding controller is an open problem. Nevertheless, a
lower bound of γbest can be straightforwardly obtained by computing γθi

for a “lot” of values
θi where γθi

is the smallest γ such that there exists Kθi
(s) with ‖P (s, θi) ⋆ Kθi

(s)‖∞ < γ. A
lower bound on γbest is then maxθi

γθi
. In the sequel, the obtained controller for a given θi is

denoted Kθi
(s) and it is referred to as a “pointwise” controller. For purpose of comparison, a

criterion is given in percent: 100
γr − γbest

γbest
. Moreover, it is important that γθi

is approximately

constant for any θi.

In the next subsection, our approach is evaluated through a numerical example. The example
focuses on the DC motor control with quite realistic specifications. We evaluate the obtained
performance with our approach with respect to the best achievable performance. In addition,
we evaluate the obtained performance with our approach with respect to the performance
obtained by the same approach but with an a priori fixed denominator for the rational decision
variables. Remind that a contribution of this paper is to allow to optimize on the denominator
of the rational decision variables. Another example which emphasizes the benefit of the use of
rational decision variables with the extended Kalman Yakubovich Popov Lemma with respect
to other approaches is developed in the technical report [14].

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 00:1–6
Prepared using rncauth.cls



PARAMETER DEPENDENT H∞ CONTROL 15

3.2. DC motor control

The considered plant is a DC motor which can be modeled by

G(s) =
235

s( s
66 + 1)

=
1

s
I ⋆





−66 0 32
32 0 0
0 15 0



 .

It is controlled by a one degree of freedom controller. The purpose is to design a trade-off
dependent controller ensuring that the closed loop system output is able to track, with a
small error, step and low frequency sinusoidal reference signals with different transient times
(from 0.02 s for θ = 1 up to 0.06 s for θ = 0) and with the most limited possible control
input energy. The closed loop system has to reject step and low frequency sinusoidal input
disturbance signals. For different trade-offs between transient time and control input energy,
such a problem is addressed by the weighted H∞ problem presented in Figure 2 [42]. The usual

G(s)K(s, θ)?✲
u

✲

✻

✻

✲

✻

+

−

w1

y

W1(s, θ) W2(s, θ)

✻ ✻z1 z2

........................................
...
...
...
...
...
...
...
...
...
...
...
...
...
.................................................................................................................................................................................................................................................................................................................

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

.....................................................................................................

P (s, θ)

✲

✛

❄

W3(s, θ)
w2

+

+

Figure 2. Weighted H∞ problem

H∞ problem is for a given trade-off, that is for a given θi ∈ [0, 1]: find Kθi
(s) such that

∥

∥

∥

∥

W1(s, θi)Sθi
(s) W1(s, θi)G(s)Sθi

(s)W3(s, θi)
W2(s, θi)Kθi

(s)Sθi
(s) W2(s, θi)Tθi

(s)W3(s, θi)

∥

∥

∥

∥

∞

< γ (21)

with Sθi
(s) = 1

1 + G(s)Kθi
(s)

and Tθi
(s) =

G(s)Kθi
(s)

1 + G(s)Kθi
(s)

.

Choice of the weighting functions The weighting functions Wi(s, θ), i ∈ {1, 2} have the
following form [21]:

1

s
⋆





−ωci(θ)

√

|G2
∞i − 1|

|G2
0i − 1|

(G0i − G∞i)

√

|G2
∞i − 1|

|G2
0i − 1|

ωci(θ) G∞i





where G0i = |Wi(0, θ)|, G∞i = limω→∞ |Wi(jω, θ)| (with (G0i − 1)(G∞i − 1) < 0) and
ωci(θ) > 0, the crossover frequency, such that |Wi(jωci(θ), θ)| = 1.
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16 M. DINH, G. SCORLETTI, V. FROMION AND E. MAGAROTTO

1. W1 is chosen for ensuring tracking performance and modulus margin.

(a) The considered trade-off can be defined by ωc1, as it can be related to the transient
time response (20 rad/s for 0.06 s up to 80 rad/s for 0.02 s). Thus, ωc1 is directly
related to θ by ωc1(θ) = 20 + 60θ. The parameter θ can be then interpreted as the
crossover frequency of W1(s, θ), up to an affine transformation.

(b) G01 is an upper bound on the static error: we set −40dB.
(c) G∞1 is a lower bound on the modulus margin: we set −6dB.

2. W2 is chosen for ensuring control energy limitation: the smallest ωc2 the smallest the
control energy. We first obtain the smallest possible value of ωc2 for three values of θ
(23.33 rad/s and γ0 = 0.991 for θ = 0, 180 rad/s and γ0.5 = 0.986 for θ = 0.5, 700
rad/s and γ1 = 0.992 for θ = 1). Using a least square method, we then obtain ωc2(θ) =

23.33+ 204θ
1 − 0.7θ

. In addition, we choose 20 log(G02) = 10dB and 20 log(G∞2) = −60dB.

3. W3(s, θ) is chosen in order to specify the input disturbance rejection. For simplicity, W3

is chosen as a constant gain: W3(s, θ) = 0.05.

P (s, θ) is then obtained with the parameter dependent matrices A(θ) and Cz(θ) rational
functions with the denominator 1 − 0.7θ + 0θ2.

With these weighting functions, γθi
is computed for several values of θi ∈ [0, 1] with a step

of 0.01: we haveγθi
≈ 1. An estimation of γbest is 0.998.

Computation of the trade-off dependent controllers Trade-off dependent controllers
are obtained by applying Theorem 2.2 along three way:

1. with N = 2 and the denominator of the decision variables a priori chosen. A natural
choice for the denominator is the A(θ) and Cz(θ) ones, that is, 1 − 0.7θ + 0θ2;

2. with N = 2 to evaluate the effect of optimizing on the decision variable denominator;
3. with N = 3 for improving the previous result.

In order to improve the numerical resolution, we choose 1 + c1θ = 1 − 0.7θ, c2 = 0 for N = 2
and 1 + c1θ + c2θ

2 = (1 − 0.7θ)(1 + 3θ), c3 = 0 for N = 3 with (1 − 0.7θ) for limiting the size
of the matrices AΩ, BΩ, CΩ, DΩ and (1+3θ) arbitrary. The optimization problems are solved
using Matlab 6.5 with the LMI control toolbox [24].

Table I. Obtained results
Theorem 2.2 N = 2

a priori chosen denominator
Theorem 2.2

N = 2
Theorem 2.2

N = 3
γr 1.105 1.06 1

100
γr − γbest

γbest

(upper bound)
≈ 11% ≈ 6% < 1%

The obtained results are presented in Table I. Note that with the a priori chosen
denominator, the obtained result is quite correct with a lower bound on the criterion of 11%.
Nevertheless, with the same degree, this result is strongly improved with a smaller value:
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6%. Note that, in this case, the denominator of the decision variables is 1 − 1.12θ + 3.37θ2,
that is, a polynomial with complex roots, really different of the denominator of A(θ) and
Cz(θ). Its a priori selection would be difficult. Theorem 2.2 with N = 3 allows to obtain a
trade-off dependent controller whose performance is dramatically close to the best achievable
performance.

Performance analysis Let us now compare the trade-off dependent controller obtained
with Theorem 2.2 and N = 3 to the pointwise controllers by inspecting the Bode magnitude
of S(s, θi), K(s, θi)S(s, θi), G(s, θi)S(s, θi) and T (s, θi) (see Figure 3), the tracking of a step
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Figure 3. Bode magnitude of S (top left), GS (top right), KS (bottom left) and T (bottom right) for
θi ∈ {0, 0.5, 1}

reference and the rejection of a step disturbance (see Figure 4) and the Bode diagram of K(s, θi)
(see Figure 5) (for each figure θi ∈ {0, 0.5, 1}, thick line for the trade-off dependent controller
and thin line for the pointwise controllers). The obtained trade-off dependent controller satisfies
the design (rise time) specification. It actually recovers the performance obtained with the
pointwise controllers using low degree rational functions, which is really good.

An interesting feature has to be noticed from Figure 5. The structure of the controllers is a
Proportional Integral (PI) with a lead effect (and a low pass filter). However, for θ = 0, the lead
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effect is small and can be neglected; the trade-off dependent controller can be reduced to a PI
controller (with a low pass filter). Whereas, for θ = 1, the lead effect is important and cannot
be neglected; the trade-off dependent controller is a PI plus a lead transfer function (and a low
pass filter). It is a well-known fact that a DC motor can be controlled by a PI if the desired
transient response is slow enough. Faster transient response involves a PI plus lead effect
controller. Using classical rules of automatic control, know-how... a qualitative link between
the performance specifications and the controller gains can be established. Our approach
explicitly express the controller structure and the controller gains as analytic functions of
the performance specifications, that is, a quantitative link.

4. CONCLUSION

In this paper, the design of a parameter dependent controller for a parameter dependent plant
was recast as a (convex) finite dimensional optimization problem involving LMI constraints.
We proved that a parameter (rational) dependent LMI constraint can be equivalently
transformed in a parameter independent LMI constraint. An interesting contribution is that the
denominator of the decision variables is optimized, which dramatically improves the existing
results. This fact was emphasized through an example. The obtained result can be extended
to several parameters (see Appendix). But, in this case, conservative is introduced.

The obtained result was applied to the design of a trade-off dependent controller. An example
emphasizes the interest of our approach based on rational functions. Using low order rational
functions, we recover the performance obtained using pointwise controllers, that is, the best
performance possible.

The solution of the parameter dependent controller design has a broader application
including parameter dependent plants. One of the most interesting application is probably
the (classical) gain scheduled control [43, 22]. Traditional solutions are based on gridding and
interpolation, with well-known important difficulties. Our proposed solution is an alternative
approach where the parameter dependent controller is readily obtained avoiding gridding and
interpolation.

From a more general point of view, the proposed approach can be applied to control problems
involving parameter dependent LMI conditions. Such formulations were proposed, for instance,
for the control of nonlinear systems [37, 31, 26, 25], control of saturated systems [32] and control
of spatially invariant (distributed) systems [11, 4]. Under some technicalities, the proposed
approach can be also adapted to control problems involving parameter dependent Riccati
equations. Parameter dependent Riccati equations have been widely studied. Results on the
existence and the analyticity of a solution have been given (see [12, 35] and the references
therein). But to the authors best knowledge, no efficient method to compute such a solution
has been proposed. We hope that our proposed approach paves the way to an efficient solution
to these problems.
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APPENDIX

Lemma 2.1 is here extended to parameter dependent LMI with several parameters:

θ =







θ1

...
θm






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with θi ∈ [0, 1], i = 1, . . . ,m. Let us first introduced the following set of structured block
diagonal symmetric matrices:

S(ri) =



































S =



















S1 0 · · · · · · 0

0
. . .

. . .
...

...
. . . Si

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 Sm



















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Si = ST
i > 0, dim(Si) = ri, i = 1, . . . , m



































,

and the following set of structured block diagonal skew-symmetric matrices:

G(ri) =



































G =



















G1 0 · · · · · · 0

0
. . .

. . .
...

...
. . . Gi

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 Gm




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








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∣

∣

∣

∣
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∣

∣

∣

∣

∣

Gi = −GT
i , dim(Gi) = ri, i = 1, . . . , m



































.

The extension of Lemma 2.1 is now presented.

Lemma I.1. Let H1(θ) and H2(θ) be matrices of rational functions of θ, well-posed on
[0, 1] × · · · × [0, 1]. Let C be a constant matrix and Nj be m positive integers. Let ci1,...,im

,
ij = 0, . . . , Nj, j = 0, . . . , m, c0,...,0 = 1 be scalars such that for any θ ∈ [0, 1] × · · · × [0, 1],
∑m

j=1

∑Nj

ij=0 ci1,...,im
θi1
1 . . . θim

m 6= 0.

Then there exists Υ(θ) a (possibly structured) matrix of rational functions of θ, well-posed
on [0, 1] × · · · × [0, 1]:

Υ(θ) =

∑m

j=1

∑Nj

ij=0 Υi1,...,im
θi1
1 . . . θim

m
∑m

j=1

∑Nj

ij=0 di1,...,im
θi1
1 . . . θim

m

with d0,...,0 = 1 such that

∀θ ∈ [0, 1] × · · · × [0, 1], H1(θ)(C + Υ(θ))H2(θ) + (H1(θ)(C + Υ(θ))H2(θ))
T < 0

if there exist matrices Υi1,...,im
and scalars di1,...,im

, ij = 0, . . . , Nj, j = 0, . . . ,m with
d0,...,0 = 1 such that the two following conditions are satisfied:
(i) there exist Sd ∈ S(ki) and Gd ∈ G(ki) such that:

L

(

AP , BP ,

[

0
CP

]

,

[

1
DP

]

,

[

0 −T (di1,...,im
)

−T (di1,...,im
)T 0

]

,Sd,Gd

)

< 0

where T (di1,...,im
) is an affine function of di1,...,im

such that for some positive ki, i = 1, . . . , m

T (di1,...,im
) ×



















θ1Ik1
0 · · · · · · 0

0
. . .

. . .
...

...
. . . θiIki

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 θmIkm



















⋆

[

AP BP

CP DP

]

∆
=

∑m

j=1

∑Nj

ij=0 di1,...,im
θi1
1 . . . θim

m
∑m

j=1

∑Nj

ij=0 ci1,...,im
θi1
1 . . . θim

m

(22)
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(ii) there exist S ∈ S(li) and G ∈ G(li) such that

L

(

AH , BH , CH , DH ,

[

0 U(Υi1,...,im
, di1,...,im

)
U(Υi1,...,im

, di1,...,im
)T 0

]

,S,G

)

< 0

where


















θ1Il1 0 · · · · · · 0

0
. . .

. . .
...

...
. . . θiIli

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 θmIlm



















⋆

[

AH BH

CH DH

]

∆
=

[

H1(θ)
T

H̄(θ)H2(θ)

]

and where U(Υi1,...,im
, di1,...,im

) is an affine function of Υi1,...,im
and di1,...,im

, ij = 0, . . . , Nj,
j = 0, . . . , m such that for some positive li, i = 1, . . . , m

U(Υi1,...,im
, di1,...,im

)H̄(θ) =

∑m

j=1

∑Nj

ij=0(Υi1,...,im
+ di1,...,im

C)θi1
1 . . . θim

m
∑m

j=1

∑Nj

ij=0 ci1,...,im
θi1
1 . . . θim

m

. (23)

Remark The factorizations (22) and (23) are always possible, although not unique.

Remark In Lemma I.1, we obtain only sufficient conditions since Lemma 2.2 is no longer
necessary and sufficient in the case of several parameters.
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