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Permanent Magnet Couplings: Field and
Torque three-Dimensional Expressions

Based on the Coulombian Model
R. Ravaud, G. Lemarquand, V. Lemarquand and C. Depollier

Abstract

This paper presents three-dimensional expressions for theoptimization of permanent-magnet couplings.
First, we give a fully analytical expression of the azimuthal field created by one arc-shaped permanent
magnet radially polarized which takes into account its magnetic pole volume density. Such an expression
has a very low computational cost and is exact for all points in space. Then, we propose two semi-
analytical expressions of the azimuthal force and the torque exerted between two arc-shaped permanent
magnets. These expressions are valid for thick or thin arc-shaped permanent magnets. Furthermore, this
approach allows us to realize easily parametric studies andoptimizations. The analytical approach taken in
this paper, based on the Coulombian model, is a good alternative compared to the finite element method
generally used to study such configurations.

Index Terms

Analytical, couplings, permanent magnet, azimuthal force, radial magnetization, torque

I. I NTRODUCTION

ARC-SHAPED permanent magnets are widely used for the design of magnetic bearings or couplings.
These devices have first been studied by Yonnet [1][2][3] andother authors have studied their

properties as Elies [4][5] or Delamare [6]. Indeed, they allow to transmit a torque without mechanical
contact and thus to have efficient devices. Baran [7] have showed that media used for manufacturing
permanent magnets allow to have more and more efficient couplings. Furthermore, Samanta et al [8],
Mukhopadhyay et al [9] and Moser at al [10] have proposed structures using permanent magnets allowing
good performances.

As a consequence, the determination of magnetic fields and magnetic forces is of great interest in
such structures. However, their expressions are often difficult to obtain analytically and alternative semi-
analytical expressions can be used. For instance, Furlani has proposed semi-analytical expressions of
the magnetic field components created by polarized cylinders [11][12][13]. Moreover, Azzerboni et al
[14][15][16] have proposed a three dimensional calculation of the magnetic field created by Current-
Carrying Massive Disks. This calculation is based on both elliptic integrals and numerical integrals which
can be solved by using the Hermite polynomial decomposition.

Furthermore, geometrical methods have been proposed by Abele and Leupold [17] to calculate high
uniform magnetic field sources [18] using wedge-shaped magnets- with sections presenting wedges or
angles lower than90◦ - and extended from the Halbach magical structure [19][20][21]. These geometrical
methods are useful because they are simple to use.
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Babic et al use both Legendre’s polynoms and Heumann functions to calculate the magnetic field
components created by thin or thick arc-shaped permanent magnets at any point in space (either singular
or regular) [22][23]. In addition, Selvaggi [24][25] uses amultiple representation of the source to calculate
analytically the external magnetic field created by permanent magnets with Green’s functions. Such an
approach is interesting because it has a very low computational cost.

Morevoer, Kwon et al [26] have studied the effects of geometric asymmetries in magnet design. It is to
be noted that generally, it is interesting to precisely knowsuch effects because they can lower the quality
of devices using permanent magnets.

Some methods whose goal is to obtain the magnetic field as quickly as possible have also been proposed.
For example, Rakotoarison has proposed semi-analytical expressions based on only one numerical inte-
gration so as to determine the three magnetic field components created by arc-shaped permanent magnets
whose polarization is radial [27]. Zhilichev [28] has studied the magnetic field created by two infinite
cylindrical permanent magnets by using bipolar coordinates.

Another approach, proposed by Perigo [29], deals with the calculation of magnetic flux density produced
by axially magnetized toroidal permanent magnets. At last,some approaches based on elliptical expressions
have also been proposed by Durand [30] and by the authors [31]. Such expressions are useful since the
algorithms used to determine elliptic integrals are very robust and very fast.

It can be noted that for several years, authors dealt with a two-dimensional approach to study the
magnetic field created by arc-shaped permanent magnets [32]. The main reason is that a two-dimensional
approach is fully analytical and allows an easy parametric optimization of the permanent magnet dimen-
sions so as to obtain a great force in synchronous couplings [33][34][35]. However, this 2D-approach is
not valid when we determine the magnetic field far from one magnet.

The determination of the force between permanent magnets has been proposed by Akoun and Yonnet
[36] and is generally employed to study the magnetic forces exerted between ring permanent magnets.
Other methods, using a three-dimensional approach have been discussed [37][38][39]. Such approaches
give a precise value of the force exerted between curved permanent magnets. These approaches differ
from the one used in this paper because the expressions determined by Conway are based on Bessel
function integrals. The main interest of his approach lies in the fact that expressions based on Bessel
integrals are simple to use and the numerical evaluation of such special integrals is fast and precise. The
approach proposed by Kim is also interesting: its method is close to the one established in this paper. He
has obtained numerical expressions based on elliptic integrals but has used the vector potential whereas
we use neither the scalar potential nor the vector potentialfor calculating the magnetic field created by
an arc-shaped permanent magnet.

The calculation of the force between two ring permanent magnets whose polarization is axial has been
also proposed [40][30].

All the semi-analytical or analytical approaches taken by the authors allow to optimize devices using
permanent magnets [41][42]. Moreover, they allow to compare these devices in order to have the best
compromise between its effectiveness [43][44] and its cost. It is to be noted that the properties of
permanent magnets have been improved [45]. This allows to build original structures which are very
efficient [46][47][48][49]. Moreover, permanent magnets can be used to design original devices involved
in the micromass measurement [50].

This paper has three main objectives. In the first part, we present a fully analytical expression of
the azimuthal field created by one arc-shaped permanent magnet whose polarization is radial. A similar
expression had been published in a previous paper [31] but wehad neglected the magnetic pole volume
density. In this paper, the expression obtained is valid forthin or thick arc-shaped permanent magnets.
Thus, we can easily determine the demagnetizing field with such an expression.
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The second aim of this paper is to present a semi-analytical expression of the azimuthal force exerted
between two arc-shaped permanent magnets whose polarization is radial. The main difficulty lies in the
fact that this calculation requires up to six integrations to determine this azimuthal force. We show in
this paper that we can reduce these six integrations and the semi-analytical expression proposed is very
simple to use. We also discuss the possibility of neglectingsome terms in the expression obtained so as
to have a very low computational cost.

Eventually, the third aim of this paper is to propose a semi-analytical expression of the torque transmitted
between two arc-shaped permanent magnets. The calculationof the torque between two arc-shaped
permanent magnets radially magnetized is also difficult because the magnetic pole volume densities of
each magnet must be taken into account. However, we show in this paper that we can determine this torque
precisely and quickly. Such an expression is in fact very useful because it allows precisely optimizing the
arc-shaped permanent magnet dimensions so as to obtain the greatest torque.

The semi-analytical expressions of the azimuthal force andthe torque exerted between two arc-shaped
permanent magnets uses a very simple expression which is in the form (− η

ab
arctan

[

ξ
η

]

+ ξ
ab

). This is
interesting for different points of view. First, these expressions are rather simple to compute and, according
to the precision required in the calculation of the azimuthal force or the torque, this very simple expression
keeps the same form. Second, they have a very low computational cost.

More generally, all the results obtained in this paper can bevery useful for scientifics involved in the
design of synchronous couplings. Indeed, they are a good alternative to the finite element method which
requires often a high computational cost.

II. EXPRESSION OF THE AZIMUTHAL FIELD CREATED BY ONE ARC-SHAPED PERMANENT MAGNET

RADIALLY MAGNETIZED

This section presents the expression of the azimuthal field created by one arc-shaped permanent magnet
whose polarization is radial. It is noted that is expressiondiffers from the one determined in a previous
paper [31] because the magnetic charge volume density is taken into account in this paper. Consequently,
this expression can be easily used for studying the effects of the magnetic field created by one magnet
on the demagnetizing field of another magnet.

A. Notation and geometry

The geometry considered and the related parameters are shown in Fig 1. The arc-shaped inner radius
is rin1 and its outer one isrout1. Its height ish. The axisz is an axis of symmetry. Calculations are
obtained by using the Coulombian model. Consequently, the arc-shaped permanent magnet is represented
by two arc-shaped planes which correspond to the inner and outer faces of the ring and an arc-shaped
volume inside the magnet. The inner arc-shaped plane is charged with a magnetic pole surface density
+σ∗

s and the lower one is charged with the opposite magnetic pole surface density−σ∗

s . The arc-shaped
volume inside the magnet is charged with the magnetic pole volume densityσ∗

v .
The charge densities must verify (1).

∫ ∫

Sin

σ∗

sdsin −

∫ ∫

Sout

σ∗

sdsout +

∫ ∫ ∫

V

σ∗

vdv = 0 (1)

whereSin andSout denote the inner and outer arc-shaped surfaces of the magnetandV is its volume.
When the width of the magnet is very small, the expression of the azimuthal field has been determined
in a previous paper [31]. Consequently, we only explain herehow to find the magnetic field created
by the magnetic charge volume density. Such a case corresponds to thick or thin arc-shaped permanent
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Fig. 1. Representation of the configuration considered. Thering inner radius isrin1
, the ring outer one isrout1

, its height ish,
its angular width isθ2 − θ1

magnet rings. It is noted that the total azimuthal field created by this arc-shaped permanent magnet can
be determined by using the principle of superposition. Indeed, this azimuthal field is the sum of all the
charge contributions of the magnet.

B. Basic Equation

We explain now how to determine the azimuthal field created bythe magnetic pole volume density of
the arc-shaped permanent magnet shown in Fig. 1. The expression obtained uses nor special functions
neither elliptic integrals. As a consequence, we can say that this expression is fully analytical.

Let us consider a pointP (r1, θs, z1) which is located in the elementary volume of the ring and an
observation pointM(r, θ, z). The azimuthal component of the magnetic field created by this elementary

volume can be determined by calculating the projection of the vector
−→

PM along~uθ.

Hθ(r, θ, z) =
1

4πµ0

∫ rout1

rin1

∫ θ2

θ1

∫ h

0

(

−−→
PM.−→u θ

)

∣

∣

∣

−−→
PM

∣

∣

∣

3 dσ∗

v (2)

wheredσ∗

v is the elementary volume charged with the magnetic pole volume density.

dσ∗

v = σ∗

vr1dr1dθsdz1 (3)

whereσ∗

v is the magnetic pole volume density.
In cyclindrical coordinates, the magnetic pole volume density σ∗

v can be written as follows

σ∗

v =
J

r1
(4)
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Moreover, we have
−−→
PM.−→u θ = −r1 sin[θ − θs] (5)

and
∣

∣

∣

−−→
PM

∣

∣

∣

3

=
(

r2 + r2
1 − 2rr1 cos[θ − θs] + (z − z1)

2
)

3

2 (6)

We can now evaluate (2). With (3), (4), (5) and (6), (2) can be simplified.

Hθ(r, θ, z) =
J

4πµ0

∫ rout1

rin1

∫ θ2

θ1

∫ h

0

−r1 sin[θ − θs]

(r2 + r2
1 − 2rr1 cos[θ − θs] + (z − z1)2)

3

2

dr1dθ1dz1 (7)

C. Determination of the azimuthal field created by the magnetic pole volume density

As the expression of the azimuthal field is entirely analytical, that is, without special functions (elliptic
integrals, lambda function,...), this section presents the way of obtaining such an expression.
The first integration is done with respect toθs. Indeed, we can use (8) in order to evaluate this first
integration.

∫

θs

sin[θ − θs]

(a + b cos[θ − θs])
3

2

dθs =
−2

b
√

a + b cos[θ − θs]
(8)

By using (8), we deduct that (7) becomes (9).

Hθ(r, θ, z) =
J

4πµ0

∫ rout1

rin1

∫ h

0

αr1,z1
dr1dz1 (9)

with

αr1,z1
=

−1

r
√

r2 + r2
1 + (z − z1)2 − 2rr1 cos[θ − θ1]

+
1

r
√

r2 + r2
1 + (z − z1)2 − 2rr1 cos[θ − θ2]

(10)

The following integration can be done with respect tor1. We see thatαr1,z1
has two terms which are

equivalent when integrated according tor1. Consequently, in order to simplify the notations, we will only
consider one term ofαr1,z1

and the second one can be integrated in the same way. The final resultHtheta

is presented in (15). So we only explain here how to obtain thetwo last integrations. The integration
according tor1 can be done by using (11).

∫

r1

1
√

c + r2
1 − 2r1d

dr1 = log

[

−d + r1 +
√

e − 2dr1 + r2
1

]

(11)

By applying (11) to (9) and by considering only one term ofαr1,z1
, we find:

Hθ(r, θ, z) =
J

4πµ0

∫ h

0

βz1
dz1 (12)
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with

β(z1) =
1

r

(

log[rin1
− r cos[θ − θ1] +

√

r2 + r2
in1

+ (z − z1)2 − 2rrin1
cos[θ − θ2]]

)

−
1

r

(

log[rin1
− r cos[θ − θ2] +

√

r2 + r2
in1

+ (z − z1)2 − 2rrin1
cos[θ − θ2]]

)

−
1

r

(

log[rout1 − r cos[θ − θ1] +
√

r2 + r2
out1

+ (z − z1)2 − 2rrout1 cos[θ − θ1]]

)

+
1

r

(

log[rout1 − r cos[θ − θ2] +
√

r2 + r2
out1

+ (z − z1)2 − 2rrout1 cos[θ − θ2]]

)

(13)

We see thatβ(z1) has four terms which are equivalent when integrated according to z1. Consequently,
we only consider one term and we use the relation (14) to integrate it according toz1.

∫

z1

log[e +
√

f + (z − z1)2]dz1 = −z1 −
√

−e2 + f arctan

[

z − z1
√

−e2 + f

]

−

(e2 − f) arctan

[

e(z−z1)√
−e2+f

√
f+(z−z1)2

]

√

−e2 + f

−(z − z1) log[e +
√

f + (z − z1)2]

−e log[z +
√

f + (z − z1)2 − z1]

(14)

By applying (14) to (12) and by taking into account all the terms omitted previously, we obtain (15).

Hθ =
J

4πµ0
e(rin1

, rout1 , 0, h, r, z, θ, θ1, θ2) (15)

with

e(rin1
, rout1 , 0, h, r, z, θ, θ1, θ2) = g(rin1

, rout1 , h, r, z, θ, θ1, θ2) − g(rin1
, rout1 , 0, r, z, θ, θ1, θ2) (16)

and
g(rin1

, rout1 , z1, r, z, θ, θ1, θ2) = h(rout1 , z1, r, z, θ, θ1, θ2) − h(rin1
, z1, r, z, θ, θ1, θ2) (17)

h(r1, z1, r, z, θ, θ1, θ2) = f(r1, z1, r, z, θ, θ2) − f(r1, z1, r, z, θ, θ1) (18)

f(r1, z1, r, z, θ, θs) =
1

r
(−z1 − (r1 − r cos[θ − θs]) log [z − z1 + η])

+
1

r
((z − z1) log [r1 − r cos[θ − θs] + η])

+ arctan

[

r sin[θ − θs]

z − z1

]

sin[θ − θs]

+ sin[θ − θs] arctan

[

(z − z1)(r − r1 cos[θ − θs])

r sin[θ − θs]η

]

(19)
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Fig. 2. Representation of the azimuthal field versusθ. We takeJ = 1T , rin1
= 0.025, rout1

= 0.028, h = 0.003, θ2 −θ1 =
π
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Fig. 3. Representation of the azimuthal field versusθ. We takeJ = 1T , rin1
= 0.025, rout1

= 0.028, h = 0.003, θ2 −θ1 =
π

2

(thick line = with σ∗v , thin line = withoutσ∗v )

with
η =

√

r2 + r2
1 + (z − z1)2 − 2rr1 cos[θ − θs] (20)

We can conclude that a fully analytical expression of the azimuthal field exists for arc-shaped permanent
magnets whose polarization is radial. This result is of great importance because the evaluation of this
azimuthal field is exact and has a very low computational cost. Fig. 2 represents the total azimuthal field
created by the arc-shaped permanent magnet shown in Fig. 1.

D. Interest of taking into account the magnetic pole volume density

We have shown that it is possible to obtain a fully analyticalexpression of the azimuthal field created
by one arc-shaped permanent magnet. However, studies dealing with magnetic couplings often require
expressions of the magnetic forces exerted between arc-shaped permanent magnets. The calculation of
such forces is rather difficult in the case of arc-shaped permanent magnets radially magnetized because
many integrations must be determined. Thereby, it can be interesting to know if the magnetic pole volume
density must be taken into account for determining the azimuthal field. Fig. 3 represents this azimuthal
field with or without the magnetic pole volume density. We seein Fig. 3 that a slight error is done in the
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evaluation of the azimuthal field when the magnetic charge volume density is omitted. For example, an
exact calculation shows that this error equals6.1% in Fig. 2 whenθ = 0◦.

It can be concluded that the magnetic pole volume density must be taken into account for calculating
the azimuthal field created by arc-shaped permanent magnetswhose polarization is radial. Consequently,
this magnetic pole volume density must be taken into accountfor calculating the azimuthal force exerted
between two arc-shaped permanent magnets. Such a calculation is presented in next section.

III. SEMI-ANALYTICAL EXPRESSION OF THE AZIMUTHAL FORCE CREATED BETWEEN TWO

ARC-SHAPED PERMANENT MAGNETS

This section presents a semi-analytical expression of the azimuthal force exerted between two arc-shaped
permanent magnet rings whose polarization is radial.

A. Notation and geometry

The geometry considered and the related parameters are shown in Fig 4. For the left arc-shaped
permanent magnet, the inner radius isrin1 and its outer one isrout1. Its height ish = h2 − h1 and
its angular width isθ2 − θ1. For the right arc-shaped permanent magnet, the inner radius is rin2 and
its outer one isrout2. Its height iszb − za and its angular width isθ4 − θ3. The axisz is an axis
of symmetry. Calculations are obtained by using the Coulombian model. Consequently, each arc-shaped
permanent magnet is represented by two arc-shaped planes which correspond to the inner and outer faces
of the ring and an arc-shaped volume inside the magnet. For each case, the inner arc-shaped plane is
charged with a magnetic pole surface density+σ∗

s and the lower one is charged with the opposite magnetic
pole surface density−σ∗

s . The arc-shaped volume inside the magnet is charged with themagnetic pole
volume densityσ∗

v .

B. Expression of the azimuthal force exerted between two arc-shaped permanent magnets radially mag-
netized

The azimuthal force can be determined by integrating the azimuthal field created by the left arc-shaped
permanent magnet on the charge distribution located on the right arc-shaped permanent magnet. There
are three charge distributions for each arc-shaped permanent magnet, therefore, there are nine terms to
determine. As we have shown in the previous section that the magnetic pole volume density has an
influence on the magnetic field created, we must take into account all the terms which correspond to three
types of interactions between the two arc-shaped permanentmagnets. This leads to write the azimuthal
force as follows:

Fθ = −
σ∗

1σ∗

2

4πµ0

∫ θ2

θ1

∫ h

0

∫ θ4

θ3

∫ zb

za

−r2
in1rout2 sin(θj − θi)

r2
out2 + r2

in1 − 2rin1rout2 cos(θj − θi) + (z2 − z1)
dθidz1dθjdz2

+
σ∗

1σ∗

2

4πµ0

∫ θ2

θ1

∫ h

0

∫ θ4

θ3

∫ zb

za

−r2
out1rout2 sin(θj − θi)

r2
out2 + r2

out1 − 2rout1rout2 cos(θj − θi) + (z2 − z1)
dθidz1dθjdz2

+
σ∗

1σ∗

2

4πµ0

∫ θ2

θ1

∫ h

0

∫ θ4

θ3

∫ zb

za

−r2
in1rin2 sin(θj − θi)

r2
out2 + r2

in1 − 2rin1rout2 cos(θj − θi) + (z2 − z1)
dθidz1dθjdz2

−
σ∗

1σ∗

2

4πµ0

∫ θ2

θ1

∫ h

0

∫ θ4

θ3

∫ zb

za

−r2
out1rin2 sin(θj − θi)

r2
in2 + r2

out1 − 2rout1rin2 cos(θj − θi) + (z2 − z1)
dθidz1dθjdz2

−
σ∗

1σ∗

2

4πµ0

∫ rout1

rin1

∫ θ2

θ1

∫ h

0

∫ θ4

θ3

∫ zb

za

−r1rout2 sin(θj − θi)

r2
1 + r2

out2 − 2rout2r1 cos(θj − θi) + (z2 − z1)
dr1dθidz1dθjdz2
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Fig. 4. Representation of the configuration considered. Forthe left arc-shaped permanent magnet, the ring inner radiusis rin1,
the ring outer one isrout1, its height ish = h2 − h1, its angular width isθ2 − θ1; for the right arc-shaped permanent magnet,
the ring inner radius isrin2, the ring outer one isrout2, its height iszb − za; its angular width isθ4 − θ3

+
σ∗

1σ∗

2

4πµ0

∫ rout1

rin1

∫ θ2

θ1

∫ h

0

∫ θ4

θ3

∫ zb

za

−r1rin2 sin(θj − θi)

r2
1 + r2

in2 − 2rin2r1 cos(θj − θi) + (z2 − z1)
dr1dθidz1dθjdz2

−
σ∗

1σ∗

2

4πµ0

∫ rout2

rin2

∫ θ2

θ1

∫ h

0

∫ θ4

θ3

∫ zb

za

−r2rout1 sin(θj − θi)

r2
2 + r2

out1 − 2r2rout1 cos(θj − θi) + (z2 − z1)
dr2dθidz1dθjdz2

+
σ∗

1σ∗

2

4πµ0

∫ rout2

rin2

∫ θ2

θ1

∫ h

0

∫ θ4

θ3

∫ zb

za

−r2rin1 sin(θj − θi)

r2
2 + r2

in1 − 2r2rin1 cos(θj − θi) + (z2 − z1)
dr2dθidz1dθjdz2

+
σ∗

1σ∗

2

4πµ0

∫ rout1

rin1

∫ rout2

rin2

∫ θ2

θ1

∫ h

0

∫ θ4

θ3

∫ zb

za

−r1 sin(θj − θi)

r2
1 + r2

2 − 2r2r1 cos(θj − θi) + (z2 − z1)
dr1dr2dθidz1dθjdz2

(21)

We see in Eq. (21) that there are three different integrands to integrate. These three different integrands
correspond to the three types of interactions between the two arc-shaped permanent magnets. Indeed, we
must determine the interaction between the magnetic chargesurface densities, the interaction between the
magnetic charge surface densities of one magnet and the magnetic charge volume density of the other
one and the interaction between each magnetic charge volumedensity of the two magnets.

After having integrating according toz1, z2 and θj , it rests a semi-analytical expression expressed as
follows:

Fθ =

∫ θ4

θ3

(

K
(rout1,rout2)
1 − K

(rin1,rout2)
1 + K

(rin1,rin2)
1 + K

(rout1,rin2)
1

)

dθi
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Fig. 5. Representation of the azimuthal forcefθ versusθ; rin1 = 0.025m, rout1 = 0.028m, rin2 = 0.0219m, rout2 = 0.0249m,
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4
rad.

+

∫ θ4

θ3

∫ rout1

rin1

(

K
(r1,rin2)
2 − K

(r1,rout2)
2

)

dr1dθi

+

∫ θ4

θ3

∫ rout2

rin2

(

K
(r2,rin1)
2 − K

(r2,rout1)
2

)

dr2dθi

+

∫ θ4

θ3

∫ rout1

rin1

∫ rout2

rin2

K
(r1,r2)
3 dθidr1dr2 (22)

with

K
(a,b)
1 = −

a2bσ∗

1σ∗

2

4πµ0
(g(θ2) − g(θ1)) (23)

K
(a,b)
2 = −

abσ∗

1σ∗

2

4πµ0
(g(θ2) − g(θ1)) (24)

K
(a,b)
3 = −

aσ∗

1σ∗

2

4πµ0
(g(θ2) − g(θ1)) (25)

g(θj) = β(a, b, h2, za, θi, θj) − β(a, b, h1, za, θi, θj)

+β(a, b, h1, zb, θi, θj) − β(a, b, h2, zb, θi, θj)

(26)

β(a, b, za, zb, a, b, θi, θj) = −
η

ab
arctan

[

ξ

η

]

+
ξ

ab
(27)

with

ξ =
√

a2 + b2 + (z2 − z1)2 − 2ab cos(θi − θj) (28)

η =
√

−(z1 − z2)2 (29)

Fig. 5 represents the azimuthal force between the two arc-shaped permanent magnets versus the angleθ.
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terms Computational cost ofHθ

σ∗
s1

σ∗
s2

0.016s
σ∗

s1
σ∗

s2
+ σ∗

s1
σ∗

v2
+ σ∗

s2
σ∗

v1
0.0187s

σ∗
s1

σ∗
s2

+ σ∗
s1

σ∗
v2

+ σ∗
s2

σ∗
v1

+ σ∗
v1

σ∗
v2

23.12s

TABLE I

COMPUTATIONAL COST OF THE AZIMUTHAL FIELD Hθ CREATED BY ONE ARC-SHAPED PERMANENT MAGNET RADIALLY

MAGNETIZED.

C. Possibility of omitting some terms in the expression of the azimuthal force

We have presented a semi-analytical expression of the azimuthal force which is valid for thin or thick
arc-shaped permanent magnets. This expression shows clearly that there three types of interactions between
the two arc-shaped permanent magnets. An interesting pointto notify is that this expression consists in
integrating one, two or three times a very simple expressionof the form−

η
ab

arctan
[

ξ
η

]

+ ξ
ab

. This is
interesting because according to the precision of the calculation required, this expression has always the
same form; only the number of numerical integrations can be add or not.

Moreover, as the aim of such an expression is also to allow easy parametric optimizations of the arc-
shaped permanent magnets, it is very interesting to try to simplify Eq. (22). The major problem of Eq.
(22) is the number of numerical integrations necessary to determine the azimuthal force. The more the
number of numerical integrations is important, the more thecomputational cost is. We see in Eq. (22)
that the term which describes the interaction between the two magnetic pole surface densities of each
arc-shaped permanent magnet must be integrated numerically three times.

For example, we can compare the time necessary to determine the azimuthal field between two arc-
shaped permanent magnets for the following dimensions :rin1 = 0.025, rout1 = 0.028, rin2 = 0.0219,
rout1 = 0.0249, θ2 − θ1 = π

6 , θ4 − θ3 = π
6 with θ3 = π

12 . We present the computational cost values
in table I. Let us precise thatσ∗

sσ∗

s corresponds to the case when we have only taken into account the
magnetic pole surface densities of each arc-shaped permanent magnet. In addition,σ∗

sσ∗

v corresponds to
the interaction between the magnetic pole surface densities and the magnetic pole volume densities of
each permanent magnet andσ∗

vσ∗

v corresponds to the magnetic pole volume densities of each permanent
magnet. Furthermore, in table I,σ∗

si corresponds to the two surface densities of the magneti and σ∗

vi

corresponds to the magnetic pole volume density of the magnet i.
Table I shows clearly that the term describing the interaction between the magnetic charge volume

density of each ring has a great influence on the time necessary to determine the azimuthal force. It could
be interesting to know if this term can be omitted or not but after several simulations, it seems that we
must taken into account the interaction between the magnetic charge volume density of each arc-shaped
permanent magnet. As a consequence, for parametric studies, it can be rather simple to use onlyσ∗

sσ∗

s

andσ∗

sσ∗

v because these interactions have a low computational cost. Once the parametric study is finished,
it can be interesting to use the third interactionσ∗

vσ∗

v in order to obtain a very precise value of the torque
transmitted between two arc-shaped permanent magnets.

IV. SEMI-ANALYTICAL EXPRESSION OF THETORQUE EXERTED BETWEEN TWO ARC-SHAPED

PERMANENT MAGNETS RADIALLY MAGNETIZED

This section presents a semi-analytical expression of the Torque exerted between two arc-shaped
permanent magnets whose polarization is radial. It is to be noted that parametric optimizations in permanent
magnet couplings often require the calculation of the torque exerted by a rotor on another one.
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The way of obtaining the torque between two arc-shaped permanent magnets radially magnetized is
also based on the coulombian model. By using Fig. 4, the torque can be determined by integrating the
magnetic field azimuthal component created by the left outerarc-shaped permanent magnets on the charge
densities of the inner arc-shaped permanent magnet times the elementary distancer which can be merely
rin2, rout2 or r2. Thus, this calculation is in fact quite similar to the previous one. However, we must
take into account the elementary distance in the path of integration for calculation the torque transmitted
by the outer arc-shaped permanent magnet on the inner one.

Thereby, the torque exerted by the outer arc-shaped permanent magnet on the inner one can be
determined as follows:

Tθ = −
σ∗

1σ∗

2

4πµ0

∫ θ2

θ1

∫ h

0

∫ θ4

θ3

∫ zb

za

−r2
in1r

2
out2 sin(θj − θi)

r2
out2 + r2

in1 − 2rin1rout2 cos(θj − θi) + (z2 − z1)
dθidz1dθjdz2

+
σ∗

1σ∗

2

4πµ0

∫ θ2

θ1

∫ h

0

∫ θ4

θ3

∫ zb

za

−r2
out1r

2
out2 sin(θj − θi)

r2
out2 + r2

out1 − 2rout1rout2 cos(θj − θi) + (z2 − z1)
dθidz1dθjdz2

+
σ∗

1σ∗

2

4πµ0

∫ θ2

θ1

∫ h

0

∫ θ4

θ3

∫ zb

za

−r2
in1r

2
in2 sin(θj − θi)

r2
out2 + r2

in1 − 2rin1rout2 cos(θj − θi) + (z2 − z1)
dθidz1dθjdz2

−
σ∗

1σ∗

2

4πµ0

∫ θ2

θ1

∫ h

0

∫ θ4

θ3

∫ zb

za

−r2
out1r

2
in2 sin(θj − θi)

r2
in2 + r2

out1 − 2rout1rin2 cos(θj − θi) + (z2 − z1)
dθidz1dθjdz2

−
σ∗

1σ∗

2

4πµ0

∫ rout1

rin1

∫ θ2

θ1

∫ h

0

∫ θ4

θ3

∫ zb

za

−r1r
2
out2 sin(θj − θi)

r2
1 + r2

out2 − 2rout2r1 cos(θj − θi) + (z2 − z1)
dr1dθidz1dθjdz2

+
σ∗

1σ∗

2

4πµ0

∫ rout1

rin1

∫ θ2

θ1

∫ h

0

∫ θ4

θ3

∫ zb

za

−r1r
2
in2 sin(θj − θi)

r2
1 + r2

in2 − 2rin2r1 cos(θj − θi) + (z2 − z1)
dr1dθidz1dθjdz2

−
σ∗

1σ∗

2

4πµ0

∫ rout2

rin2

∫ θ2

θ1

∫ h

0

∫ θ4

θ3

∫ zb

za

−r2
2rout1 sin(θj − θi)

r2
2 + r2

out1 − 2r2rout1 cos(θj − θi) + (z2 − z1)
dr2dθidz1dθjdz2

+
σ∗

1σ∗

2

4πµ0

∫ rout2

rin2

∫ θ2

θ1

∫ h

0

∫ θ4

θ3

∫ zb

za

−r2
2rin1 sin(θj − θi)

r2
2 + r2

in1 − 2r2rin1 cos(θj − θi) + (z2 − z1)
dr2dθidz1dθjdz2

+
σ∗

1σ∗

2

4πµ0

∫ rout1

rin1

∫ rout2

rin2

∫ θ2

θ1

∫ h

0

∫ θ4

θ3

∫ zb

za

−r1r2 sin(θj − θi)

r2
1 + r2

2 − 2r2r1 cos(θj − θi) + (z2 − z1)
dr1dr2dθidz1dθjdz2

(30)

We can re-write (30) in a useful form which requires a low computational cost.

Tθ =

∫ θ4

θ3

(

M
(rout1,rout2)
1 − M

(rin1,rout2)
1 + M

(rin1,rin2)
1 + M

(rout1,rin2)
1

)

dθi

+

∫ θ4

θ3

∫ rout1

rin1

(

M
(r1,rin2)
2 − M

(r1,rout2)
2

)

dr1dθi

+

∫ θ4

θ3

∫ rout2

rin2

(

M
(r2,rin1)
3 − M

(r2,rout1)
3

)

dr2dθi

+

∫ θ4

θ3

∫ rout1

rin1

∫ rout2

rin2

M
(r1,r2)
4 dθidr1dr2 (31)
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Fig. 6. Representation of the torqueTθ versusθ; rin1 = 0.025m, rout1 = 0.028m, rin2 = 0.0219m, rout2 = 0.0249m,
h2 − h1 = 0.003m, zb − za = 0.003m, za = 0.001m , J = 1T, θ2 − θ1 = θ4 − θ3 =

π

4
rad.

with

M
(a,b)
1 = −

a2b2σ∗

1σ∗

2

4πµ0
(g(θ2) − g(θ1)) (32)

M
(a,b)
2 = −

ab2σ∗

1σ∗

2

4πµ0
(g(θ2) − g(θ1)) (33)

M
(a,b)
3 = −

a2Bσ∗

1σ∗

2

4πµ0
(g(θ2) − g(θ1)) (34)

M
(a,b)
4 = −

abσ∗

1σ
∗

2

4πµ0
(g(θ2) − g(θ1)) (35)

andg(θi) is given by (26).
Fig. 6 illustrates this calculation with the following dimensions :rin1 = 0.025m, rout1 = 0.028m,

rin2 = 0.0219m, rout2 = 0.0249m, h2 − h1 = 0.003m, zb − za = 0.003m, za = 0.001m , J = 1T,
θ2 − θ1 = θ4 − θ3 = π

4 rad.
Here again, for a simple parametric study, we could first takeinto account only the surface densi-

ties of each arc-shaped permanent magnet, that is by integrating only M
(rout1,rout2)
1 − M

(rin1,rout2)
1 +

M
(rin1,rin2)
1 + M

(rout1,rin2)
1 according toθ. As there is only one numerical integration, this parametric

study is very fast. After that, we can take into account the other contributions of Eq. (31) in order to
obtain a more precise value of the torque or a more precision representation of this torque versusθ.

In any case, such an approach allows to optimize easily the arc-shaped permanent magnet dimensions
so as to obtain the torque required.

V. CONCLUSION

This paper has presented three important analytical relations which can be used for optimizing arc-
shaped permanent magnets radially magnetized in couplings. First, we have presented a fully analytical
expression of the azimuthal field created by an arc-shaped permanent magnet. This expression uses neither
special functions nor elliptic integrals. This is interesting because it means that a field created by a curved
volume charge can be determined without using any approximations or numerical integrations. Then,
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this paper has presented a semi-analytical expression of the azimuthal force exerted between two arc-
shaped permanent magnets. Such an expression is very usefulfor optimizing for example the magnet
dimensions in order to obtain a great force. In addition, this expression is three-dimensional, that is, the
radius of curvature is taken into account in the expressionsobtained. At least, this paper has presented a
three-dimensional expression of the torque transmitted byone arc-shaped permanent magnet on another
arc-shaped permanent magnet, both having a radial polarization. We can say that the final semi-analytical
expressions determined in this paper are in the following form (− η

ab
arctan

[

ξ
η

]

+ ξ
ab

) and some parameters
vary in the two expressions. Thereby, even if the initial problem was rather difficult to solve (for the
azimuthal force or the torque transmitted), we can express these semi-analytical expressions in a very
useful form. As many papers dealing with magnetic couplingsused two-dimensional analytical or semi-
analytical expressions for studying magnetic couplings, the three expressions determined in this paper can
also be used because they are three-dimensional and they have a low computational cost.
The Mathematica files containing the analytical expressions presented in this paper are given on line [51].
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