N
N

N

HAL

open science

Permanent Magnet Couplings: Field and Torque
three-Dimensional Expressions Based on the
Coulombian Model

Romain Ravaud, Guy Lemarquand, Valérie Lemarquand, Claude L. Depollier

» To cite this version:

Romain Ravaud, Guy Lemarquand, Valérie Lemarquand, Claude L. Depollier. Permanent Magnet
Couplings: Field and Torque three-Dimensional Expressions Based on the Coulombian Model. IEEE
Transactions on Magnetics, 2009, 45 (4), pp.1950. 10.1109/TMAG.2009.2025315 . hal-00413367

HAL Id: hal-00413367
https://hal.science/hal-00413367
Submitted on 3 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00413367
https://hal.archives-ouvertes.fr

Permanent Magnet Couplings: Field and
Torque three-Dimensional Expressions
Based on the Coulombian Model

R. Ravaud, G. Lemarquand, V. Lemarquand and C. Depollier

Abstract

This paper presents three-dimensional expressions faptim@ization of permanent-magnet couplings.
First, we give a fully analytical expression of the azimutfiald created by one arc-shaped permanent
magnet radially polarized which takes into account its nesignpole volume density. Such an expression
has a very low computational cost and is exact for all pointspace. Then, we propose two semi-
analytical expressions of the azimuthal force and the ®rexerted between two arc-shaped permanent
magnets. These expressions are valid for thick or thin baped permanent magnets. Furthermore, this
approach allows us to realize easily parametric studiesogtithizations. The analytical approach taken in
this paper, based on the Coulombian model, is a good alteenadmpared to the finite element method
generally used to study such configurations.

Index Terms

Analytical, couplings, permanent magnet, azimuthal foradial magnetization, torque

I. INTRODUCTION

RC-SHAPED permanent magnets are widely used for the desigragnetic bearings or couplings.

These devices have first been studied by Yonnet [1][2][3] atiter authors have studied their
properties as Elies [4][5] or Delamare [6]. Indeed, theywllto transmit a torque without mechanical
contact and thus to have efficient devices. Baran [7] havevstiadhat media used for manufacturing
permanent magnets allow to have more and more efficient tmsplFurthermore, Samanta et al [8],
Mukhopadhyay et al [9] and Moser at al [10] have proposectsires using permanent magnets allowing
good performances.

As a consequence, the determination of magnetic fields arghetia forces is of great interest in
such structures. However, their expressions are ofterculiffio obtain analytically and alternative semi-
analytical expressions can be used. For instance, Furlamipnoposed semi-analytical expressions of
the magnetic field components created by polarized cylsftet][12][13]. Moreover, Azzerboni et al
[14][15][16] have proposed a three dimensional calcutatid the magnetic field created by Current-
Carrying Massive Disks. This calculation is based on badipte integrals and numerical integrals which
can be solved by using the Hermite polynomial decompaosition

Furthermore, geometrical methods have been proposed bie Aoel Leupold [17] to calculate high
uniform magnetic field sources [18] using wedge-shaped miagmwith sections presenting wedges or
angles lower than0° - and extended from the Halbach magical structure [19]20][These geometrical
methods are useful because they are simple to use.
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Babic et al use both Legendre’s polynoms and Heumann fumctio calculate the magnetic field
components created by thin or thick arc-shaped permaneghetsat any point in space (either singular
or regular) [22][23]. In addition, Selvaggi [24][25] usesnailtiple representation of the source to calculate
analytically the external magnetic field created by permameagnets with Green’s functions. Such an
approach is interesting because it has a very low computdtimst.

Morevoer, Kwon et al [26] have studied the effects of geoinetsymmetries in magnet design. It is to
be noted that generally, it is interesting to precisely krsmeh effects because they can lower the quality
of devices using permanent magnets.

Some methods whose goal is to obtain the magnetic field aklygais possible have also been proposed.
For example, Rakotoarison has proposed semi-analytigaksgions based on only one numerical inte-
gration so as to determine the three magnetic field compsrmeaated by arc-shaped permanent magnets
whose polarization is radial [27]. Zhilichev [28] has stedlithe magnetic field created by two infinite
cylindrical permanent magnets by using bipolar coordisate

Another approach, proposed by Perigo [29], deals with thautztion of magnetic flux density produced
by axially magnetized toroidal permanent magnets. At Bmte approaches based on elliptical expressions
have also been proposed by Durand [30] and by the authors $th expressions are useful since the
algorithms used to determine elliptic integrals are vetyusi and very fast.

It can be noted that for several years, authors dealt with adimensional approach to study the
magnetic field created by arc-shaped permanent magnetsiB&]main reason is that a two-dimensional
approach is fully analytical and allows an easy parameiomzation of the permanent magnet dimen-
sions so as to obtain a great force in synchronous couplB@j§3¢][35]. However, this 2D-approach is
not valid when we determine the magnetic field far from one meag

The determination of the force between permanent magnstbden proposed by Akoun and Yonnet
[36] and is generally employed to study the magnetic forcested between ring permanent magnets.
Other methods, using a three-dimensional approach have diseussed [37][38][39]. Such approaches
give a precise value of the force exerted between curved gregnt magnets. These approaches differ
from the one used in this paper because the expressionsnileter by Conway are based on Bessel
function integrals. The main interest of his approach lieghie fact that expressions based on Bessel
integrals are simple to use and the numerical evaluatiomdf special integrals is fast and precise. The
approach proposed by Kim is also interesting: its methodasecto the one established in this paper. He
has obtained numerical expressions based on elliptic riae@put has used the vector potential whereas
we use neither the scalar potential nor the vector potefafatalculating the magnetic field created by
an arc-shaped permanent magnet.

The calculation of the force between two ring permanent ratggwhose polarization is axial has been
also proposed [40][30].

All the semi-analytical or analytical approaches taken ly @authors allow to optimize devices using
permanent magnets [41][42]. Moreover, they allow to coraphiese devices in order to have the best
compromise between its effectiveness [43][44] and its .ctists to be noted that the properties of
permanent magnets have been improved [45]. This allows i@ loiginal structures which are very
efficient [46][47][48][49]. Moreover, permanent magnetsnde used to design original devices involved
in the micromass measurement [50].

This paper has three main objectives. In the first part, wesqmea fully analytical expression of
the azimuthal field created by one arc-shaped permanentehagmse polarization is radial. A similar
expression had been published in a previous paper [31] butagdeneglected the magnetic pole volume
density. In this paper, the expression obtained is validtliar or thick arc-shaped permanent magnets.
Thus, we can easily determine the demagnetizing field witth @n expression.



The second aim of this paper is to present a semi-analytiqakasion of the azimuthal force exerted
between two arc-shaped permanent magnets whose polamnizatradial. The main difficulty lies in the
fact that this calculation requires up to six integratioasdetermine this azimuthal force. We show in
this paper that we can reduce these six integrations andetheanalytical expression proposed is very
simple to use. We also discuss the possibility of neglectimmge terms in the expression obtained so as
to have a very low computational cost.

Eventually, the third aim of this paper is to propose a semaihgtical expression of the torque transmitted
between two arc-shaped permanent magnets. The calculatidthe torque between two arc-shaped
permanent magnets radially magnetized is also difficulabse the magnetic pole volume densities of
each magnet must be taken into account. However, we shousipdper that we can determine this torque
precisely and quickly. Such an expression is in fact veryuldecause it allows precisely optimizing the
arc-shaped permanent magnet dimensions so as to obtaimehtesgf torque.

The semi-analytical expressions of the azimuthal forcetapdorque exerted between two arc-shaped
permanent magnets uses a very simple expression which feifotm (--% arctan {ﬂ + %). This is
interesting for different points of view. First, these exggions are rather simple to compute and, according
to the precision required in the calculation of the azimUtbice or the torque, this very simple expression
keeps the same form. Second, they have a very low compudihtost.

More generally, all the results obtained in this paper cawdrg useful for scientifics involved in the
design of synchronous couplings. Indeed, they are a goedhalive to the finite element method which
requires often a high computational cost.

Il. EXPRESSION OF THE AZIMUTHAL FIELD CREATED BY ONE ARGSHAPED PERMANENT MAGNET
RADIALLY MAGNETIZED

This section presents the expression of the azimuthal freldted by one arc-shaped permanent magnet
whose polarization is radial. It is noted that is expresgldfers from the one determined in a previous
paper [31] because the magnetic charge volume density és tako account in this paper. Consequently,
this expression can be easily used for studying the effeicthieomagnetic field created by one magnet
on the demagnetizing field of another magnet.

A. Notation and geometry

The geometry considered and the related parameters arenshdwg 1. The arc-shaped inner radius
is 7,1 and its outer one i%,,;1. Its height ish. The axisz is an axis of symmetry. Calculations are
obtained by using the Coulombian model. Consequently, theal@aped permanent magnet is represented
by two arc-shaped planes which correspond to the inner atet éaces of the ring and an arc-shaped
volume inside the magnet. The inner arc-shaped plane iggetiarith a magnetic pole surface density
+0? and the lower one is charged with the opposite magnetic poface density-c*. The arc-shaped
volume inside the magnet is charged with the magnetic polienve densityo .

The charge densities must verify (1).

// U:dsm—// U:dsout—i—///a;dvzo (1)
S'Ln S 1%

where S;,, and .S,,; denote the inner and outer arc-shaped surfaces of the magdéf is its volume.

When the width of the magnet is very small, the expressiorhefazimuthal field has been determined
in a previous paper [31]. Consequently, we only explain Hevey to find the magnetic field created
by the magnetic charge volume density. Such a case corrésporthick or thin arc-shaped permanent
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Fig. 1. Representation of the configuration considered. rifigginner radius is;,,, , the ring outer one is,y¢,, its height ish,
its angular width iy — 61

magnet rings. It is noted that the total azimuthal field @daty this arc-shaped permanent magnet can
be determined by using the principle of superposition. éujehis azimuthal field is the sum of all the
charge contributions of the magnet.

B. Basic Equation

We explain now how to determine the azimuthal field createdheymagnetic pole volume density of
the arc-shaped permanent magnet shown in Fig. 1. The eigmesistained uses nor special functions
neither elliptic integrals. As a consequence, we can saythiis expression is fully analytical.

Let us consider a poinP(r1, 0, z1) which is located in the elementary volume of the ring and an
observation pointV (r, 8, z). The azimuthal component of the magnetic field created tg/ ¢lémentary

volume can be determined by calculating the projection efwactorPM along .

Ho(r0.2) = - / /9 0 / I;ue do! @)

iny

wheredos is the elementary volume charged with the magnetic polermeldensity.

dU:; = a;rldrldé‘sdzl (3)

wheregs is the magnetic pole volume density.
In cyclindrical coordinates, the magnetic pole volume dgns;; can be written as follows

o= @)
T1



Moreover, we have
W.ﬁg = —ry sin[f — 6] (5)

and

e

‘Wﬁ = (r* +r{ — 2rry cosld — 05] + (2 — 21)?) 6)

We can now evaluate (2). With (3), (4), (5) and (6), (2) can ibepsfied.

Toutq 02 h _ : _
Hy(r,0,2) = — / / / rysinf6 - 0] —dridfydz (7)
dmpo Jr 01 JO (r2 472 —2rrycosld — 0] + (2 — 21)?)

inq

C. Determination of the azimuthal field created by the magrnmile volume density

As the expression of the azimuthal field is entirely anadlfithat is, without special functions (elliptic
integrals, lambda function,...), this section presengswiay of obtaining such an expression.
The first integration is done with respect 9. Indeed, we can use (8) in order to evaluate this first

integration.
/ sin[f — 6] o, — -2 ®)
0. (a+ beos[d — 0,])2 by/a + beos[d — 6]
By using (8), we deduct that (7) becomes (9).

J Tout; fh
Ho(r.0.2) = o= [ [T aria ©
Ting

with

-1 n 1
12+ 17+ (2 — 21)2 — 2rrycos[f — 01] /T2 + 77 + (2 — 21)2 — 277y cos[f — 02]
The following integration can be done with respectrio We see thaty,, ., has two terms which are
equivalent when integrated accordingrto Consequently, in order to simplify the notations, we willy
consider one term af,, ., and the second one can be integrated in the same way. Theef#udt /1,

is presented in (15). So we only explain here how to obtaintilw last integrations. The integration
according tor; can be done by using (11).

1
/ —dry = log {—d—i— r +4/e—2dr, + r%} (12)
Vet rd—2rid

By applying (11) to (9) and by considering only one termogf .,, we find:

(10)

Qry 2y =

J h
Hy(r,0,2) = 47T/Lo/o B2 dz (12)



with
B(z1) =

(log[rm1 —rcoslf — 01] 4+ /r? + rfm + (2 — 21)? — 2774y, cos[f — 92]])
1
”

— (1og[7’m1 —rcos[f — 0] + \/7’2 + 712, + (2= 21)% = 2rrip, cos|f — 02]])
1
-

1
+ <1og[r0ut1 —rcos[f — 02] + \/7’2 + 12, + (2 = 21)% = 217 oy, cos|f — 92]]>

<1og[r0ut1 —rcos[f — 0] + \/7’2 + rgutl + (2 — 21)% — 2r7ou, cos[f — 91]]>

(13)

We see that3(z;) has four terms which are equivalent when integrated acegrth z;. Consequently,
we only consider one term and we use the relation (14) to iatedt according to;.

/ logle +/f+ (2 —21)%|dzn = —z —+/—e2+ farctan [%
—e® +

Z1

(e* — f)arctan { \/_82:;;;3(2_21)2}
ey f
(2= 21)logle + VI T (= )2
—cloglz++/f+ (z — 21)? — z]

(14)
By applying (14) to (12) and by taking into account all themisromitted previously, we obtain (15).

Hy = Le(rinl7rout1707 h,r,z,0,61,05) (15)
dmpo
with
6(7’m1 y Touty s 0, h7 Tz, 97 917 92) = g(Tinl s Touty s h7 Tz, 97 917 92) - g(Tml » Touty 0,72, 9’ 91’ 92) (16)

and
g(rinl s Touty, 21, T, 2, 97 617 92) = h(routl y 21, Ty 2, 97 917 62) - h(rinl y 21, T 2, 67 617 62) (17)

h(Tl,zl,r,z,9,91,92) = f(Tl,Zl,T,Z,G,GQ) - f(Tl,Zl,T,Z,o,ol) (18)
1
Fr21r 2080 = L (=21 — (r — roslt — 6. og[z — 1 +1))
1
—l—; ((z — z1)log [r1 — rcos[f — 05] + 1))
+ arctan [M} sin[f — 6]
zZ— Z1

(z — 21)(r — r1 cos[d — 04])
rsin[d — 05]n

+ sin[d — 0] arctan { (29)
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Fig. 2. Representation of the azimuthal field vergusve takeJ = 1T, r;n, = 0.025, rout; = 0.028, h = 0.003, 02 —01 = 5
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Fig. 3. Representation of the azimuthal field ver8usVe takeJ = 1T, r;,, = 0.025, rout; = 0.028, h = 0.003, 62 — 61 = 3
(thick line = with o5, thin line = withouto}})

with

n= \/7«2 + 72+ (2 — 21)% — 2rry cos[f — 6] (20)

We can conclude that a fully analytical expression of thenaitihal field exists for arc-shaped permanent
magnets whose polarization is radial. This result is of giegortance because the evaluation of this
azimuthal field is exact and has a very low computational.déigt 2 represents the total azimuthal field
created by the arc-shaped permanent magnet shown in Fig. 1.

D. Interest of taking into account the magnetic pole volurapsity

We have shown that it is possible to obtain a fully analytegbression of the azimuthal field created
by one arc-shaped permanent magnet. However, studiesgemilih magnetic couplings often require
expressions of the magnetic forces exerted between apedhgermanent magnets. The calculation of
such forces is rather difficult in the case of arc-shaped paent magnets radially magnetized because
many integrations must be determined. Thereby, it can leedsting to know if the magnetic pole volume
density must be taken into account for determining the attiaifield. Fig. 3 represents this azimuthal
field with or without the magnetic pole volume density. We Be€ig. 3 that a slight error is done in the



evaluation of the azimuthal field when the magnetic chardame density is omitted. For example, an
exact calculation shows that this error equals’ in Fig. 2 whend = 0°.

It can be concluded that the magnetic pole volume densityt imeigaken into account for calculating
the azimuthal field created by arc-shaped permanent maghetse polarization is radial. Consequently,
this magnetic pole volume density must be taken into acctarntalculating the azimuthal force exerted
between two arc-shaped permanent magnets. Such a caloukpresented in next section.

Il. SEMI-ANALYTICAL EXPRESSION OF THE AZIMUTHAL FORCE CREATED BETWEN TWO
ARC-SHAPED PERMANENT MAGNETS

This section presents a semi-analytical expression ofzimewdhal force exerted between two arc-shaped
permanent magnet rings whose polarization is radial.

A. Notation and geometry

The geometry considered and the related parameters arensimowig 4. For the left arc-shaped

permanent magnet, the inner radiusrijs; and its outer one i%,,1. Its height ish = h2 — hl and

its angular width isd, — 6,. For the right arc-shaped permanent magnet, the inner gaslit;,,» and

its outer one isry2. Its height iszb — za and its angular width i9, — 63. The axisz is an axis

of symmetry. Calculations are obtained by using the Coulamimodel. Consequently, each arc-shaped
permanent magnet is represented by two arc-shaped planes edirespond to the inner and outer faces
of the ring and an arc-shaped volume inside the magnet. Far ease, the inner arc-shaped plane is
charged with a magnetic pole surface density? and the lower one is charged with the opposite magnetic
pole surface density-o. The arc-shaped volume inside the magnet is charged witlmtégnetic pole
volume densityo}.

B. Expression of the azimuthal force exerted between twslzaped permanent magnets radially mag-
netized

The azimuthal force can be determined by integrating theattial field created by the left arc-shaped
permanent magnet on the charge distribution located onigfit arc-shaped permanent magnet. There
are three charge distributions for each arc-shaped pemham&gnet, therefore, there are nine terms to
determine. As we have shown in the previous section that thgnetic pole volume density has an
influence on the magnetic field created, we must take intowattcl the terms which correspond to three
types of interactions between the two arc-shaped permaneagtets. This leads to write the azimuthal
force as follows:

1 b2 ba —r2 in(0.; — 0
T / / / / s . ALY sin(® - 6) dB;dz1d0;dz
Ampuo Tout2 T Tin1 — 2Tin1Tout2 COS(ej - 6‘1) + (2’2 — 21)

* h 94 2 a1 . .
n oo, / —7 1 out2 SIN(0; — 6;)
2 2
dmpo Jo, Jo Jo, Touta T Tout1 — 2Tout1Tout2 c08(0; — 0;) + (22 — 21)

* > ph 04 pzp 2 . in(h,; — 6:
Lo o5 / / / / - i 72 1 Tin2 sin(0; — 6;) d0;dz1d0;dz
dmpo Jo, Jo Jo, Toutz T Tin1 = 2Tin1Tout2 c08(0; — 0;) + (22 — 21)
S
dmpo Jo, Jo Jo, Ja.

_ojo; / / ’ / / 7 / —"17our2 S0 (0; — 0;) dryd6idzydd;dz
Ao Tinl 01 03 Jzq Tl + Tout2 27 outaT1 COS(@j - 01) + (Z2 - Zl) l ’

d@ldzl dHJ dZQ

—rgutlrmg sin(b‘j — 6‘1)

df;dz1d0:dz
T2 o 4 1201 — 2Tou1Tin2 cos(8; — 60;) + (22 — 21) 157552
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Fig. 4. Representation of the configuration considered.tRerleft arc-shaped permanent magnet, the ring inner rasiug,,
the ring outer one i%,¢1, its height ish = h2 — h1, its angular width is9, — 61; for the right arc-shaped permanent magnet,
the ring inner radius ig;,2, the ring outer one is,,¢2, its height iszb — za; its angular width is9; — 03

—T1Tin2 sin(g; — 6;)

it O'T(J'g /Toutl /92 /h /94 /
drpo Jro Joo Jo Jo 2 o — 2Tinar1 cos(8; — 0;) + (22 — 21)
P Tout2 > rh 4 2 -0
_ojo3 / / / / / S— T sin(0; — 0:) drod0;dz1d0;dzs
Ao . o, Jo Jo, T3 4+ 12,01 — 2raTou cos(0; — 0;) + (22 — 21)
* % Tout2 > rh 4 _ 0. — 6
+ 192 / / / / / — raring $in(0; — 0:) drydf;dz1df;dzs
47 o 0. Jo Jo, 5+ 12, — 2rarin cos(0; — 0;) + (22 — 21)

Tin2
* Toutl Tout2 2 04 Zb _ 0 9
it / / / / / / _ ry sin(0; — 6) drydradf;dz1do;dzs
Ao Sriy  Jrins o Jo, J., 3413 —2raricos(; —6;) + (22 — 21)
(21)

We see in Eqg. (21) that there are three different integramdtst¢grate. These three different integrands
correspond to the three types of interactions between tbeatarshaped permanent magnets. Indeed, we
must determine the interaction between the magnetic clsndace densities, the interaction between the
magnetic charge surface densities of one magnet and theetiagharge volume density of the other
one and the interaction between each magnetic charge valemsty of the two magnets.

After having integrating according te;, ze andd;, it rests a semi-analytical expression expressed as
follows:

drydf;dz,d6;d
7’1+7’ T1 z1avjazz

04
Fy, = / (Kl(routlyrout2) _ Kl(nnl-,roum) +K1(Tinlyrin2) +K1(Toutlyrin2)) d6;
03
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Fig. 5. Representation of the azimuthal forGeversusd; r;,,1 = 0.025m, royt1 = 0.028M, 12 = 0.0219M, 764,12 = 0.0249m,
h2 — hl =0.003m, z2b — za = 0.003m, J = 1T, 02 — 01 = 04 — 03 = Jrad.

04 proutt ‘
+ / / (Fgrres) — {7 ) drydo,

Tinl

Tout2
N / / Krame) _ K§>) dradf);

O3 Tin2
+ /9 / K3 dgdrydr (22)
with 2t o
a a*boio
K™ = —=2 (g(6) — g(61) (23)
THo
(ab) _ _abcri*crg B
Ky = Iy (9(02) — g(61)) (24)
(ab) _ _G0O105 _
K37 = T (9(02) — g(61)) (25)
g(0;) = p(a,b,h2, za,0;,0;) — B(a,b,hl, za,6;,0;)
—|—ﬁ(a, b,hl, zb, 0;, 9J) — ﬁ(a, b, h2,zb, 0;, 6‘7)
(26)
B(a,b, za, zb,a,b,0;,0;) = 7 arctan {é} + £ (27)
: ab n ab
with
€= \Ja2 + b2 + (22 — 21)? — 2abcos(f; — 0;) (28)
n=+/—(z21 — 22)? (29)

Fig. 5 represents the azimuthal force between the two aapeshpermanent magnets versus the afigle
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TABLE |
COMPUTATIONAL COST OF THE AZIMUTHAL FIELD Hy CREATED BY ONE ARG SHAPED PERMANENT MAGNET RADIALLY
MAGNETIZED.

C. Possibility of omitting some terms in the expression efghimuthal force

We have presented a semi-analytical expression of the #zahforce which is valid for thin or thick
arc-shaped permanent magnets. This expression showly thesithere three types of interactions between
the two arc-shaped permanent magnets. An interesting poinotify is that this expression consists in
integrating one, two or three times a very simple expresseiothe form —-% arctan % + % This is
interesting because according to the precision of the tlon required, this expression has always the
same form; only the number of numerical integrations candita not.

Moreover, as the aim of such an expression is also to allow pasametric optimizations of the arc-
shaped permanent magnets, it is very interesting to trynpldy Eq. (22). The major problem of Eq.
(22) is the number of numerical integrations necessary tergegne the azimuthal force. The more the
number of numerical integrations is important, the more cbmputational cost is. We see in Eq. (22)
that the term which describes the interaction between tleenagnetic pole surface densities of each
arc-shaped permanent magnet must be integrated numgticade times.

For example, we can compare the time necessary to deteriménazimuthal field between two arc-
shaped permanent magnets for the following dimensiong;: = 0.025, 7441 = 0.028, 7,2 = 0.0219,
Tout1 = 0.0249, 65 — 61 = F, 04 — 03 = & with 03 = 5. We present the computational cost values
in table I. Let us precise that’c* corresponds to the case when we have only taken into acchent t
magnetic pole surface densities of each arc-shaped pentaragnet. In additiong’o;; corresponds to
the interaction between the magnetic pole surface dessitiel the magnetic pole volume densities of
each permanent magnet anflo; corresponds to the magnetic pole volume densities of eachgment
magnet. Furthermore, in table 4;; corresponds to the two surface densities of the magrmetd o,
corresponds to the magnetic pole volume density of the ntagne

Table | shows clearly that the term describing the intecactietween the magnetic charge volume
density of each ring has a great influence on the time negessdetermine the azimuthal force. It could
be interesting to know if this term can be omitted or not buerageveral simulations, it seems that we
must taken into account the interaction between the maguobktrge volume density of each arc-shaped
permanent magnet. As a consequence, for parametric stuides be rather simple to use oy o’
ando?o} because these interactions have a low computational case e parametric study is finished,
it can be interesting to use the third interactigiv;; in order to obtain a very precise value of the torque
transmitted between two arc-shaped permanent magnets.

IV. SEMI-ANALYTICAL EXPRESSION OF THETORQUE EXERTED BETWEEN TWO ARESHAPED
PERMANENT MAGNETS RADIALLY MAGNETIZED

This section presents a semi-analytical expression of ihrgjuEe exerted between two arc-shaped
permanent magnets whose polarization is radial. It is todtedcithat parametric optimizations in permanent
magnet couplings often require the calculation of the terguerted by a rotor on another one.



The way of obtaining the torque between two arc-shaped pegntamagnets radially magnetized is
also based on the coulombian model. By using Fig. 4, the toman be determined by integrating the
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magnetic field azimuthal component created by the left cateishaped permanent magnets on the charge

densities of the inner arc-shaped permanent magnet tineesldéimentary distancewhich can be merely
Tin2, Toutz OF T2. Thus, this calculation is in fact quite similar to the pmw one. However, we must
take into account the elementary distance in the path ofjiaten for calculation the torque transmitted

by the outer arc-shaped permanent magnet on the inner one.

Thereby, the torque exerted by the outer arc-shaped penhamagnet on the inner one can be

determined as follows:

X 0, 04 2 2 in(6; — 0,
Ty = ——Zl 92 / / / / 5 5 Tin1"out2 Sln( 1) d9idzld9jd22
T Tout2 + Ting — 2Tin1Tout2 €08(6; — 0;) + (22 — 21)

)
)

* h
01 02 / / / / _Toutlroth Sln(e B 91
4= dO;dz1d0;dz
Ao Jo, Jo Jo, Jew Tz T Town — 2rout1Tour2 cos(0; — 0;) + (22 — 21) T

1
oio; /92
_l’_
4o Jo

Ampo Tian + Tgutl — 2Tout1Tin2 COS(Q;‘ —0;)+ (22 — 2’1)

B 0'>1k 0; /Touu /92
4o Tinl 01
O.T 0.; Toutl 02

o2

7T/,LO Tinl 0

— 2Tout27’1 COS(@j — 91) + (ZQ — Zl)

3
/94 /Zb —r172 5 sin(6; — 6;)
9 p Tl + 7’1712 27’1'7127"1 COS( j 91

+ (22 — 21)
)

1 3
n ojos /T"“” /92 /94 /zb —T3Tin1 sin(6; — 6;
drpo S, Jo 05 Ja. 3+ rml 2ra1in1 cos(0; — 0;) +

(22— 21)

3
h 04 rzp —r2 r2 _<in(0, — 0,
/ / / 2 > Tin1Tin2 bln( J 'L) d91d21dejd22
0 Jos Jew Towa T Tin1 = 2riniTourz cos(0; — 0;) + (22 — 21)

1 3
* sk 02 h 94 Zp 2 2 3
ojo =121 i Sin(0,; — 6;
_J1v2 / / / outl' in2 ( J 'L) d91d21dejd22
0 [ Za

01 pzp _ 2 in(0: — 6,
/ / ) n 2 "1 out2 Sln( J Z) drldé‘idzl d@deg
0 za T1 Tout2

dT‘l deldzl d9j dZQ

h
J
h
o, >
orok Tout2 02 h 04 Zb _rzroutl sin(9‘ —U;
_41 2 / / / / / 3 3 5 2 - QJ- — 0, — dngeidzldedeQ
710 Jris  Joo Jo Jog Jaw T2+ Toun — 2raroun cos(b; — ;) + (22 — 21)
h
/ ) drgdﬁidzldedZQ
0

* sk Toutl [Tout2 2 04 _ 0: — 0.
+ 2172 / / / / / rara sin(9; — b:) drydrsdf;dzyd;dz
47TM0 Tinl Tin2 03 Jz, Tl + 7‘2 — 21T COS(@j - 91) + (22 - Zl)

We can re-write (30) in a useful form which requires a low comational cost.

04
TH — / (M("‘outl ;ToutZ) Ml(rinl ;ToutZ) + Ml(rinl 7Tin2) + Ml(routl 7Tin2)) daz

Toutl )
/ / M (r1,rin2) M2(T1-,Tout2)) drydb;
Tinl

Tout2 )
+ / (a7 — pr=ree) ) dryd),
03

Tin2

4 Toutl Tout2
+/ / / Tl r2) df;dr1drs
03

Tinl Tin2

(31)

(30)
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Fig. 6. Representation of the torqug versuso; r;,1 = 0.025M, rout1 = 0.028M, 7,0 = 0.0219M, 7042 = 0.0249m,
h2 — hl =0.003m, zb — za = 0.003m, za = 0.00lm , J = 1T, 602 — 01 = 04 — 03 = %rad.

with *boto;
a, a 719
MY = g (9(62) = 9(61)) 2
o
aplad) _ab’oios (9(62) — g(61)) ¢
2 4T o
2 * %
(a,b) _m —
My = 92— 9(6) 9
(ab) _ _% —
My = Am g (9(02) — g(01)) )

andg(6;) is given by (26).

Fig. 6 illustrates this calculation with the following dim&ons r;,; = 0.0256m, r,,;1 = 0.028m,
ring = 0.0219M, 72 = 0.0249M, h2 — A1 = 0.003mM, zb — za = 0.003m, za = 0.00lm , J = 1T,

O — 601 =04 — 03 = %rad.

Here again, for a simple parametric study, we could first take account only the surface densi-
ties of each arc-shaped permanent magnet, that is by ititegranly JV[l(“’““’T"“”) - Ml(”"l"“”“” +
Ml(””l’””z) + Ml(r"“” Tin2) according tod. As there is only one numerical integration, this pararetri
study is very fast. After that, we can take into account theeotontributions of Eq. (31) in order to
obtain a more precise value of the torque or a more precigipresentation of this torque verstis

In any case, such an approach allows to optimize easily ttyslaped permanent magnet dimensions
SO as to obtain the torque required.

V. CONCLUSION

This paper has presented three important analytical oelativhich can be used for optimizing arc-
shaped permanent magnets radially magnetized in couplifigg, we have presented a fully analytical
expression of the azimuthal field created by an arc-shapexdgment magnet. This expression uses neither
special functions nor elliptic integrals. This is inteiegtbecause it means that a field created by a curved
volume charge can be determined without using any apprdidmaor numerical integrations. Then,
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this paper has presented a semi-analytical expressioneoézimuthal force exerted between two arc-
shaped permanent magnets. Such an expression is very fisefyptimizing for example the magnet
dimensions in order to obtain a great force. In additiors #xpression is three-dimensional, that is, the
radius of curvature is taken into account in the expressitrained. At least, this paper has presented a
three-dimensional expression of the torque transmittedr®y arc-shaped permanent magnet on another
arc-shaped permanent magnet, both having a radial pdiarizaVe can say that the final semi-analytical
expressions determined in this paper are in the followimmf6- % arctan [ﬂ +%) and some parameters
vary in the two expressions. Thereby, even if the initialhpeon was rather difficult to solve (for the
azimuthal force or the torque transmitted), we can expriesset semi-analytical expressions in a very
useful form. As many papers dealing with magnetic couplingsd two-dimensional analytical or semi-
analytical expressions for studying magnetic couplinigs,three expressions determined in this paper can
also be used because they are three-dimensional and theyaHaw computational cost.

The Mathematica files containing the analytical expressfmesented in this paper are given on line [51].
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