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Abstract

We answer two questions posed by Castro and Cucker in [CC89], giving
the exact complexities of two decision problems about cardinalities of
ω-languages of Turing machines. Firstly, it is D2(Σ

1

1
)-complete to de-

termine whether the ω-language of a given Turing machine is countably
infinite, where D2(Σ

1

1
) is the class of 2-differences of Σ1

1
-sets. Secondly,

it is Σ1

1
-complete to determine whether the ω-language of a given Tur-

ing machine is uncountable.

Keywords. Theory of computation; computational complexity; formal lan-
guages; ω-languages; Turing machines; decision problems; analytical hierar-
chy.

1 Introduction

Many classical decision problems arise naturally in the fields of Formal Lan-
guage Theory and of Automata Theory.
Castro and Cucker studied decision problems for ω-languages of Turing
machines in [CC89]. Their motivation was, on the one hand, to classify
problems about Turing machines and, on the other hand, to “give natural
complete problems for the lowest levels of the analytical hierarchy which
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constitute an analog of the classical complete problems given in recursion
theory for the arithmetical hierarchy.” They studied the degrees of many
classical decision problems like : “Is the ω-language recognized by a given
machine non empty ?”, “Is it finite ?” “Do two given machines recognize
the same ω-language ?” In particular, they proved that the non-emptiness
and the infiniteness problems for ω-languages of Turing machines are Σ1

1-
complete, and that the universality problem, the inclusion problem, and the
equivalence problem are Π1

2-complete. Thus these problems are located at
the first or the second level of the analytical hierarchy and are “highly un-
decidable.”
Notice that Staiger studied also in [Sta93] the verification property, which is
in fact the inclusion problem, for many classes of ω-languages located at one
of the first three levels of the arithmetical hierarchy. Cenzer and Remmel
studied in [CR03] some decision problems for classes of ω-languages accepted
by some computable deterministic automata. These classes of ω-languages
are located at one of the first three levels of the arithmetical hierarchy, while
the class of ω-languages of Turing machines considered by Castro and Cucker
and in this paper is actually the class of effective analytic sets. Thus the
class we consider in this paper is much larger than the classes studied by
Cenzer and Remmel in [CR03]. Cenzer and Remmel studied also various
approximate verification properties, determining the index sets for pairs of
languages (V,W ) such that W − V is finite, is a set of measure zero or con-
tains only finitely many computable sequences. The verification property is
also studied by Klarlund in [Kla94].
The following questions were left open by Castro and Cucker in [CC89].
What is the complexity of the following decision problems: “Is the ω-
language recognized by a given Turing machine countably infinite ?”, “Is
the ω-language recognized by a given Turing machine uncountable?”
We answer here these questions, giving the exact complexities of these two
decision problems about cardinalities of ω-languages of Turing machines.
Firstly, it is D2(Σ

1
1)-complete to determine whether the ω-language of a

given Turing machine is countably infinite, where D2(Σ
1
1) is the class of 2-

differences of Σ1
1-sets. Secondly, it is Σ1

1-complete to determine whether the
ω-language of a given Turing machine is uncountable.
This can be compared with this corresponding result of [CR03, CR99]. It
is Π0

3-complete to determine whether a given Π0
1 ω-language is infinite. It

is Σ1
1-complete to determine whether a given Π0

1 ω-language is uncountable,
and it is Π1

1-complete to determine whether a given Π0
1 ω-language is count-

ably infinite, see [CR99, Theroem 4.5]. We refer the reader to [CR03] for
results about other classes of ω-languages, like the class of Σ0

1 ω-languages,
or the class of Π0

2 ω-languages.
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2 Recall of basic notions

The set of natural numbers is denoted by N. We assume the reader to
be familiar with the arithmetical and analytical hierarchies on subsets of
N, these notions may be found in the textbooks on computability theory
[Rog67] [Odi89, Odi99].
We now recall the notions of 1-reduction and of Σ1

n-completeness (respec-
tively, Π1

n-completeness). Given two sets A,B ⊆ N we say A is 1-reducible
to B and write A ≤1 B if there exists a total computable injective function
f from N to N with A = f−1[B]. A set A ⊆ N is said to be Σ1

n-complete (re-
spectively, Π1

n-complete) iff A is a Σ1
n-set (respectively, Π1

n-set) and for each
Σ1

n-set (respectively, Π1
n-set) B ⊆ N it holds that B ≤1 A. An important

fact is that, for each integer n ≥ 1, there exist some Σ1
n-complete subset of

N. Examples of such sets are precisely described in [Rog67] or [CC89]. In
the sequel E1 denotes a Σ1

1-complete subset of N. The set E−
1 = N−E1 ⊆ N

is a Π1
1-complete set.

We assume now the reader to be familiar with the theory of formal (ω)-
languages [Tho90, Sta97]. We recall some usual notations of formal language
theory.
When Σ is a finite alphabet, a non-empty finite word over Σ is any sequence
x = a1 . . . ak, where ai ∈ Σ for i = 1, . . . , k , and k is an integer ≥ 1. Σ

⋆ is
the set of finite words (including the empty word) over Σ.
The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1 . . . an . . .,
where for all integers i ≥ 1, ai ∈ Σ. When σ is an ω-word over Σ, we write
σ = σ(1)σ(2) . . . σ(n) . . ., where for all i, σ(i) ∈ Σ.
The usual concatenation product of two finite words u and v is denoted u ·v
and sometimes just uv. This product is extended to the product of a finite
word u and an ω-word v: the infinite word u · v is then the ω-word such
that:
(u · v)(k) = u(k) if k ≤ |u| , and (u · v)(k) = v(k − |u|) if k > |u|.
The set of ω-words over the alphabet Σ is denoted by Σ

ω. An ω-language
over an alphabet Σ is a subset of Σ

ω.

Recall now the notion of acceptance of infinite words by Turing machines
considered by Castro and Cucker in [CC89].

Definition 2.1 A non deterministic Turing machine M is a 5-tuple M =
(Q,Σ,Γ, δ, q0), where Q is a finite set of states, Σ is a finite input alphabet,
Γ is a finite tape alphabet satisfying Σ ⊆ Γ, q0 is the initial state, and δ is
a mapping from Q× Γ to subsets of Q× Γ × {L,R, S}. A configuration of
M is a triple (q, σ, i), where q ∈ Q, σ ∈ Γω and i ∈ N. An infinite sequence
of configurations r = (qi, αi, ji)i≥1 is called a run of M on w ∈ Σ

ω iff:

(a) (q1, α1, j1) = (q0, w, 1), and
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(b) for each i ≥ 1, (qi, αi, ji) ⊢ (qi+1, αi+1, ji+1),

where ⊢ is the transition relation of M defined as usual. The run r is said to
be complete if (∀n ≥ 1)(∃k ≥ 1)(jk ≥ n). The run r is said to be oscillating
if (∃k ≥ 1)(∀n ≥ 1)(∃m ≥ n)(jm = k).

Definition 2.2 Let M = (Q,Σ,Γ, δ, q0) be a non deterministic Turing ma-
chine and F ⊆ Q. The ω-language accepted by (M, F ) is the set of ω-words
σ ∈ Σ

ω such that there exists a complete non oscillating run r = (qi, αi, ji)i≥1

of M on σ such that, for all i, qi ∈ F.

The above acceptance condition is denoted 1′-acceptance in [CG78]. Other
usual acceptance conditions are the now called Büchi or Muller acceptance
conditions, respectively denoted 2-acceptance and 3-acceptance in [CG78].
Cohen and Gold proved the following result in [CG78, Theorem 8.2].

Theorem 2.3 (Cohen and Gold [CG78]) An ω-language is accepted by
a non deterministic Turing machine with 1′-acceptance condition iff it is
accepted by a non deterministic Turing machine with Büchi (respectively,
Muller) acceptance condition.

Notice that this result holds because Cohen’s and Gold’s Turing machines
accept infinite words via complete non oscillating runs, while 1′, Büchi or
Muller acceptance conditions refer to the sequence of states entered during
an infinite run.
For other approaches, acceptance is based only on the sequence of states
entered by the machine during an infinite computation [Sta97], or one re-
quires also that the machine reads the whole infinite tape [EH93]. We refer
the reader to [SW78, Sta99, FS00, Sta00] for a study of these different ap-
proaches.

We recall the existence of the arithmetical and analytical hierarchies of ω-
languages, see [SW78, Sta97]; see also [LT94] about logical specifications for
infinite computations. The first class of the analytical hierarchy is the class
Σ1

1 of effective analytic sets which are obtained by projection of arithmeti-
cal sets. By [Sta99, Theorem 16] (see also [Sta00, Theorem 5.2]) we have
the following characterization of the class of ω-languages accepted by non
deterministic Turing machines via acceptance by complete runs (i.e., not
necessarily non oscillating).

Theorem 2.4 ([Sta99]) The class of ω-languages accepted by non deter-
ministic Turing machines with 1′ (respectively, Büchi, Muller) acceptance
condition is the class Σ1

1 of effective analytic sets.

We return now to Cohen’s and Gold’s non deterministic Turing machines
accepting via complete non oscillating runs. The following result follows
from [CG78, Note 2 page 12] and from Theorem 2.4.
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Theorem 2.5 The class of ω-languages accepted by Cohen’s and Gold’s non
deterministic Turing machines with 1′ (respectively, Büchi, Muller) accep-
tance condition is the class Σ1

1 of effective analytic sets.

3 Decision problems about Turing machines

In the sequel we consider, as in [CC89], that the alphabet Σ contains only
two letters a and b, and we shall denote Mz the non deterministic Turing
machine of index z, reading words over Σ, equipped with a 1′-acceptance
condition. We now recall the results of Castro and Cucker giving the exact
complexity of the non-emptiness problem and of the infiniteness problem for
ω-languages of Turing machines.

Theorem 3.1

1. {z ∈ N | L(Mz) 6= ∅} is Σ1
1-complete.

2. {z ∈ N | L(Mz) is infinite} is Σ1
1-complete.

We now state our first new result.

Lemma 3.2 {z ∈ N | L(Mz) is countably infinite} is in the class D2(Σ
1
1).

Proof. We first show that {z ∈ N | L(Mz) is countable} is in the class Π1
1.

Notice that here “countable” means “finite or countably infinite.”

We know that an ω-language L(Mz) accepted by a Turing machine Mz is
a Σ1

1-subset of Σ
ω. But it is known that a Σ1

1-subset L of Σ
ω is countable

if and only if for every x ∈ L the singleton {x} is a ∆1
1-subset of Σ

ω, see
[Mos80, page 243].

On the other hand the following result is proved in [HKL90, Theorem 3.3.1].
There esists a Π1

1-set W ⊆ N and a Π1
1-set C ⊆ N×Σ

ω such that, if we denote
Cn = {x ∈ Σ

ω | (n, x) ∈ C}, then {(n, α) ∈ N × Σ
ω | n ∈ W and α /∈ Cn} is

a Π1
1-subset of the product space N × Σ

ω and the ∆1
1-subsets of Σ

ω are the
sets of the form Cn for n ∈W .

We can now first express (∃n ∈W Cn = {x}) by the sentence φ(x):

∃n [ n ∈W and (n, x) ∈ C and ∀y ∈ Σ
ω [(n ∈W and (n, y) /∈ C) or (y = x)]]

But we know that C is a Π1
1-set and that {(n, α) ∈ N×Σ

ω | n ∈W and α /∈
Cn} is a Π1

1-subset of N × Σ
ω. Moreover the quantification ∃n in the above

formula is a first-order quantification therefore the above formula φ(x) is a
Π1

1-formula.
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We can now express that L(Mz) is countable by the sentence ψ(z) :

∀x ∈ Σ
ω [(x /∈ L(Mz)) or (∃n ∈W Cn = {x})]

that is,
∀x ∈ Σ

ω [(x /∈ L(Mz)) or φ(x)]

We know from [CC89] that x /∈ L(Mz) is expressed by a Π1
1-formula. Thus

the above formula ψ(z) is a Π1
1-formula. This proves that the set {z ∈ N |

L(Mz) is countable} is in the class Π1
1.

On the other hand the set {z ∈ N | L(Mz) is infinite} is in the class Σ1
1.

Finally the set {z ∈ N | L(Mz) is countably infinite} is the intersection of
a Σ1

1-set and of a Π1
1-set, i.e. it is in the class D2(Σ

1
1). �

We now give the exact complexity for this decision problem.

Theorem 3.3 {z ∈ N | L(Mz) is countably infinite} is D2(Σ
1
1)-complete.

Proof. Recall that Castro and Cucker proved in [CC89, Proof of Proposition
3.1] that there is a computable injective function ϕ from N into N such that
there are two cases:

First case: z ∈ E1 and L(Mϕ(z)) = Σ
ω.

Second case: z ∈ E−
1 and L(Mϕ(z)) = ∅.

We can easily define injective computable functions g and h from N into N

suh that for every integer z ∈ N it holds that :

L(Mg(z)) = L(Mz) ∪ a
⋆ · bω

and
L(Mh(z)) = L(Mz) ∩ a

⋆ · bω

We can see that there are now two cases:
First case: In this case z ∈ E1 and L(Mϕ(z)) = Σ

ω. Thus L(Mg◦ϕ(z)) =
Σ

ω is uncountable and L(Mh◦ϕ(z)) = a⋆ · bω is countable.

Second case: In this case z ∈ E−
1 and L(Mϕ(z)) = ∅. Thus L(Mg◦ϕ(z)) =

a⋆ · bω is countable and L(Mh◦ϕ(z)) = ∅.

We define now the following simple operation over ω-languages. For two
ω-words x, x′ ∈ Σ

ω the ω-word x⊕ x′ is defined by : for every integer n ≥ 1
(x ⊕ x′)(2n − 1) = x(n) and (x ⊕ x′)(2n) = x′(n). For two ω-languages
L,L′ ⊆ Σ

ω, the ω-language L ⊕ L′ is defined by L ⊕ L′ = {x ⊕ x′ | x ∈
L and x′ ∈ L′}.
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It is easy to see that there is a computable injective function Φ from N
2 into

N suh that for every integer z, z′ ∈ N it holds that

L(MΦ(z,z′)) = L(Mz) ⊕ L(Mz′)

We want now to show that every subset of N in the class D2(Σ
1
1) is 1-

reducible to the set {z ∈ N | L(Mz) is countably infinite}.

Let E be a D2(Σ
1
1)-subset of N. Then there are some sets A ⊆ N and B ⊆ N

such that A is a Σ1
1-set and B is a Π1

1-set and E = A∩B. But the set E1 is
Σ1

1-complete and the set E−
1 is Π1

1-complete. Thus there are some injective
computable mappings fA and fB from N into N suh that A = f−1

A (E1) and
B = f−1

B (E−
1 ).

It is easy to see that there is an injective computable function Ψ from N

into N suh that for every z ∈ N it holds that :

L(MΨ(z)) = L(MΦ(h◦ϕ◦fA(z),g◦ϕ◦fB(z))) = L(Mh◦ϕ◦fA(z)) ⊕ L(Mg◦ϕ◦fB(z))

We next show that Ψ is a reduction. We divide into cases.

First case: z ∈ E = A ∩B. Then fA(z) ∈ E1 and L(Mh◦ϕ◦fA(z)) = a⋆ · bω

is countably infinite. Moreover fB(z) ∈ E−
1 and L(Mg◦ϕ◦fB(z)) = a⋆ · bω

is countably infinite. Thus the ω-language L(MΨ(z)) = L(Mh◦ϕ◦fA(z)) ⊕
L(Mg◦ϕ◦fB(z)) is also countably infinite.

Second case: z /∈ E = A ∩ B. Then either z /∈ A or z /∈ B. Assume first
that z /∈ A. Then fA(z) /∈ E1, i.e. fA(z) ∈ E−

1 . Thus L(Mh◦ϕ◦fA(z)) = ∅.
Assume now that z /∈ B, i.e. fB(z) ∈ E1. Then L(Mg◦ϕ◦fB(z)) = Σ

ω.
We can see that if either z /∈ A or z /∈ B the ω-language L(MΨ(z)) =
L(Mh◦ϕ◦fA(z))⊕L(Mg◦ϕ◦fB(z)) can not be countably infinite because it can
only be either empty or uncountable.

Finally, using the reduction Ψ we have proved that

E ≤1 {z ∈ N | L(Mz) is countably infinite}

so this latter set is D2(Σ
1
1)-complete. �

Remark 3.4 Castro and Cucker noticed in [CC89] that the set {z ∈ N |
L(Mz) is countably infinite} is in the class Σ1

2 but they asked whether this
set is Σ1

2-complete. Our result shows that the answer is “no” because a
D2(Σ

1
1)-set is actually much less complex than a Σ1

2-complete set.
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Recall that an ω-language accepted by a Turing machine M is a Σ1
1-subset

of Σ
ω. Then it is well known that such a set is either countable or has

the cardinal 2ℵ0 of the continuum, see [Mos80]. Therefore an ω-language
accepted by a Turing machine has cardinal 2ℵ0 iff it is not a countable set.
We can now state the following result.

Theorem 3.5

1. {z ∈ N | L(Mz) is uncountable} is Σ1
1-complete.

2. {z ∈ N | L(Mz) is countable} is Π1
1-complete.

Proof. We first prove item (1).
We have already seen that {z ∈ N | L(Mz) is countable} is in the class Π1

1.
Thus the set {z ∈ N | L(Mz) is uncountable} is a Σ1

1-set.

To prove the completeness result we can use an already cited result of Castro
and Cucker. There is a computable injective function ϕ from N into N for
which one of the two following cases hold:
First case: z ∈ E1 and L(Mϕ(z)) = Σ

ω.

Second case: z ∈ E−
1 and L(Mϕ(z)) = ∅.

The reduction ϕ shows that :

E1 ≤1 {z ∈ N | L(Mz) is uncountable}

so this latter set is Σ1
1-complete.

Item (2) follows directly from Item (1). �
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