
HAL Id: hal-00413318
https://hal.science/hal-00413318

Submitted on 3 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sampling effect on contact and transport properties
between fractal surfaces

Christophe Vallet, Didier Lasseux, H. Zahouani, Philippe Sainsot

To cite this version:
Christophe Vallet, Didier Lasseux, H. Zahouani, Philippe Sainsot. Sampling effect on contact
and transport properties between fractal surfaces. Tribology International, 2009, 42, pp.1132-1145.
�10.1016/j.triboint.2009.02.013�. �hal-00413318�

https://hal.science/hal-00413318
https://hal.archives-ouvertes.fr


Sampling effect on contact and transport

properties between fractal surfaces

C. Vallet ∗,a, D. Lasseux ∗,b, H. Zahouani d, P. Sainsot c

aEDF R&D, avenue des Renardières - Ecuelles, 77818 Moret-sur-Loing Cedex,

France

bTREFLE, CNRS UMR8508, Esplanade des Arts et Métiers, 33405 Talence

Cedex, France

cLaMCoS, INSA-Lyon, CNRS UMR5259, F69621, France

dENISE, 58 rue Jean Parot, 42000 Saint Etienne, France

Abstract

In this work, we are interested in the contact between a self-affine fractal surface
pressed against a smooth and perfectly rigid plane. The purpose is to analyse the
influence of both sampling interval ∆ and sampling length L, on the determina-
tion of surface roughness parameters, contact areas and viscous and diffusive flow
through the aperture field resulting from the contact under load. To accomplish
this analysis, fractal surfaces used in this work are obtained from numerical simula-
tions. Models for synthesizing a fractal surface, computing mechanical deformation
of asperities as well as determining viscous and diffusive flow are briefly presented.
At the macroscopic scale, viscous and diffusive flow are fully characterized by the
transmissivity K and effective diffusivity D tensors respectively. Results show that
fractal dimension Df and arithmetic roughness Ra are almost insensitive to ∆ and
L under conditions that are discussed. Contact areas are invariant whatever L and
become increasingly sensitive to ∆ while decreasing the arithmetic roughness Ra.
The impact of L and ∆ in the determination of transport properties also increases
when K and D decrease, i.e. for small Ra and large average contact pressure Pca.
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1 Introduction

In the past decades, many works, both numerical and experimental, have been
devoted to the study of fluid flows through fractures in rocks [1–3]. This sub-
ject takes many practical applications in water supply, petroleum extraction
or long-term nuclear waste storage. In mechanical design, fluid flow through
the contact between machined surfaces have received interest mainly in the
context of tribological problems, especially in the understanding of lubrication
mechanisms, like in the design of ball bearings or gear drives [4]-[5]. In those
applications, surfaces in contact are generally in relative motion, leading to
friction and wear problems.

Here, we are interested in fluid flow through motionless rough surfaces pressed
against each other. This problem is of great interest in many industrial appli-
cations, like in design and safety of nuclear power plants or cryotechnic rocket
engines, where sealing of some units is made by a direct contact between
metallic surfaces [6]. Even under tightening, contact only occurs locally at the
top of asperities and spaces left between surfaces form a connected aperture
field which allows fluid flow through the contact. In this work, we study vis-
cous and diffusive flows through the aperture field formed by a rough surface
pressed against a perfectly rigid and smooth plane. In a companion paper [7],
Vallet et al. have presented a deterministic approach to estimate transport
properties from initial surface roughness, i.e. intrinsic parameters relating the
fluid flux to the driving force, for both viscous flow and diffusion, taking into
account surface flattening due to tightening. Moreover, they have shown that
real surfaces obtained by a random process, like lapping or sand-blasting, can
be consistently represented by synthetic self-affine fractal surfaces, both from
the mechanical contact and transport properties points of view. The aim of
this paper is to investigate the influence of sampling variables describing the
rough surface on the determination of roughness parameters, contact areas
and transport properties. In their work, Nguyen et al. [8] have studied the in-
fluence of the sampling conditions in the estimation of a so-called Birmingham
set of parameters [9]. Here, rough surfaces under investigation exhibit fractal
properties as in [7] and are obtained from numerical simulation.

The choice of sampling variables arises while measuring a real surface and the
goal of this work is to contribute to the determination of optimal measuring
parameters. Indeed, surface scanning is a delicate process because it leads to
surface digitizing and hence to information loss. Many measuring instruments
are commonly used (see [9]), based on contact or non-contact techniques, and
their choice mainly depends on surface topography as well as scales under
consideration. Roughness of machined surfaces like lapped or sand-blasted
surfaces is composed of a wide range of frequencies, varying from body di-
mensions to interatomic distances. However, whatever the measuring method,
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only a range of frequencies is captured, the lowest frequency being imposed by
the scanning length and the largest by the sampling interval or scanning reso-
lution. To keep a reasonable amount of data, a compromise between scanning
resolution and scanning length must also be made.

In section 2, we briefly recall models to synthesize a self-affine fractal sur-
face, to compute surface deflections in elasto-perfectly plastic regime and to
determine fluid transport properties through a rough contact. For more de-
tails on the models, the reader is invited to refer to [7]. Section 3 is dedicated
to the analysis of the effects of sampling variables, i.e. sampling interval and
sampling length, on surface roughness parameters, contact areas and trans-
port properties, for an average contact pressure ranging from 10 to 600 MPa.
To accomplish this analysis, four reference surfaces are first synthesized with
different roughness parameters. The analysis of the sampling interval effect
is performed by resampling each reference surface with three different sam-
pling intervals, without changing the sampling length. In the same way, the
sampling length effect is studied by resizing each reference surface with three
different lengths, keeping the initial sampling interval constant. Finally, main
conclusions are collected in section 4.

2 Models

2.1 Fractal surface synthesizing model

Fractal concept was first mentioned by Mandelbrot [10]. His observations
showed that the length of a natural coastline does not converge but increases
monotonically when decreasing the unit of measurement. This concept was
used to describe many irregular shapes like mountains, coastlines or fractured
surfaces that Euclidian geometry cannot properly describe.
From a mathematical point of view, a fractal surface is shown to be self-affine,
which means that the surface appears similar under various degrees of magni-
fication (see fig. 1) with scaling magnification that is direction dependent. The
power spectrum P (ωx, ωy) and the structure function δ(τx, τy) of this kind of
surfaces follow power laws. For an isotropic self-affine fractal surface z (x, y),
they are given by [11]:

P (ωx, ωy) ∝
∣∣∣Z̃(ωx, ωy)

∣∣∣
2

∝
1

ω
8−2Df
eq

(1)

where Z̃(ωx, ωy) is the Fourier transform of z (x, y) and ωeq =
√

ω2
x + ω2

y ;

δ(τx, τy) =
〈
[z(x + τx, y + τy) − z(x, y)]2

〉
∝ τ 6−2Df

eq (2)
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where τeq =
√

τ 2
x + τ 2

y .

In these equations, Df is called the fractal dimension and for a surface ”in
space”, 2 < Df < 3. This parameter is related to the relative power of fre-
quency content, which means that the larger Df the more irregular the surface.
Practically, Df can be determined from the slope of log(P ) = f(log ωeq) or
log(δ) = f(log τeq) plots. In section 3, fractal dimensions will be determined
from the structure function δ for practical arguments that will be clearly ex-
posed.

 

Fig. 1. Self-affine profile -

To perform our analysis, self-affine fractal surfaces are synthesized from their
power spectrum (eq. (1)) following an approach based on the Fourier filtering
method [11]. A random pattern amn (1 ≤ m ≤ nx and 1 ≤ n ≤ ny) is first
generated in the physical space. A correlation among the Fourier coefficients
ãkl of amn is introduced such that moduli of z̃kl follow a power law as given
by equation (1):

z̃kl =
ãkl

(ωkl)
4−Df

(3)

where ωkl = 2π

√(
k

Lx

)2

+
(

l
Ly

)2

, Lx and Ly being the surface dimensions in

two orthogonal x and y directions respectively.

The fractal surface zmn is then obtained by a discrete inverse Fourier transform
of z̃kl:

zmn =
1

nxny

nx−1∑

k=0

ny−1∑

l=0

z̃kle

(
ik 2mπ

nx
+il 2nπ

ny

)

(4)

Finally, a rescaling is performed on zmn to obtain the desired arithmetic rough-
ness Ra:

z̄mn =
Ra

1

nxny

nx∑
k=1

ny∑
l=1

|zkl|
zmn (5)
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2.2 Elasto-plastic deformation model

When two rough surfaces are put in contact, effective contact occurs at dis-
crete spots, involving stresses that equilibrate the applied load. Resolution of
rough contact problem has received much interest in the past decades and
a review of the main methods employed for this resolution can be found in
[12]. Statistical approaches, initially developed by Greenwood and Williamson
[13] and then modified by many authors [14–17], yield important qualita-
tive results concerning the effect of statistical roughness parameters on the
true contact area. However, due to the multiscale nature of rough surfaces, it
has been observed that roughness parameters used in these models strongly
depend on sampling variables describing rough surfaces [18]. Thus, these sta-
tistical models often provide erroneous results from a quantitative point of
view. With the advance of computer capabilities, numerical and deterministic
models have been developed, allowing the use of digitized real surfaces without
any assumption on height distribution. However, the grid used to discretize the
surface must be as fine as possible to capture the micro-roughness, and in the
same time, large enough to include longer wavelengths. These two constraints
imply a large number of data, causing numerical difficulties to solve 3D con-
tact problems with classical methods, such as finite element methods (FEM).
An alternative technique applied to the contact between fractal surfaces was
employed by Willner [19], following a previous work of Tian and Bhushan
[20]. This technique is based on the minimization of the total complementary
potential energy using a variational approach and the Boussinesq solution for
semi-infinite bodies. Other fast methods, based on multilevel technique or fast
Fourier transform (FFT), have been developed and in this paper, we use a nu-
merical procedure based on the work of Sainsot et al. [21] to solve the contact
problem. In this model, only normal effects are considered and contact bodies
are assumed to be semi infinite. This last assumption, valid for a small con-
tact area compared to body dimensions and for asperities having small slopes,
allows the derivation of a direct relationship between surface deflections and
contact pressures:

u (x) =
∫

S

U (x, ξ) pc (ξ) dS (6)

Here u (x) is the surface deflection at point x (x, y) on the surface S, U (x, ξ)
is the deflection at x due to a unit load at ξ (ξx, ξy) while pc (ξ) designates the
contact pressure at ξ and S the apparent contact surface. From this equation,
it appears that only surface deflections have to be computed (and not the
displacements in the bulk), reducing drastically the system of equations to be
solved.

When solids are elastic and homogeneous, the influence coefficient U (x, ξ) can
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be expressed by the method of potentials proposed by Boussinesq [22]:

U (x, ξ) =
1 − ν2

πE

1
√

(x − ξx)
2 + (y − ξy)

2
(7)

where E is the Young’s modulus and ν the Poisson ratio of the surface material
under consideration.

To satisfy the overall equilibrium, local contact pressures must also verify:

1

S

∫

S

pc (x) dS = Pca (8)

where Pca is the average applied contact pressure.

The detailed procedure to solve this problem is given in [23]. To take into
account plastic deformation, a plastic criterion is directly applied on contact
pressures. Materials are assumed to follow an elastic-perfectly plastic behavior,
i.e. contact pressures are bounded by the hardness H of the softer material.

2.3 Fluid transport models

2.3.1 Viscous flow and diffusion at the micro-scale

In this section, we consider incompressible, isothermal and stationary mass
transfers due to viscous flow on the one hand and to diffusion on the other.
At the micro-scale, viscous creeping flow (at small Reynolds number) through
a rough fracture can be described by the Stokes model and diffusion by Fick’s
law. If we assume that the aperture field h (x, y) is slowly varying, i.e. that
slopes of asperities are small, the two previous models can be reduced from
3D to 2D. This can be performed using an order of magnitude analysis and
an integration of the balance equations in the direction normal to the mean
plane of the contact (z-direction) [7]. In these circumstances, viscous flow is
described by the Reynolds model:

qv = −
h3

12µ
∇p in β (9a)

∇.qv = 0 in β (9b)

qv.n = 0 on C βσ (9c)

In these equations, β designates the fluid phase and σ the region of contours

Cβσ where effective contact occurs in the x-y plane (see fig. 2); qv =
h∫
0

vdz is

the volume flow rate of the β-phase per unit width, v and p are the velocity
and pressure in the β-phase of dynamic viscosity µ.
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In the same way, the diffusion problem becomes:

qd = −Dh∇c in β (10a)

∇.qd = 0 in β (10b)

qd.n = 0 on C βσ (10c)

Here qd =
h∫
0

jdz, j being the diffusive flux, c the concentration of the species

which diffuses through the contact and D the molecular diffusion coefficient.

S

s

b

C b s

n

Fig. 2. Local contact configuration. σ designates the region where effective contact
occurs within S while β represents the fluid phase -

2.3.2 Transport properties of the rough contact

Equations (9) and (10) are formally identical. They can be rewritten in a
generic form:

q = −k∇ω in β (11a)

∇.q = 0 in β (11b)

q.n = 0 on C βσ (11c)

with k = h3

12µ
and ω = p for viscous flow and k = Dh and ω = c for diffusion.

By averaging these equations over a small portion S of the contact, the previ-
ous model can be up-scaled from micro to macro-scale. This operation allows
to derive macroscopic models of transport relating the macroscopic flow rate
at the scale of S, to the macroscopic driving force (i.e. the macroscopic pres-
sure gradient or species gradient). Moreover, it provides an explicit way to
determine the transport coefficients appearing in these macroscopic models.
The averaging process is similar to volume averaging [24] and is based on the
definitions of the two operators applied on any quantity ϕ:

〈ϕ〉 =
1

S

∫

Sβ

ϕdS =
1

Sβ + Sc

∫

Sβ

ϕdS (12a)
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and

〈ϕ〉β =
1

Sβ

∫

Sβ

ϕdS (12b)

along with the averaging theorem:

〈∇ϕ〉 = ∇〈ϕ〉 +
1

S

∫

Cβσ

nϕdS (12c)

Using a procedure employed for similar problems [25]-[26], it can be shown
that the generic macroscopic model takes the form:

〈q〉 = −H.∇〈ω〉β (13a)

∇. 〈q〉 = 0 (13b)

In equation (13a), the tensor H can be explicitly determined from the aperture
field according to:

H = 〈k (I + ∇b)〉 (14)

where b is solution of the closure problem that is written as:

∇. (k∇b) = −∇k̃ in β (15a)

−nβσ.∇b = nβσ on C βσ (15b)

b (x + ri) = b (x) (15c)

〈b〉 = 0 (15d)

In the above equations, k̃ = k − 〈k〉 and ri is the surface element dimension
in the ith direction. This surface element is supposed to be representative of a
periodic infinite structure.

For viscous flow, the flow rate per unit width of the contact, at the scale of
the surface element, is hence:

〈qv〉 = −
K

µ
.∇〈p〉β (16a)

∇. 〈qv〉 = 0 (16b)

where K = H is the transmissivity tensor with k = h3

12
in (14) and (15). It

must be noted that K has the dimension of cubic length.

In the same way, the flow rate per unit contact width resulting from diffusion
at the scale of the surface element is given by:

〈qd〉 = −DD.∇〈c〉β (17a)
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∇. 〈qd〉 = 0 (17b)

where D = H is the effective diffusivity tensor with k = h in (14) and (15).
Note that D has the dimension of length.

Both K and D are intrinsic, i.e. they can be estimated from the aperture field
h at a given load as indicated in the following section.

2.4 Computational algorithm

The deterministic approach employed to determine true contact areas and
transport properties K and D of a rough contact is shown in figure 3. It begins
with a set of nx x ny points describing a rough surface z (x, y) synthesized
from the method described above. The aperture field h (x, y) resulting from
deformation of the initial rough surface z (x, y) is computed using the elastic-
perfectly plastic model as indicated in section 2.2. Intrinsic transmissivity
and diffusivity tensors, K and D respectively, are computed using the same
numerical procedure. Distinction between viscous and diffusive transport is
performed in the surface preparation module. The percolation module allows
to remove from h (x, y) all the non-percolating clusters, i.e. non-contact areas
not connected to surface edges.

 
Synthesized surface roughness 

 

Elasto-plastic deformations 

Surface preparation 
 

Percolation 
 

Transport properties 
 

K D 

vi
sc

o
u

s 
tr

an
sp

o
rt

 

d
iff

u
si

ve
 tr

an
sp

o
rt

 

( )yxz ,

( )yxh ,

( ) 12/,3 yxh

( ) 12/,3 yxh

( )yxh ,

( )yxh ,

Fig. 3. Computational algorithm flowchart -

3 Effects of sampling variables on surface roughness parameters,

contact areas and transport properties

In this section, we consider four reference fractal surfaces characterized by a
fractal dimension Df ∈ {2.3 ; 2.7} and an arithmetic roughness Ra ∈ {0.1
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µm ; 1 µm} (see tab. 1). Each surface is synthesized from the same random
pattern amn and with the same sampling variables, i.e. a length L of 2 mm
sampled with n = 1024 points corresponding to a sampling interval ∆ of
1.95 µm. These surfaces represent our basic data that can be considered as
extracted from direct measurements of real surfaces as shown by the analysis
in [7]. Each surface element is considered as representative of a larger real
surface. Ranges of variation of Df and Ra were chosen in agreement with
measurements made on engineering surfaces [18]-[27]. In [7], it was shown that
some machined surfaces (like lapped surfaces) can exhibit fractal properties
at high frequencies only, and this can be simulated by introducing a cut-off
frequency ωc during the synthesizing process. In that case, P (ω) is taken
as a constant for ω < ωc (see [7]-[28]). To guarantee that reference surfaces
are not fractal at scales larger than their own size, i.e. that sampling lengths
were chosen large enough, surfaces were synthesized with a cut-off frequency
ωc = 12π rad.mm−1 (see tab. 1). This has also the advantage of ensuring a
perfect isotropy of the transport properties (see [7]).

Table 1
Surface parameters -

Sampling

length

L x L

(mm)

Sampling

n x n

(pts)

Ra

(µm)
Df

ωc

(rad.mm−1)

surface 1

surface 2

surface 3

surface 4

2 x 2 1024 x 1024

0.1

1.0

0.1

1.0

2.3

2.3

2.7

2.7

12π

In the following, the contact is assumed to be made of a stainless steel rough
surface, which mechanical properties are given in table 2, pressed against a
smooth and perfectly rigid plane parallel to the mean plane of the rough
surface. As indicated in section 2.2, the deformation of asperities resulting
from the applied load can be locally in the elastic or plastic regime depending
on the local contact pressure.

Table 2
Mechanical properties of stainless steel -

Young modulus Poisson ratio Hardness

E ν H

210 GPa 0.3 1800 MPa
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3.1 Effect of sampling interval ∆

The aim of this paragraph is to study the influence of the sampling interval
∆ = L/n on roughness parameters on the one hand, and contact areas and
transport properties on the other. It is accomplished by under-sampling each
reference surface using 512 x 512, 256 x 256 and 128 x 128 points, which cor-
respond to sampling intervals ∆ = 3.91 µm, ∆ = 7.81 µm and ∆ = 15.62
µm respectively. This is achieved by keeping the sampling length L constant
equal to 2 mm while successively considering 1 point over 2, 4 and 8 from the
original reference surfaces respectively.

3.1.1 Fractal dimension and arithmetic roughness

As already mentioned, the fractal dimension of rough surfaces is determined
from their structure function δ. This choice is motivated by several arguments.
As pointed out by Ganti and Bhushan [27], the power spectrum is inaccurate
when applied to discrete functions due to the approximation of the frequency
content. Since we are analyzing the effect of sampling, inaccuracy is expected
to increase when ∆ increases, in particular at high frequencies that are mainly
altered while under-sampling. In our case, this is a major drawback since the
presence of the frequency cut-off ωc would require the characterization of the
fractal dimension Df from the higher frequency content of the surface. More-
over, for surfaces investigated here, synthesized from a random pattern, the
scatter on the structure function is much smaller than that on the power
spectrum, leading to a more precise estimation of Df from δ. In addition,
the computation of δ is simpler to implement for practical use in engineering.
Consequently, Df is estimated from the slope of the log(δ) = f(log τeq) plot,
for each under-sampled surface and for τeq varying from ∆ to L

2
. As can be

seen from equation (2), the slope of the structure function log-plot does not
depend on Ra, since changing Ra only leads to a rescaling of heights and
hence to a vertical shift of this plot. As a consequence, estimations of Df on
surfaces 1 and 2 on the one hand, and on surfaces 3 and 4 on the other, are
strictly identical.
In figures 4 and 5, we have represented in dashed lines the structure function
plots log(δ) = f(log τeq) for the two pairs of surfaces {1, 2} and {3, 4} respec-
tively, for each sampling interval ∆. To show the influence of ωc on δ, structure
functions of fractal surfaces synthesized without any cut-off frequency (ωc = 0
rad.mm−1) have also been reported as solid lines in these figures. Fractal di-
mensions Df , estimated from least squares fits on the linear part of these plots,
are reported in table 3.
First, it can be seen on figures 4 and 5 that the presence of ωc alters the
structure function linearity, even at values of the lag τeq smaller than 2π

ωc
= 1

6
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mm. Results in table 3 clearly show, as expected, that Df is not appreciably
sensitive to ∆, especially for ωc = 0. In that case, the increase on the esti-
mated value of Df is only 0.4% with respect to the reference surface when ∆
is multiplied by 8. For ωc = 12π rad.mm−1, Df seems to increase slightly with
∆ (4 to 5% of increase with respect to the reference surface while multiplying
∆ by 8). This behavior can be explained as follows. Increasing ∆ leads to a
truncation of δ at small values of τeq. For ωc = 0 rad.mm−1, δ remains linear
over nearly the whole investigated range of τeq. In this case, the truncation
has also no influence on the estimation of Df . Note that the non-linearity of
log(δ) = f(log τeq) at large values of τeq is only due to a finite size effect.
For large values of τeq, the estimation of δ is not precise since there is not
enough information. For ωc = 12π rad.mm−1, δ is linear only for small values
of τeq as indicated above. For this reason, information contained in δ becomes
insufficient at small values of τeq to determine Df when ∆ is increased. From
a practical point of view, this suggests that the sampling interval ∆ must be
kept smaller than a limit value in order to correctly capture the fractal prop-
erty of such a surface. A thorough analysis, which is beyond the scope of this
paper, would be necessary to provide quantitative results on this last feature.
For Ra, calculation on each surface shows that this parameter is insensitive to
under-sampling, in the range of ∆ investigated here. As reported by Nguyen
et al. [8], power spectra of machined surfaces, and more especially fractal sur-
faces, are dominated by low-frequency components, which means that long
wavelengths have higher amplitude than short ones. As a consequence, the
arithmetic roughness Ra also mainly depends on longer wavelengths. Since
under-sampling does not affect long wavelengths, Ra is not significantly mod-
ified while increasing ∆.

Table 3
Effect of sampling interval ∆ on fractal dimension Df estimated from log(δ) =
f(log τeq) of figures 4 and 5 -

ωc ∆ (µm)

(rad.mm−1) 1.95 3.91 7.81 15.62

Surfaces {1, 2} 0 2.33 2.33 2.32 2.34

12π 2.33 2.35 2.38 2.45

Surfaces {3, 4} 0 2.67 2.67 2.67 2.68

12π 2.63 2.65 2.68 2.74

3.1.2 Contact areas and transport properties

In the following, we study the effect of ∆ on the estimation of the true contact
area Sc and transport properties K and D, while considering the four reference
surfaces defined in table 1. In table 4, we have reported computational times
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Fig. 4. Structure functions δ(τeq) of the under-sampled surfaces initially synthesized
with Df = 2.3. Solid lines: ωc = 0 rad.mm−1; dashed lines: ωc = 12π rad.mm−1 -
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Fig. 5. Structure functions δ(τeq) of the under-sampled surfaces initially synthesized
with Df = 2.7. Solid lines: ωc = 0 rad.mm−1; dashed lines: ωc = 12π rad.mm−1 -

required to run the whole algorithm schematized in figure 3, for each case under
consideration and the whole range of Pca. Computations have been performed
on a HP xw9300 workstation with a 2.4GHz AMD Dual Core processor. These
data clearly illustrate the crucial issue of sampling since computational times
roughly vary as n2, from several hours for reference surfaces (1024 x 1024
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points, i.e. ∆ = 1.95 µm), to few minutes for 128 x 128 points, i.e. ∆ =
15.62 µm. For practical use, this justifies the analysis reported below on the
dependence of the true contact area Sc and transport properties K and D on
sampling.

Table 4
Computational times -

Surface 1 Surface 2 Surface 3 Surface 4

1024 x 1024 pts 68h 71h 60h 80h

512 x 512 pts 12h 11h 12h 13h

256 x 256 pts 1h10’ 1h05’ 1h45’ 1h45’

128 x 128 pts 5’ 15’ 6’ 8’

In figure 6, we have represented as dashed lines the influence of ∆ on the ratio
of the true contact area Sc to the apparent surface area S = L2 versus the
average contact pressure Pca. Pictures of contact areas of the corresponding
reference surfaces are also represented for Pca = 600 MPa. In this figure,
results on reference surfaces (solid lines) show that, whatever Df , the larger
Ra is, the smaller Sc/S for a given value of Pca. This indicates that the local
contact pressure increases with Ra and, further, that the amount of contact
spots experiencing plastic deformation is larger when Ra is large. This is
in accordance with observations reported in [29]. Moreover, if we consider
a trivial load-area relationship when the effective contact is entirely in the
pure plastic regime, i.e. Sc/S = Pca/H [30], we find, for Pca = 600 Mpa,
Sc/S = 33.3%. This approximation is excellent for reference surfaces 2 and
4 (Ra = 1µm) confirming that a large amount of contact spots are resulting
from plastic deformation for this value of Ra. On the contrary, for surfaces 1
and 3, this approximation underestimates Sc/S that is roughly 43% for surface
1 and 38% for surface 3 when Pca = 600 MPa, indicating that a significant
amount of contact spots are supporting a contact pressure smaller than H, i.e.
are in the elastic regime. This is also in accordance with the fact that local
contact spot areas are much smaller but more numerous when Ra is small
(i.e. on surfaces 1 and 3) as shown in the insets of figure 6. In fact, there
are three times more contact spots of size ∆2 on surface 1 than on surface
2 although Sc/S1 is only 25-30% larger than Sc/S2. In addition, it can be
noticed from the curves that Sc/S is much more sensitive to ∆ for surfaces 1
and 3 than for surfaces 2 and 4, i.e. for smaller Ra. These observations can be
explained as follows. When Ra is large (surfaces 2 and 4), Sc mainly results
from effective contacts on large wavelength components of asperities that are
also of larger amplitude. Small asperities, of short wavelength, are squashed
leading to contact spots of relatively large area. Conversely, when Ra is small,
contact occurs on asperities of high frequency of occurrence, leading to a
high number of contact spots. While under-sampling, two cooperative effects
are involved, explaining the contrast in the behavior of the dependence of
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Sc/S upon ∆. First, under-sampling tends to smooth the surface, decreasing
the highest detectable frequency. Second, it leads to an increase of the local
contact spot area, simply due to the fact that, multiplying ∆ by 2 for instance,
multiplies the minimum contact spot area by 4. This effect is, of course, much
less significant in situations involving large contact spot areas (i.e. when Ra
is large).
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contact areas (dark spots) of the reference surfaces for Pca = 600 MPa -

In figures 7 and 8, all the diagonal terms of transmissivity K and effective
diffusivity D tensors respectively are represented versus the average contact
pressure Pca, for each sampling interval ∆. Off-diagonal terms of K and D

are about two orders of magnitude smaller than diagonal ones and conse-
quently, are not considered in our work. Transport properties of reference sur-
faces (∆ = 1.95 µm) appear as solid lines and representation was restricted
to transmissivities and diffusivities respectively larger than 1e−9 µm3 and
1e−4 µm. From these figures, it appears that the diagonal terms of K and
D estimated on reference surfaces are identical confirming that synthesized
surfaces are isotropic [7]. For large values of both ∆ and Pca, a dispersion
appears on diagonal terms. The origin of this behavior lies in the finite size ef-
fect of the element of surface under consideration which becomes more critical
while increasing Pca. This finite size effect is such that the distribution of the
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percolating cluster branches (i.e. connected paths where the fluid flows) that
is statistically direction-independent for small values of Pca becomes increas-
ingly direction-dependent while increasing Pca. Results on K and D indicate
that these transport properties strongly depend on Ra and very little on Df

on the whole range of Pca investigated [31]. In addition, results of figures 7
and 8 clearly show that, for any given value of Pca, Kxx, Kyy and Dxx, Dyy

decrease while increasing ∆ and that this behavior is more significant on sur-
faces 1 and 3 (Ra = 0.1 µm) than on surface 2 and 4 (Ra = 1 µm). This can
be simply explained while considering the results on the effective contact area
presented above. While Sc increases with ∆, the mean aperture (and hence the
transmissivity and diffusivity) decreases, this behavior being more significant
when Ra is small. Note that under-sampling leads to an under-estimation of
both K and D, and the under-estimation increases with Pca.
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To be more quantitative, we have represented in figures 9 and 10 the relative

error on the transmissivity Kr−K

Kr
and on the effective diffusivity Dr−D

Dr
versus

Pca for the three under-sampled surfaces. Here, T represents the mean value
of diagonal terms of T while the subscript r refers to the reference surfaces.
The relative error increases with Pca and ∆. Since K is always smaller than
Kr, relative error is bounded by 100%. For K, it remains roughly smaller than
50-55% (leading to a factor 2 between K and Kr) for Pca ≤ 100 MPa for
surfaces 1 and 3 and Pca ≤ 500 MPa for surfaces 2 and 4 over the whole
range of ∆. For D, less than 50% of error is ensured for all values of ∆ for Pca
≤ 200 MPa for surfaces 1 and 3 and Pca ≤ 600 MPa for surfaces 2 and 4. It
must be noted that 50% of error remains reasonable compared to the range
of variation of Kr and Dr and thinking to the practical measurement of these
quantities [32].
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3.2 Effect of sampling length L

In this section, we are interested in the influence of the sampling length L on
roughness parameters on the one hand, and contact and transport properties
on the other. This study is performed by extracting three subdomains centered
on each reference surface and having respective lengths L = 1 mm, L =
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0.5 mm and L = 0.25 mm. These three subdomains are sampled with 512 x
512, 256 x 256 and 128 x 128 points respectively, keeping an identical sampling
interval ∆ = 1.95 µm for each of them. It must be noticed that even for
L = 0.25 mm, all scales of fractality are contained in the surface since ωc

corresponds to a wavelength of 1

6
mm. The number of data points on these

subdomains being identical to those used while under-sampling, computational
times are also of the same order of magnitude as those reported in table 4.

3.2.1 Fractal dimension and arithmetic roughness

We begin with the investigation of the influence of L on the estimation of the
surface parameters Df and Ra. To highlight the influence of ωc, we also report
in this paragraph results on surfaces synthesized with ωc = 0. In figures 11 and
12, we have represented the log(δ) = f(log τeq) plots, for each surface under
consideration here. In table 5, we have reported fractal dimensions estimated
from least squares fits on these plots. It appears that, whatever ωc, Df is not
sensitive to L in the range of sampling lengths investigated since errors remain
smaller than 2%. Contrary to ∆, varying L does not induce any truncation
of the linear part of δ. The estimation of Df remains equally precise, even for
small values of L.
Ratios of the arithmetic roughness Ra computed on each resized surface to the
one of the reference surface Rar, are given in table 6. This table shows the effect
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of ωc. As explained previously, Ra mainly depends on longer wavelengths, and
thus, it is generally L-dependent [8]. As expected for ωc = 12π rad.mm−1,
Ra is not sensitive to L in the investigated range of L, because the frequency
content is not altered while resizing the surface.
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Fig. 11. Structure functions δ(τeq) of the resized surfaces, initially synthesized with
Df = 2.3. Solid lines: ωc = 0 rad.mm−1; dashed lines: ωc = 12π rad.mm−1 -
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Table 5
Effect of sampling length L on fractal dimension Df -

ωc L (mm)

(rad.mm−1) 2 1 0.5 0.25

Surfaces {1, 2} 0 2.33 2.30 2.31 2.34

12π 2.33 2.33 2.32 2.33

Surfaces {3, 4} 0 2.65 2.66 2.65 2.67

12π 2.65 2.66 2.65 2.64

Table 6
Effect of sampling length L on relative arithmetic roughness Ra

Rar
-

ωc L (mm)

(rad.mm−1) 2 1 0.5 0.25

Surfaces {1, 2} 0 1.00 1.05 0.63 0.36

12π 1.00 1.06 1.10 1.02

Surfaces {3, 4} 0 1.00 1.05 0.78 0.59

12π 1.00 1.01 1.05 1.02

3.2.2 Contact areas and transport properties

The influence of L on the estimation of the ratio of the true contact area Sc

to the apparent surface area S = L2 versus the average contact pressure Pca
is reported as symbols in figure 6. Whatever the reference surface, varying
L has very little effect on the estimation of the true contact area. Maximum
relative deviations occur at small contact pressure and remain smaller than
10%. For Pca = 600 MPa, these relative deviations are about 3% whatever
L. From pictures of contact areas (see insets of fig. 6), it appears that contact
areas are uniformly distributed over the surface, even if the reference length
is reduced by a factor 8. Again, this is due to the fact that longer wavelengths
have been cut-off by ωc so that, in the investigated range of L, subdomains
have the same distribution of contact areas as the reference one. However, as
will be seen below, reducing surface dimensions can either lead to a contact
less or more percolating contact (i.e. smaller or larger K and D).

In figures 13 and 14, we have represented the diagonal terms of K and D

respectively versus the average contact pressure Pca, for each sampling length
L. For small values of L, diagonal terms of K and D are increasingly dispersed
with Pca. Thus, L has to be large enough to ensure isotropy of the transport
properties. Moreover, transport properties of the resized surfaces are randomly
distributed around those of the reference surfaces.
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In figures 15 and 16, we have reported relative errors Kr−K

Kr
and Dr−D

Dr
for

each resized surfaces under consideration. These figures show that relative
errors increase with Pca, but confirm that they are not correlated with L.
For instance, relative errors obtained on surface 2 are greater in magnitude
for L = 0.5 mm than for L = 0.25 mm when Pca ≥ 50 MPa. As for ∆,
transport properties are increasingly sensitive to L when they decrease, i.e.
while increasing Pca. For all the sampling lengths considered here, the relative
error on the transmissivity does not lead to an over- or under-estimation of K
greater than a factor 2 (−100% ≤ ∆K/Kr ≤ 50%) for Pca ≤ 400 MPa. In
the range of Pca investigated, errors on D does not exceed a factor 2, except
for surface 1 for which one must keep Pca ≤ 500 MPa.
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4 Conclusion

In this paper, contact between a synthetic fractal surface and a smooth and
perfectly rigid plane has been considered. A global deterministic approach
to determine surface deformation under load and transport properties of the
resulting aperture field has been briefly presented. The effect of sampling vari-
ables ∆ and L on the estimation of rough surface parameters (Df and Ra),
true contact areas (Sc) and transport properties (K and D), has been investi-
gated. Both ∆ and L were varied by a factor ranging from 2 to 8 with respect
to the reference surfaces. As indicated by computational times required to
run the whole algorithm, this is a crucial issue that must be considered si-
multaneously with the expected precision on the estimation of the contact
properties. Typically, computational times varies as n2 (n being the number
of data points on the rough surface). To perform this study, four fractal sur-
faces, considered as references, have been synthesized. They are representative
of a wide range of machined surfaces as demonstrated in a companion paper
[7]. Since a real surface usually exhibits fractal properties for only a range of
frequencies, a cut-off frequency ωc has been introduced in the power spectrum
of synthetic surfaces. This cut-off frequency ensures that dimensions of refer-
ence surfaces have been chosen large enough to contain all scales of fractality.
Main conclusions of this study are as follows.
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The estimation of the fractal dimension Df remains almost insensitive to the
sampling variables provided ∆ is kept small compared to ωc. When this con-
straint is not satisfied, information contained in the structure function δ be-
comes insufficient to estimate Df accurately. Moreover, the effect of the sam-
pling length L is negligible in the investigated range of L. As a consequence,
when accuracy on the determination of Df is to be improved, keeping the
amount of data points constant, it is preferable to reduce ∆ rather than in-
creasing L.

The arithmetic roughness Ra is much more sensitive to L than to ∆. When
a cut-off frequency ωc is introduced in the power spectrum of the synthetic
surfaces, the dependence of Ra to L disappear provided L remains larger than
ωc.

When this last condition is met, longer wavelengths of roughness are cut-off
by ωc, so that distribution of contact spots is homogeneous over the surface.
As a consequence, in the range of sampling lengths investigated here, L has
very little effect on the estimation of the true contact area Sc. Sensitivity of Sc

to ∆ becomes significant when Ra is small, i.e. when contact spots are small
compared to the block size of the sampling grid, due to a conjugate effect of
the representation itself of the contact spots and to a smoothing effect that
removes high-frequency content of asperities.
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Finally, anisotropy of transport properties can appear as a result of either
∆, which has been chosen too large, or L, which has been chosen too small.
Moreover, K and D become sensitive to ∆ and L at large values of Pca. When
significant, under-sampling always leads to an under-estimation of K and D

and this must be kept in mind if, in practice, leak through a rough contact is
to be estimated with such an approach. In contrast, reducing L leads to an
under- or over-estimation of K and D.
For surfaces under consideration, whose properties cover a wide range of Df

and Ra encountered in practice, the impact of ∆ and L on K and D remains
weak. Typically, for the range of variation of ∆ and L under investigation in
this work, the impact is roughly a factor 2 on K and D with respect to the
reference surface provided Pca does not exceed 400 MPa. This remains an
acceptable estimation for most practical applications if one kepdf in mind the
difficulty associated to a precise measurement of these transport properties.
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