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Abstract

Usual modal analysis techniques are based on the Founefdran. Due to theAT . A f
limitation, they perform poorly when the modal overlagxceeds0%. A technique based
on a high-resolution analysis algorithm and an order-dieteanethod is presented here,
with the aim of filling the gap between the low- and the higkgintency domains3(% <

1 < 100%). A pseudo-impulse force is applied at points of intere$ta structure and
the response is measured at a given point. For each pair cumsgaents, the impulse
response of the structure is retrieved by deconvolving sleeigo-impulse force and filtering
the response with the result. Following conditioning tneants, the reconstructed impulse
response is analysed in different frequency-bands. In #agency-band, the number of
modes is evaluated, the frequencies and damping factomsstireated, and the complex
amplitudes are finally extracted. As examples of applicatihe separation of the twin
modes of a square plate and the partial modal analyses ofralumplates up to a modal
overlap of70% are presented. Results measured with this new method asel tatculated
with an improved Rayleigh method match closely.
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1 Introduction

In the dynamic response of a structure, three spectral denaae usually defined:
low-, mid- and high-frequency. In general, each mode is mlesd by a modal
frequency, a modal damping factor, and a modal complex anagidistribution
(see e.g[[1] or[]2]). The low-frequency domain is charastsdiby distinct reso-
nance peaks and the strong modal character of the vibraghrgvour. When the
frequency increases, the traditional modal identificatiethods cannot be used:
damping increases, resonances are thus less pronounceds meerlap and the
frequency-response tends to a smooth curve. In the higludrecy domain, the
vibration can be described asldfuse wavefieldseee.g.[3].[f] or [H])-
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Figure 1. Scheme of individual modal resonances with theesamplitude and a modal
overlap factor of 100% (aftef][5])

The modal overlap factagr is the ratio between the half-power modal bandwidth
Af 308

. _Afmode .
the three spectral domains are established according tamthes ofy.. One could
define the low-frequency domain as the domain of applicatiomodal analysis
techniques: individual modes can be distinguished. It reegaly admitted that the
modal analysis techniques based on the Fourier transforet their limits when
the modal overlap reach88% (seee.g.[f] or [[]); this is due to theAT A f limi-
tation of this signal processing method.

and the average modal spacing;f) = (seee.qg.[H]). The boundaries of

It is commonly considered that high-frequency is reachedufo= 100% (see
Fig[1): the diffuse wavefield approximation becomes vl In this spectral do-
main, the Skudrzyk’s mean-value methofl ([4] apd [8]) idegia structure by
its characteristic admittangavhich is equivalent to the admittance of an infinitely
extended structure. Adding other hypotheses, it is passitdpply statistical meth-
ods such as the Statistical Energy Analysis (SER) [6], wisiebks to calculate the



spatial average of the response of each component of aws&uay considering
the equilibrium of power flows. Besides the diffuse wavefiela&cach subsystem,
the assumptions required by SEA are that the system repsesegverberant field,
that the input power sources are uncorrelated, and thautheystems are weakly

coupled ([P] and[[7j0]).

In the hope of filling the gap between the low- and the higlofiency domains
(30% < u < 100%), or in effect, extending the low-frequency domain, a tech-
nique based on the high-resolution analysis algorithm BEPR]] and the order-
detection method ESTER [l12] is described here. Three exasl application
are presented: the separation of twin modes of a square (iyatd modal over-
lap 1+ = 200%) and two partial modal analyses of aluminium plates up to daho
overlapy = 70%.

In this article, modal analysis is restricted to linear eyss; therefore, the impulse
responsé(x, t) at any point located i is expected to be a sum of complex expo-
nentials (decaying sines):

K/2 -
E(x,t) =R | ap(x)e e mitivnx) (1)

k=1

where K /2 is the number of modeg; are the modal frequencies (in Hz), the
modal damping factors (im3), a,(x) andyy(x) the modal amplitudes and phases
at the point of interest.

The free dynamics of the generalised modal displacemeastruled by the follow-
ing differential equation:

My + crr + mpwiqe = 0 (2)

wherem,, is the modal mass (in kg, the modal damping coefficient (in kg9
andw; the modal angular frequency (in rad's.

The modal damping factar;, (also called modal decay constantin'), the modal
decay timer;, (in s), the modal loss factay, (dimensionless) and the modal damp-
ing ratio (, (dimensionless) are related between them and to the abggecph
guantities as follows:

L nywy Awy, —3d8 Ck
Tk 2 W 2 My, Wi

3)

If Af_sqg IS the same for two successive modes aroyinthe modal overlap:

becomes: ; .
M(f> Afmode Afmode T

(4)



. . o1
In practice, the modal damping factarand the modal local densﬂr are
. . fmode
estimated in average over a narrow frequency-band centeréd

Measured signals always contain some ngige, which we suppose to be additive.
After discretisation of (x, ¢) at the sampling ratés = T, ', the signal model of
the free response of the system becomes:

K/2
G(x) = R | ap(x)e s Tiemif Bt L g =1 N (5
k=1

In order to estimate the modal parameters, a high-resolutiethod is applied to
the complex signal associatedt¢x ). Historically, the Prony[J3] or the Pisarenkd[14]
methods rely on the resolution of a linear prediction equatMore recent tech-
niques assume that the signal is a sum of complex exporneatidked to white noise
and project the signal onto two sub-spaces. The space spagre finite-length
vector containing successive samples is decomposed muthbspace spanned by
the sinusoidsgignal subspadeand its supplementary¢ise subspageThe MU-
SIJYIF], Matrix Pencil[IH], and ESPRALI] algorithms are based on this prin-
ciple. The latter is chosen here since it takes into accdwntdtational invariance
property of the signal subspace, ensuring a more precisechndt estimation.

In practice, the noise deviates from white noise and noisigening may prove
necessary prior to analysis. A second conditioning stepriesi by Laroche[[17]
consists in splitting signals into several frequency-sariis reduces the number
of (sub-)signal components to be estimated by ESPRIT witk@sonable limits
and is achieved by filtering the impulse response. When wasutbands are cho-
sen, noise-whitening usually becomes unnecessary. Thecpaxitioning steps
aim at reducing the length of each subband signal in ordee&p khe memory
allocation low enough and the algorithm tractable in pcacteach subband signal
is frequency-shifted toward zero and down-sampled. Thengsampling factor is
adjusted as to avoid aliasing.

In ESPRIT, the dimensions of both subspaces must be chogeiori and the
guality of the estimation depends on a proper choice fortp@sameters. The best
choice for the dimension of the modal subspace is the nunfbesroplex expo-
nentials in the signal. This number s, twice the number of decaying sinusoids.
It is therefore advisable to estimate this number prior toahalysis. This is done
by means of the recently published ESTER technifiule [12].

1 MUltiple Signal Classification
2 Estimation of Signal Parameters via Rotational Invariaf@enniques
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Figure 2. Block diagram of the high-resolution modal anialysethod.

The block diagram in (Fif].2) describes the three main stéfiseamethod:

e reconstruction of the acceleration impulse responsei(seff.1);

e signal conditioning (sectioh 2.2);

e order detection and determination of modal parameters¢twbonstitute the
heart of the method (sectign P.3).

2 Data acquisition and signal processing

2.1 Reconstruction of the acceleration impulse response

A standard measuring technique in modal analysis consisgpplying a pseudo-
impulse force with an impact hammer on a structure and to nredsoth the ap-
plied force and the resulting vibration, generally by meahan accelerometer.
Taking advantage of the assumed linearity of the systemetiprocity theorem

is invoked in order to obtain the modal shapes: the point cftation is varied

while the accelerometer is kept fixed, instead of the oppo3ihis experimental
procedure has been followed throughout this article.

The analysis of free vibrations becomes a modal analysisivite response is
normalised to the excitation of the system. The usual teglenfor this purpose is
the division of the Fourier spectrum of the response by thahe excitation. In
principle, the result is the Fourier transform of the imgulssponse of the system
at the point of interest. Since our method works in the tirogdin, it would be
necessary to calculate the inverse Fourier transform efrdgponse. In practice,
the division of spectra proves to be dangerous for the agiplity of the method:



guasi-zeros in the denominator introduce high-amplitadéezidual components in
the ratio; they may then be transformed into quasi-sinussioycthe inverse Fourier
transform and appear as false modal components. In our tesaprmalisation
has been achieved by reconstructing the impulse responseags of an inverse-
filtering technique applied to the response of the system.

The displacement of a linear mechanical system is:

q = Qimp * f (6)

wheregimp is the impulse response. The system will be consideredilyitat rest
(v(07) = 0) in a frame of reference such thatx,0~) = ¢(x,0%) = 0 at any
positionx. Without loss of generality, one may also consiggr(0*) = 0. It
should be noted that,,(07) andv(0™) are not zero in general.

. . . d
Denoting Laplace transforms by uppercase letters, therigpemgression. d—J; =

ul(f)— f(0%) of the Laplace transform of the time-derivative of a functydelds:

V =uQimp - F' = L(vimp) - L(f) = v = Vimp * f

The impulse acceleration response is given by:

I =uVimp - F —v(07)
= |£(3imp) + vimp(0")] - F = 0(0)
= L(Vimp) -L(f) + 'Uimp(0+)’£’(f) - U(O+)
= 7= {’Vimp * f} + Uimp(0+> - f = U(0+) 0 (7)

Given the measurements of the forgasand the acceleratiofi,eas the impulse
responseyim, is estimated as follows. The first step consists in finding &efin
impulse-response (FIR) filtey that transforms the force sign@leasinto a nor-
malised pulse (Fid] 3):

Jmeas* g = 5& (8)

Here,g stands for the impulse response of the filter in the contisdimae-domain
andé» represents the Dirac impulse shifted in time for causakgsonsy, =

o(t — p/Fy).

When a hammer is used to excite the system, the excitatiatidaris finite and
an upper bound for the number of samples infeascan be given with certainty.
After discretisation, the convolution equation Efj. (8) de& a system of linear
equations. The best solution, for example in the least nsgal+e sense, can be
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Figure 3. Reconstruction of one impulse acceleration mespdarbitrary units). (a) Opti-
mised filterg, with p = 276. (b) Measured forcgmeas(m = 46) and reconstructed pulse
shifted byp samples. (c) Measured respongg@asand reconstructed responggp.

found by commonly available algorithms. We have chosen er filith 11 m + 1
coefficients angh = 6 m.

In a second step, Eq[](7) is applied to the measured valudseofdceleration
7 = Tmeadt) and the forcef = freadt). After convolution of Eq.[{7) by and

substitution offmeadt) * g DY 6», the result is shifted up in time ky7;. One ob-

tains an estimation of the impulse acceleration respogpse

Yimp = {’7meas>’< g}—_z; - 'Uimp(0+) -0+ U(0+) "9-p 9)

When the system is excited by a continuous force (no shaecky),) is 0 and the
above expression becomes simpler. Otherwidg') can be estimated by integrat-
ing v(t). In practice, it may be difficult to extract the signal fronethoise inymeas
and obtaining a precise value of0") may turn difficult. The solution consists in
defining the origin of time slightly before the impact hamrtarches the structure
(this is generally obvious by inspection); this guarantbes~(7,) andv(0™) are
truly 0.

The process of retrieving the acceleration impulse respaiiustrated in Fig[]3.
The first sample of the impulse response cannot be retrigued &y, (0) is not
known. If necessary, it could be reconstituted at the enti@htodal analysis and
the corresponding correction be applied to the modal aog#g and phases.



2.2 Signal conditioning

2.2.1 Reduction of the number of points

The number of operations in the ESPRIT algorithn®isV 2) and the computing
duration is excessively long for a large numb¥érof samples. Numerical insta-
bilities may also appear. In order to overcome these prahleve adopt the pro-
cedure proposed by LarocHe][17] and reviewed in the intrbolichand-filtering,
frequency-shifting, and decimating. A few minor transfatrans are introduced.

It is advisable to evaluate roughly the spectral density ofle§’]. This helps to
define frequency-bands that contain less thanisay: 25 complex components
[[8]. A band-pass filter betweefr and f;, is designed for each band. Although not
as efficient as IR filters, FIR filters are preferred becabsé transfer function has
no pole and therefore, does not introduce spurious modeghetsignal. Various
techniques for synthesising the filter are available. Wesl@nosen the Blackman
window.

The signal is then filtered as follows. An impulse responsmenters a large vari-
ation att = 0 and decreases afterwards. In order to minimise the effetteof
transient response of the filter, the signal is time-rexveeps@r to convolution with
the FIRA of the filter. This does not alter its spectrum. Convolutiddsa number

of samples equal to the length bf at the end of the reversed signal. These points
must be removed from thigeginningof the signal after it is time-reversed again
(see below). Once filtered, onl&’/2 modes are kept. However this number is still
to be determined with precision. The amplitudes and phak#sanodes at the
measured point are altered by the filtering and their transéd values are written

ag andgbk.

The Hilbert transform of the filtered signal is computed iderto eliminate the
negative-frequency content of the spectrum which wouldsealiasing problems
in the next steps of the procedure. We have usedhiieber t function proposed
by Matlat®®. The procedure does not include any spectrum division; thbsphe-

nomenon (very rapid oscillations) associated to the Fotnuacation done in this
procedure is limited to the very beginning and to the very ehtthe transformed
signal. Because of a very fast decay rate, it never proveblgmmatic in practice
(in other words: no pseudo-poles were added by the Fouuec#tion). The signal
now containg’ /2 complex exponentials whose frequencies are betweand f;,.

This signal is multiplied byxp(—27j fqi Ts), withi = 1,..., N. This operation
shifts the spectrum by which is chosen slightly less thgih The spectrum of the
resultis now limited byf/ = fi— fqandf, = fn— fs. As a matter of preference, we

3 This may be done by mechanical reasoning or by extrapol#ti@dow-frequency anal-
ysis, for example.



have then taken the real part of this complex signal. Thislpees a symmetrical
spectrum withX' components betweenf; and+ f..

According to the sampling theorem, the signal may now be dsampled at a
sampling frequency lower thahs, reducing the number of points to analyse. In
principle, the decimating factarcould be chosen up th/2 f/; in practice, a safety
margin is kept and the decimating factor that we have usedappsoximately
F./6f;. Requirements on the minimum number of points in the sigddl @her
constraints on the decimating factor (see below).

After decimation, time-reversing, and the removal of extoants (see above), the
signal takes the form:

(10)

==

K
k=1

wherez; is the modal signal (to be determined),= e~ 7s@+2mi/k 754 gre jts so-
called poles f;, = fi — fa. ar = ), by, = a,e’#* are the complex amplitudes, and
K is the number of complex exponentials to be found. ESPRITires that the
numberN of signal points be more thar..

2.2.2 Noise whitening

In principle, the results of the ESPRIT analysis corresportie complex frequen-
cies of the signal only if the additive noigkis white. In practical cases, the noise
is white to first order in any narrow band, hence the interéstubband filtering
presented above. For wide frequency-bands, including senghitening step in
the signal-conditioning procedure may improve the preaigif the modal results.
A method proposed by Bade@U[18] consists in estimating thieep spectral den-
sity of the noise for each frequency-band and to deduce ftaheicorresponding
whitening filter. The Fourier spectrum is computed first anae filte™] is used in
order to smooth the spectrum. Then, the estimator of thecautmiance function
is found by calculating the inverse Fourier transform osthiltered spectrum. A
linear prediction on this estimator gives the coefficieritthe whitening filter that
can, finally, be applied to the original signal.

This noise-whitening treatment did not prove necessanhénapplications pre-
sented here.

4 |n arank filter, the data are sorted by ascending orders. Titpeibvalue is the™ lowest
data value, where is the rank order of the filter.



2.3 Determination of modal parameters

2.3.1 Order detection

As mentioned above, the best choice for the dimension of theéahsubspace to
be given to the ESPRIT algorithm i&. Obviously, a larger value may also be
chosen: some of the effective noise will be partly projecedo modal subspace,
producing very weak or highly attenuated components. Aaghsmaller thar
for the dimension of the modal subspace would introduceirothe estimation
of the modal components.

In order to estimate the number of complex exponentialg {ghéwice the number
of modes) in the signal, we have used the ESTER (ESTimatiaoftRrocedure

by Badeau[[1]2] which is schematically presented here. Otesitbat the first steps
of this procedure are common with those of the ESPRIT algorifl]].

The N signal datas; and the modal signal samples are written in the form of
Hankel matrices:

S1 S22 ... 8] rr T2 ... Ty
S=|: : X=|: 5 (11)

Sp Spt1 -+ Sy Ty Tyl - Ty

with i = N — n + 1, n being the sum of the dimensions of the signal and noise
subspaces.

It has been shown (seeg.[[[7] or [[8]) that:

e the estimation is optimal whem= N /3 orn = 2N /3,

e the estimation quality is rapidly degrading outside thigiwal,
e the estimation is only slightly degraded forc [V /3,2N/3].

In consequence, we have systematically chosenN/z

The correlation matrices are formed (computed in the cagef

1 1
R$:755H R“:ZXXH (12)
For additive white noise with varianee:
E[Rsy = Ryx +0° [ (13)

which shows that the eigenvectors Bf, are among those aRss in the limit of

10



perfect estimation.

The algorithm ESPRIT needs the eigenvectors offzy to determine the poles
{zx}. Itis now shown how to find botlk” and those eigenvectors.

The eigenvalues\,, (m = 1,...,n) and the corresponding eigenvectors
{wy, ..., w,} of Rssare computed. It can be shown]11] that

¢ the eigenvalues are real and positive,
e eigenvalues associated with the noise subspace are eqtrafrtearly equal for
a non-white noise).

Ordering the eigenvalues in decreasing order naturalgctsethe ones associated
with the modal signal: in principlek is the number of eigenvalues that verify
A\ > o2 (see Eq[T3). The ESTER criterion presented below is mongstahan
this condition for the determination & .

W (p) is defined as the matrix formed by columag: {w;,...,w,} with p <

n. The matrix¥;(p) is defined by removing the first line &% (p) andW,(p) is

defined by removing the last line & (p). The following matrix® and quantity
E(p) are formed:

O(p) = Wyi(p)' Wi(p) E(p) = Wi(p) — W (p)®(p) (14)
whereWT is the pseudo-inverse oF .

The ESTER criterion definek” as the highest maximising.J(p) = 1/||E(p)|]*.

In other words K is found as the highest number such tf4tx') approaches 0,
which corresponds to the so-called rotation invarianceé/of

The case of a synthesised signal with 3 sinusoids and addee (signal to noise
ratio SNR = 50 dB) is shown in Fig[}4 (see TabJ¢ 1 for the modal components
parameters). A threshold, is chosen (heret(0?), in correspondence wit§ N R
and K is considered as the highest valuepdbr which J(p) > J; (here:p = 6).
This criterion proves to be very robust.

Parameters of the test signal Parameters estimated by ESPRI
fr [HZ] 2078.10 2082.30 2087.10 2078.11 2082.31  2087.12
ay [s71] 28.00 31.00 27.00 27.96 30.72 27.02
ay, 1.00 0.80 0.40 1.00 0.77 0.40

m s m
pilrad o (2 157) -2 (x-105) —=(~-052) 156 -1.05 —0.54
Table 1 ]

Comparison between true and estimated parameters of asigratgnal.

11
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Figure 4. Application of the ESTER criterion to a signal mafi¢hree damped sinusoids
and additive noise (SNR= 50 dB, see Tabl¢]1 for the other parameters). The detection
threshold for ESTER is chosen to 100. The vakie= 6 (corresponding to 3 modes) is
clearly detected.

2.3.2 Modal frequencies, modal damping factors, and coxmuteplitudes

Once the number of modés/2 has been estimated, théfirst columns ofiV (n)

are extracted to formil = W(f{ ), the matrix of the eigenvectors dt,.. The
purpose of the ESPRIT procedure is to derive the so-calléespg from this in-
formation on the modal signal. The main steps are schenfigitieaalled here (for

a demonstration, segJ11]):

e The Vandermonde matriX™ and the diagonal matrik) are formed with the;:

1 1 ... 1
21 2 2g 21 (0)
Vi=1| 2 2 ... 22 D =
' 0) 2z
2t z?{_l
Their rank isk” and they verify:
Vir=V"D (15)

where the matricé’;" (repectivelyV|") are formed by eliminating the first row
(respectively the last row) df".
e The rank oflV is alsoK and therefore, a base-change marixan be defined
by:
Vr=w<cC (16)
Shifting this equation up and down yieldl$' = 1V, C'andW; = V" Cct

12



e Using Eq[T} yields:
W, =W,C DC™* = W/ w,=cDC! (17)

This equation, denoting a so-called rotation-invarianagerty ofiV, shows
that the poleg, are the eigenvalues Wf Wi.

The frequencies and damping factors of the response siggial a

arg(2x) Fs _Fs
Sy +fa  ap= 7 In [ 2| (18)

fr =

The final step consists in the determination of the ampldualed phases of the
modal components. To this end, the x K Vandermonde matri%’” is formed.

The complex amplitudds. are the best solution, in the least-mean-square sense, of
the equation:

bl S1

VN L= (19)

The amplitudes and phases of the response are:

|y
“ = THf) (20)
¢ = arg(by) — arg[H (fx)] (21)

Table[1 shows the estimated results for the synthetic sidesdtribed above. The
error is generally less than 1% (4% for the phase of the trordpgonent and am-
plitude of the second component).

3 Applications

Partial modal analyses are shown in three cases:

e a square aluminium plate (A) with localised damping: twindes with ~
200%,

e a rectangular aluminium plate (B) in the mid-frequency dom{a0% < u
50%),

e a rectangular aluminium plate (C) in the mid-frequency dionfé5% < u
70%).

IN

IN

13



3.1 Experiments

A pseudo-impulse force is applied by means of an impact har(fre.B. Piezotron-
ics 086D8(). The acceleration is measured with an accelerom&el & Kjeer -
ENDEVCO, Isotron 2250A-10In all cases, boundary conditions are kept as close
as possible to "free-free”. The point of excitation is vdr{see sectioh 4.1) whereas
the vibration measurements are made at a single point, wi¢hety of a corner of

the plate. Under the chosen boundary conditions, thisilmtat not on any of the
nodal lines.

The signal analysis described in the previous sectionspiegbindependently to
each pair of measurementfineas Ymeas - 1he frequency and the damping factor of
each mode is taken as the weighted mean of all the estimaligelsvad\Veights are
the estimations of the amplitude at each point: this gives lmportance to the less
precise estimations in the nodal regions.

The masses of the plates (A), (B), and (C) are respectivdl§ kg, 5.5 kg, and
22.5 kg. Despite its relatively low mass (0.4 grams), theerometer causes a
slightly negative shift of the modal frequencies. This phr@enon was evaluated
guantitatively on plate (A) by placing a second acceler@meith the same mass
just opposite to the first one. A frequency drift f0.7 Hz was observed for the
(2,1)-mode and of- 0.3 Hz for the (1,2)-mode, both at approximately 180 Hz (see
section[3]3). To first order, the mass loading effect of ormelacometer can be
corrected by adding the measured drift to the modal fregesnmoeasured in the
situation with one accelerometer only. For plate (B) (5.5 lghegative drift of less
than 0.1 Hz was observed for the modes of interest, aroun#i@0Bor the heaviest
plate (C) (22.5 kg) a negative drift of about 0.1 Hz was obsémround 1600 Hz,
close to the uncertainty of our method for these high freqigsn(see sectign 3.5).

3.2 Theoretical modal determination

Only approximate solutions are known for the frequencies thie shapes of the

conservative modes of a thin isotropic rectangular platd Wwee-free boundary

conditions. Warburton[19] combined a Rayleigh method wltlaracteristic beam

functions to obtain a simple approximate expression. approach, plate modes
are assumed to be the product of beam functions:

Winny (7, y) = X (7)Y (y) (22)

wherex (resp.y) corresponds to the shorter length (resp. longer) of thie @ad
X, (resp.Y,,) is them (resp.n)-th normal mode of a beam with the same boundary
conditions as the corresponding edges of the plate. Thedrety accuracy is ex-
cellent for plates with constrained edges but it is less servdne or more edges are
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left free. Kim & Dickinson [2]D] provide an improved approxate expression by
using the Rayleigh method in connection with the minimuneptal energy the-
orem: the deflectiomV,,, ,,(z,y) includes three terms (s¢e_Appendix A). For com-
parison with experiments, we have retained this methocedime errors on modal
frequencies are known to be less than [% [21] with tractablguiency expressions.
In our experiments, the uncertainties and approximatiomsach (see below) that
more precise methods (Rayleigh-Ritz method, superposiixact series solutions,
finite element analysis, see Hurleba[ig [21] for an exhagistdmparison) are not
necessary.

3.3 Separation of the twin modes of a square plate (A): legdency and high
or low modal overlap.

An aluminium square plateAJ4G, 300 x 300 x 1.9 mm?) is suspended by rubber
bands. A block of foam is glued in the centre in order to inseedamping. In
principle, modeg2, 1) and (1,2) have the same modal frequency (twin modes),
and their modal shapes are similar und@darotation (Fig.[b). In practice, modal
frequencies and dampings are slightly different due to nfiggéions in symmetry
and isotropy. Here, the modal frequencies of the two modeswai 78 Hz and

~ 181 Hz, corresponding to a local (apparent) modal density 8fmodes Hz'.

(a) g// (b)- +//
-1+ A - rereeeeeneceeesidlonennd
L %
,// ...... + // _
4 : 7
M ST A N
-/V : + s- : +
T R g i pep——
0 L/4 3L/4 L 0 L/2 L

Figure 5. Twin modes of a square plate £ 300 mm): (a) (2,1)-mode; (b) (1,2)-mode.
Dotted lines: nodal lines. Dashed lines denote where maddyses are performed.

The analysis is done along one side=€ 0) and along one diagonal as shown in
Fig.[. Plate vibrations are damped by means of a block of fglaed in the centre.
The modal damping factors are~ 20 s!, corresponding to a modal overlap of
~ 200%. The ESTER procedure reveals two modes in the 170-200 lqndrecy-
band, as shown in Fifj] 6(a). They are undistinguishable ypizal Fourier spec-
trum (Fig.[$(b)). The estimations of the modal parameteesgiven in Tablg]2.

With the sign of the modal phase attributed to the amplittlde,modal "signed
amplitudes” along one side are displayed in H. (7-a) togretvith the theoretical
modal amplitudes for the conservative case (dashed liregg Bhd in what follows,
the measured modal shapes are normalised to a maximumroe amplitudes of
theoretical modal shapes are adjusted to yield a best fih@rdast-mean-square
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(a " (2,1)-mode (1,2)-mode ‘ (b)
e 0=17.4s" 0=2245"" 1
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0 @ K =4 l
1=200%
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Magnitude [dB]

Threshold -85
o0k

~951-

PYNLY L L -1 L L
60 70 0 170 175 180 185
Frequency [Hz]

¥ Modéoorder /;o
Figure 6. Analysis of the first twin modes of square plate (A).ESTER criterion on the
response signal in point 9: the valéé = 4 (two modes) is detected. (b) Amplitude of the
Fourier spectrum at the same point. The length of the "u%sighal is~ 2 s (it is masked
by noise afterwards) and increasing amounts of zero-pgddere tried: beyond a total
length of 20 s for the analysis window (as retained here) sffectrum does not change
appreciablyo marks: modes estimated by ESPRIT.

(2,1)-mode (1,2)-mode

Plate with extra [ (Hz) ~ 177.8 181.0
damping (s 174 20.4

Plate without f (Hz) ~ 178.1 181.4
extra damping (s1) 26 39

Table 2
Plate (A), with and without artificial extra damping: estimas of the modal parameters
of the twin modeg2, 1) and(1, 2).

sense) to the experimental data. The modal phases are giveig.i (T-b). The
modes can be considered as clearly and adequately separatesicase of very
high local modal overlap. The differences between measamddheoretical ampli-
tude curves of the (2,1)-mode (particularly noticeableafor L /2) are due to the
mass of the accelerometer placed at y = 0. The light mass (0.4 grams) slightly
modifies the modal shapes. We observed that adding one sexitalerometer at
(x = L,y = 0) removes the asymmetry of the measured modal shape.

Without the block of foam, damping factors are around 3 sorresponding to an
overlap of~ 30%. The estimations of modal parameters are given in Tgble . Th
"signed-amplitudes” along one diagonal are represent&igirg.

3.4 Partial modal analysis of a rectangular plate (B): miédguency and moder-
ate modal overlap30% < u < 50%).

The plate AU4G, 590 x 637 x 5.2 mm®) shown in Fig[P is supported by four blocks
of foam around the centre in order to ensure high dampingndaty conditions
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Figure 7. Separation of the twin modes along one side of sguiate (A). (a) Normalised
"signed” amplitudes; (b) Phase marks:measured?2,1)-mode Solid line: theoreticalcon-
servative (2,1)-mode. marks:measured1,2)-mode Dashedine: theoreticalconservative
(1,2)-mode.

Amplitude

o Ut Us 3|__}1_0 25 . g)z s 7|_}10_ als eUI0 L
Position (projection on the x—axis)

Figure 8. Separation of the twin modes along one diagonalatépnormalised "signed”
amplitudess marks:measured2,1)-modeSolidline: theoreticalconservative (2,1)-mode.
o marks:measuredl,2)-mode Dashedine: theoreticalconservative (1,2)-mode.

can still be considered as "free-free”.

oy

Figure 9. Plate (B) with the line = 0 where modal analysis is performed.

The measurements are made3atregularly spaced points along the long side
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(r = 0). The sampling frequency is 50 kHz. The considered frequdand is
520-660 Hz; the modal overlap is abelit. In this mid-frequency region, a typ-
ical Fourier spectrum (Fig. JLO(b)) does not exhibit welbated modes. The re-
sult of the ESTER procedure is shown in Higl 10(a), revediing modes in this
frequency-band.

Py r T T @ - T T T T r r ®)
1600, 1 -80(3,3)-mode 1

" 0274 (4,2)-mode

0=7235”"

(0,5)-mode

(2,4)-mode
0=525""

Magnitude [dB]

1=32%

u=52%

11 L n L L J
60 70 %20 540 560 620 640 660

Frseaguencye[ﬁz]
Figure 10. Plate (B): modal analysis along the long side betw520 and 660 Hz. (a) ES-
TER criterion on one response signal (point 32): the value: 8 (four modes) is detected;
(b) Amplitude of the Fourier spectrum at the same point. Emgth of the "useful” signal
is~ 1.7 s (it is masked by noise afterwards) and increasing amouirzesro-padding were
tried: beyond a total length of 17 s for the analysis windoswrétained here), the spectrum
does not change appreciablymarks: modes estimated by ESPRIT.

The modal shapes are represented by the "signed amplitinldsy. [I]. Mass
loading creates no visible asymmetry in modal shapes of glgits mass is 1.40*
times that of the accelerometer) and the negative shift afahibpequencies is about
0.1 Hz. With help of the theoretical analysis (three-ternylRigh method), the
measured modes can be identified as the (3,3)-, the (2,4){4tR)-, and (0,5)-
modes, ranking 17 to 20 in the mode series. The estimatiotieeahodal param-
eters are given in Tab[é 3 together with the correspondipgcegimate theoretical
modal frequencies for Young’s modulus E=21.@° Pa, densityy=2790 kg n1?,
and Poisson’s ratio=0.33 as given by the manufacturer. A detailed discussion on
the determination of theoretical modal frequencies, tbependency on material
properties and plate geometry, and their comparison wigeemental values is
presented in the next section for plate (C).

(3,3)-mode (2,4)-mode (4,2)-mode (0,5)-mode

feay (Hz)  523.7 542.7 587.2 645.7
 (Hz) 526.0 545.8 603.5 640.7
a (sh 27.4 37.6 72.3 52.0

Table 3
Plate (B): estimations of the modal parameters between B2®@0 Hz. Top line: conser-
vative plate treated by the improved Rayleigh method. Botioe: experimental.
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Figure 11. Plate (B): modal analysis along one side (nosedli’signed” amplitudes).
e marks: measuredmodes.Solid lines: theoretical conservative modes. (a) (3,3)-mode;
(b) (2,4)-mode; (c) (4,2)-mode; (d) (0,5)-mode.

3.5 Partial modal analyses of a rectangular plate (C): mieeguency and high
modal overlap 45% < u < 70%).

In order to perform modal analysis on high-order mode<2(0) near the acoustical
coincidence frequency, a larger plate was consideked G, 1000 x 1619 x 5 mm?).
Modes are analysed onld x 10 mesh with a 1 cm grid-step. Modal frequencies
and damping factors are determined as the weighted meahs 200 correspond-
ing estimations.

Two experimental setups were developed in order to enseeeffee boundary con-
ditions for this 22.5 kg plate: suspension by six thick ruttiends glued along one
side of the plate and suspension by two nylon lines passmgtr small holes near
the top plate edge. Both are presented in order to illusthaesensitivity of the
method. The experimental values of the modal frequenciegstimated with an
accuracy of~ 0.1 Hz (see Fig[ 14 and Tab¢ 6) in two narrow frequency-bands
(around 1700 Hz and 2100 Hz). Theoretical values are detexdras follows.

In the frame of the Kirchhoff-Love plate theory ]22], the nabdngular frequencies
wm.n @re given by:
Wi = B i (23)
E h? D . .
whereB = ———— = — andh is the thickness of the plate. The wavenum-
12p(1—=v2)  ph
bersk,,, are determined by the plate dimensianandb and by the boundary
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conditions.

Since the physical parameters of the plate are not readdiadle with the desir-
able precision, we have estimated tB¢E, p, v, h) factor by comparing the 18to
25" measured modal frequencies to those given by finite elenmantation$’] (Ta-
ble[4). These particular modes are chosen because they buseparated and the
free-free boundary conditions are well-ensured. Mininggsihe average of the ab-
solute values of the relative frequency differences betwasgeriments and FEM
simulations yieldsBrgy = 61.0 m* s72. With this estimated val{i, the aver-
age relative difference in this frequency-bane-i$.47%. Since the finite-element
method introduces some spurious stiffness in the simukatstem, the numerical
value of Begy is certainly slightly overestimated.

Freas(H2) 125.9 139.3 141.1 1475 150.6 154.7 1605 171.0
feem (H2) 125.5 139.2 142.2 149.7 151.2 154.7 159.5 170.9
Mxmo 030 0.12 080 149 0.38 001 062 0.08
fmeas
Table 4

Plate (C): comparison between eight modal frequenciemattd by ESPRIT finead and
calculated by a finite-element methagfkén).

The modal frequencies and modal shapes of the high-ordegsindhe two frequency-
bands of interest (around 1700 and 2100 Hz) are calculatddtiae¢ approximate
three-term Rayleigh method, using the values estimatedesfioo the physical pa-
rameters. According to Referende][21], the systematia éorche first modal fre-
guencies calculated by this method is positive and less+thé&nh

The result of the ESTER procedure for the first frequencydb@d®85-1697 Hz,
pu =~ 45%) is shown in Fig[I2(a) and the corresponding partial modalysis

results are given in Fid. 13 and Taljle 5. Results for the thmedes detected in
this frequency-band are reported for both suspensiongeraants. Also shown in
Fig. I3 and Tablg¢]5 are the theoretical modal shapes and rfredmiencies for
modes (10,11), (9,13), and (12,4) which are the"@020F' modes.

Measured and calculated modes match closely. The postifdhs nodal lines are
correct for the three modes. The measured modal shapesrarstadientical for the

® Simulations are carried out with 8-node thin-shell eleraeats in [2lL]). A mesh of
70 x 100 elements is used, correspondingt®B5 points per wavelength at 200 Hz in
the x-direction (respectively= 30 point in they-direction).

6 The values provided by the manufacturer for the duraluminiproperties are
E=7.410" Pa, p=2790 kg nT3, and »=0.33. With these values, the value retained for
Brgm corresponds té = 4.96 mm.
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Figure 12. ESTER criterion in two frequency-bands (Plafg.(@) 1685-1697 Hz frequen-
cy-band, point 1: the valu&” = 6 (three modes) is detected. (b) 2065-2110 Hz frequen-
cy-band, point 11: the valug = 10 (five modes) is detected.

(10,11)-mode (9,13)-mode (12,4)-mode

fray (HZ) 1695.5 1697.0 1703.4

Suspension  rub. nyl. rub. nyl. rub. nyl.

f (Hz) 1689.9 1690.0 1693.1 1693.3 1695.7 1696.6

a(s?h) 4.2 4.6 4.3 4.7 3.0 3.9
Table 5

Estimations of modal parameters between 1685 and 1697 Havfosuspension condi-

tions. Top line: conservative plate treated by the improRegtleigh method. Bottom line:
experimental.

two experimental setups. These results, together withdti@ation of uncertainties
(see below) illustrate the precision and reproducibilityh@ method.

The values of the calculated modal frequencies (Tgble SHyatematically slightly
larger than the measured ones by 0.2-0.5%. Since this iteds@ase in the 2100 Hz
frequency-band (see below), there must be a systematicferraich we propose
the following explanations. (a) The value Bf-z,; used for the calculation of the
modal frequencies is overestimated. (b) The improved Ratylmethod oversti-
mates modal frequenc[&s (c) In Kirchhoff-Love plate theory, the rotary inertia
and the shear effects are ignored; for the plate considene tihe correction given

by the more precise Mindlin theory J23] in the(k) curve is around-0.5% at
1700 Hz.

Uncertainties reported in TabJg 6 for the two suspensioritioms are evaluated

" According to [IP]:By the Rayleigh principle, if a suitable wavefoli#i is assumed,
satisfying approximately the boundary conditions, thaultgsy frequency value is very
near, but higher than, the true value, because the assumpfian incorrect waveform is
equivalent to the introduction of constraints to the system
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(10,11)-mode (9,13)-mode (12,4)-mode
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Figure 13. Plate (C): partial modal analysis between 1688 4697 Hz, with

uw =~ 45%. (a), (b), (c) Theoretical modal shapes obtained by the dawgat Rayleigh

method. ('), (b)), (¢) Measured modal shapes with the erHiands suspension.
@), (b, (c”) Measured modal shapes with the nylon-lisespension.

according to Eq.[(24):

1 \2

ar |V
) I 7

with f the weighted mean of the estimated modal frequenciesNgnithe num-

ber of estimations1(0 in our case). This uncertainty estimate is pessimisticesinc
deviations are not weighted here. ..

(24)

During measurements with the first experimental setup, vieew a drift in the
estimation of the frequencies and possibly also in the ediom of the damping
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(10,11)-mode (9,13)-mode (12,4)-mode

Rubber-bands % 7.1-107° 9.0-107° 9.4-107°
suspension  Aow  g5.10-2  67.10°2  5.3-102

Arub

Nylon-lines 52 4.0-107  51-107°  22.107°

suspension  Aaw g5 (-2 48-1072  3.9-1072

Qnyl

Table 6
Uncertainties on frequencies and damping factors for theetmodes between 1685 and
1697 Hz under two suspension conditions.

factors (see Fig[_14(a) for the chronological represematif these estimations).
The second suspension setup (nylon lines in small hole€aappo be more stable
(Figs.[I#). The overall +0.4 Hz frequency-drift in the rubband case is larger
than the uncertainty in the estimation of the modal frequembe interpretation
for the sign of the drift on frequency, for the fact théat, < f.y, and for similar
observations on the damping factors goes as follows. Rutdosts add a mass to

16968 7
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Figure 14. Comparison of the two suspending setups for tBgt(<mode of plate (C).

e marks: rubber-bands suspensiermarks: nylon-lines suspension. (a) Modal frequencies
measured chronologically; (b) Damping factors measuredndiogically; (c) Scattering

of modal frequencies and damping factors.

the system. However, rubber bands slip slightly and the cadlgss decreases in
time. This is also consistent with the very slight negatirié th the damping factor
awpb. Theany > onyp Observation is interpreted by the fact that the vibratidithe
plate are more strongly transmitted to the suspension fiantkee nylon lines than
by rubber bands.

In the second frequency-band (2065-2110 Hz) where modbaisinavas performed,
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the modal overlap factor iss 70%. Compared with the 1685-1697 Hz frequency-
band, the important increase in damping factor (fremt s~! to ~ 15 s7!) and
thus in modal overlap is due to the sudden increase in acalisidiation when the
frequency approaches the coincidence frequefjcyor this isotropic platef; is
given (see[[34] for example) by:

cz [12p(1 —v?)

a

fe=o0 E

(25)

wherec, is the speed of sound in airs( 343 ms™t). Above this frequency, the
wavelength of flexural waves in the plate is larger than thealemgth of acoustical
waves in air and an infinite plate radiates sound; for a finlégep the increase in
radiation efficiency is gradual when the frequency appreag¢h (see Fig[6). In
our case, the coincidence frequency is about 2.4 kHz.

Despite the high modal overlap factor, the ESTER procedeegly detects the cor-
rect number of modes (F[g]12(b)). The modal analysis resuk given in Figl. 15
and Tabl€J7 together with the results of calculations for2hg? to 247" modes,

corresponding to the (3,21), (5,20), (13,6), (9,16), ar&jXQ) modal shapes.

(3,21)-mode (5,20)-mode (13,6)-mode (9,16)-mode (12,10)-mode

1 i

0.15 0.20 0.25 0.15 020 025 0.5 0.20 0.25  0.15 020 025  0.15 0.20 0.25
x(m) x (m) X (m) x (m) x (m)

Figure 15. Plate (C): partial modal analysis between 20@b24ri0 Hz, withy ~ 70%.
(@), (b), (c), (d), (e) Theoretical modal shapes obtainethbyimproved Rayleigh method.
@), (b)), (c), (d), (e') Measured modal shapes.

Matching is excellent for frequency values and correct fodal shapes. The higher
values of calculated modal frequencies (Tdble 7) can beggd as in the 1700 Hz
frequency-band. In the (12-10)-mode case, the analyseahregessentially nodal;

the signal to noise ratio s 30 dB and the method clearly meets its limits.

Experimental results for the damping factors are displag®@ function of fre-
quency in Fig[T6. Theoretical resultsa different configuratiorare available for
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(3,21)-mode (5,20)-mode (13,6)-mode (9,16)-mode (12nMYle

fray (HZ2) 2077.3 2086.6 2096.7 2100.3 2112.6

f (Hz2) 2069.1 2075.7 2081.5 2092.1 2097.5

«Q (s‘l) 10.3 10.6 15.6 15.8 18.8
Table 7

Estimations of modal parameters between 2065 and 2110 Hhdaubber band suspen-

sion. Top line: conservative plate treated by the improvegll&®gh method. Bottom line:
experimental.

the sake of an approximate comparison: in the case of simygpated baffled
plate and under the assumption of the diffuse wavefield, Mald[2%] gives an an-
alytical expression of the average damping due to radialiba other contribution
to damping of an aluminium plate is due to thermoelasticde486]. The damping
model established by Chaigeeal.[P§] givesaiherm < 0.14 s~ for this aluminium

plate. This value is very small compared with radiation dengpn this frequency
range of interest. It has therefore not been taken into atdmuthe solid-curve in
Fig. 6. The main physical difference between experimeantal theoretical con-
ditions lies in the acoustical short-circuit between thenfrand the back of the
plate, reducing radiation efficiency and decreasing dagfantors. This is com-

patible with the discrepancy between the measured poimtshencurve given by
Maidanik.

Damping factor [s ]

= i
o f

C|

L L L L L I L L
200 1600 1700 1800 1900 2000 2100 2200 2300 2400

Frequency [Hz]

Figure 16. Damping factors due to the radiation of an aluammplate. Boundary con-
ditions and radiation conditions are not the same for theegxental and for the the-
oretical determinations: marks: measured damping factors in the two frequency-bands
where modal analysis was performe&blid line: damping curve due to acoustical radia-
tion of a baffled simply-supported plate (aft¢r][25])ashedline: (asymptotic) damping
factor a of an infinite plate above the coincidence frequetigYa., = paca/(ph), where

pa = 1.2 kgm~3 is the density of air).
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4 Conclusion

The modal analysis method presented in this article resatases in which the
Fourier transform meets its limits. Partial modal analyskesgibrating plates with
high modal overlap (up to 70%) match theoretical modal mtézhs. This method
may contribute to filling the gap between the low-frequenay the high-frequency
domains where Fourier modal analysis and statistical nasthespectively apply.
The ESTER technique appears as a good tool for estimatinghtddal density,
an essential parameter for the study of vibrating strustimethe mid- or high-
frequency domains.

At frequencies larger than those presented here the regerlésnot as satisfactory;
this is mainly due to the signal-to-noise ratio limitatiohtbe signal processing
method. Moreover, thepatial resolutionof the method becomes also a limiting
factor: the uncertainty in the position of the impact-eatidn (= 0.5 cm) becomes
significant compared with the grid-step (1 cm). However,rgdagrid-step would
not be acceptable at the considered wavelength (about 15 2 kHz for plate

(C).

The SNR limitation can be partly overcome by the use of a ocootiis excita-
tion with a signal that allows the impulse response recaostn by deconvolution
techniquesgwept-sine techniquas in [27], for example).

Appendix A Thethree-term Rayleigh method

According to classical plate theory (seq.[P§]), the maximum strain energy, or
potential energy of bending, of an isotropic rectangular thin plate is given by:

v _1D/a/b oW 2+ o*W 2+2 62W(92W+2(1 ) PN 4 g
9 Jo Jo Ox? Oy? - 0y? g 0xy v

(A.1)
E 3
wherelV is the modal shape and is m The maximum kinetic enerdy/
— UV
of the plate is:
p h w2 a b )
Thoax = / W2dy da (A.2)
2 Jo Jo
The Rayleigh principle yields the modal angular frequency
2V
w mex (A.3)

2 _
ph/oa/ob W2dy dz
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Kim & Dickinson [20Q] extend the Rayleigh methdd [19] by cauesiing three terms
in W:

W) (#,9) = Xn(2)Yn(y) — ¢ Xo (2)Ya(y) — d Xon(2) Yo (y) (A.4)

whereX,,(z) (respectivelyy,,(y)) is them (resp.n)-th order normal modal shape
of a beam with the same boundary conditions as the corresmpedges of the
plate; X, (x), Y, (y) are the next higher beam modal shapes, amrohd d are
constant quantities given below. In our case, boundary itond are free-free:
m' = m+ 2 andn’ = n + 2. The modal deflectiork,,, of a free-free beam are
givenin Eq. (11) of referencg J1L9].

By substituting Eq.[(A]4) into Eq[(A.3) anfl (A.1), the modalgular frequency is:

. Dt Crm + CQC’mmH + dQCerg,n —2cE,, ,, — 2dE,, , + 2cdF
™ hoa2b? 1+ 2+ d?
(A.5)
with
b2 . a2

Eyn=vH, (K, + L,) +2(1 —v)J, M,
The values of,,, H,,,, J,,, K., L., M, are given in referencep ]19] (Table 1) and

[2Q] (Table 1). Finallyc andd can be determined by using the minimum potential
energy theorem:

Cm+2,nEm,n - En,mF
c =
8vm‘m avmax Cm,n+2Cm+2,n — [?
80 8d Cm,n+2En,m - Em,nF

d —
Cm,n+20m+2,n — F?
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