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Abstract— This paper presents the calculation of the magnetic field created by axially magne-
tized cylindrical permanent magnets and thin wall solenoids in air. It emphasizes the equivalence
of the source models: charged planes and current sheet. It shows that although the starting
formulations, magnetic scalar potential, Coulomb’s law, vector potential, Biot-Savart’s law often
depend in the literature on the source nature, they shouldn’t. Indeed, it presents the magnetic
field calculation for each point of view and explains which lead to analytical solutions. Then it
presents the calculation of forces between permanent magnets and shows that it is equivalent to
the calculation of the mutual inductance between two coils.

1. INTRODUCTION

It is well-known that coils and permanent magnets are equivalent sources of magnetic field even
though, depending on the application, the latter or the former may be more interesting or advan-
tageous. However, the physical nature of the magnetic field source influences the scientist who
intends to calculate the created magnetic field. Indeed, scientists dealing with permanent magnets
generally either calculate the magnetic scalar potential and derive it to obtain the magnetic field
or use Coulomb’s law to calculate the magnetic field directly, whereas scientists dealing with coils
rather calculate the vector potential and use Biot-Savart’s law.

This paper intends to emphasize the equivalence of the source models but also to highlight the
fact that some formulations will lead more easily to analytical formulations than others. So, a very
simple example is considered: an axially magnetized cylindrical permanent magnet in air. Indeed,
it can be modelled either by a thin wall solenoid, a current sheet or two charged planes. Inversely,
a thin wall solenoid could be considered, which would then be modeled by a current sheet or a
cylindrical magnet axially magnetized or by two charged planes. The point is that the charge
model corresponds to a coulombian approach and the coil model to an amperian approach. This
paper gives the initial expressions for the magnetic field calculation for each possible point of view.
Then it presents the calculation of forces between permanent magnets and thus show that it is fully
equivalent to the calculation of the mutual inductance between two coils.

2. BASIC EQUIVALENCES

A cylindrical permanent magnet with an uniform axial polarization, J , creates the same magnetic
field as the thin wall solenoid of same diameter and height as the magnet, when currents flow in it
with a linear density (Fig. 1). This solenoid creates also the same field as the cylindrical current
sheet,
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J as follows:
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Figure 1: Equivalent source models for a cylinder of radius R and height h. Left: current sheet, K. Center:
permanent magnet with axial polarization, J. Right: charged planes, charge surface density σ∗.
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Furthermore, it also creates the same magnetic field as the two charged planes, corresponding
to the top and bottom caps of the cylinder and separated by a distance equal to the cylinder
height. These planes are charged with opposite charge surface densities +σ∗ and −σ∗ related to
the polarization and defined by:

σ∗ =
−→
J .−→n (2)

where −→n is the vector normal to the face.
For neodymium iron boron magnets, J = 1.4T, σ∗ = 1.4T, K = 1.11 106 A/m. Moreover, the

magnetic sources considered in this paper are in ironless structures. This allows to obtain analytical
formulations for the magnetic field.

3. MAGNETIC FIELD CALCULATIONS

3.1. Magnetic Scalar Potential
As said in the introduction, it is striking how the method used to calculate the magnetic field
depends on the source nature. When it comes to magnets, the prevalent method in literature is the
calculation of the scalar potential and its subsequent derivation (gradient). Indeed, one can write
the magnetic scalar potential function as

ϕ (−→r ) =
J

4πµ0

∫∫

S1

1
|−→r −−→r ′|ds1 − J

4πµ0

∫∫

S2

1
|−→r −−→r ′|ds2 (3)

where the radius −→r defines the observation point M position, −→r ′ the position of the elementary
source on the charged surface, S1 the positive charged surface, S2 the negative one. The scalar
potential is expressed in amperes. This calculation uses the representation of the magnetic source
by charge surface densities. Of course, it supposes a linear behavior so as to calculate the total
scalar potential by the application of the superposition principle.

The magnetic field is then calculated by :

−→
H = −−−→gradϕ (4)

However, the difficulty in this method lies in the fact that one has to integrate a function first
and then to derive the integration result. Various methods, using Green’s functions or toroidal
functions have been proposed to solve this problem but few of them lead to a complete analytical
formulation of the magnetic field. Indeed, a numerical calculation is often required as last step in
most of them.

3.2. Coulomb’s Law
When the charge surface density model is chosen another way to calculate the magnetic field is to
use Coulomb’s law directly as in Eq. (5)

−→
H (−→r ) =

J

4πµ0

∫∫

S1

1

|−→r −−→r ′|2
ds1 − J

4πµ0

∫∫

S2

1

|−→r −−→r ′|2
ds2 (5)

On account of the cylindrical symmetry the magnetic field is a function on r and z only and its
azimuthal component, Hθ(r, z), is equal to zero. Thus, the magnetic field can be expressed as
follows:

~H(r, z) =
J

4πµ0

∫ 2π

0

∫ R

0

(r − r1 cos(θ)) ~ur − r1 sin(θ)~uθ + (z − z1)~uz(
r2 + r2

1 − 2rr1 cos(θ) + (z − z1)2
) 3

2

r1dr1dθ

− J

4πµ0

∫ 2π

0

∫ R

0

(r − r2 cos(θ))~ur − r2 sin(θ)~uθ + (z − z2)~uz(
r2 + r2

2 − 2rr2 cos(θ) + (z − z2)2
) 3

2

r2dr2dθ (6)

where the indexes 1 (resp. 2) are related to the positive (resp. negative) charged face. Once again,
the linearity is supposed, but it is consistent with the behavior of modern permanent magnets. The
solution of these integrals can be fully analytically formulated with elliptic integrals of the first,
second and third kind. Morover, the three components of the magnetic field are obtained and the
result is valid in all the space, inside as well as outside the magnet [1–5].
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One should remark here that these methods, though mainly developed for permanent magnet
sources, can also apply to coils. Indeed, the modelling of a magnetic source results from a choice
and not from the nature of the source itself. Furthermore, the attention is drawn on the fact
that with the charged plane model the magnetic field,

−→
H , is calculated first. Indeed, the values

obtained are valid in all the space. Then, the magnetic flux density,
−→
B , is deducted. One shouldn’t

forget either that the magnetic field presents a discontinuity on the charged planes. This sometimes
generates punctual numerical difficulties for the calculation of numerical values with the analytical
formulations.

3.3. Magnetic Vector Potential

Generally, scientists dealing with coils use models naturally related to currents and calculate ei-
ther the vector potential or use Biot-Savart’s law. This section discusses methods related to the
former [6–8]. The vector potential,

−→
A , is defined as

−→
A (−→r ) =

µ0

4π

∫∫

S

−→
K

|−→r −−→r ′|ds (7)

The magnetic flux density is then deducted by derivation (curl):

−→
B =

−→
rot
−→
A (8)

Here again, the difficulty may lie in the fact that integrations have to be calculated to obtain
formulations of the potential vector which have then to be derived. The results can be written
analytically with elliptic integrals of the first, second and third kind.

3.4. Biot-Savart’s Law

In fact, boths previous steps, expression of the vector potential and its derivation to obtain the
magnetic flus density can be summarized by Biot-Savart’s law. Indeed, the latter gives a way to
calculate the magnetic flux density directly:

−→
B (−→r ) =

µ0

4π

∫∫

S

−→
K × (−→r −−→r ′)
|−→r −−→r ′|3

ds (9)

At this point, some remarks have to be done. First, although these methods were traditionnaly
proposed by scientists who wanted to calculate the magnetic flux density created by coils and
windings in air, they present nevertheless a great interest for the calculation of the magnetic field
created by permanent magnets. Indeed, as the integrals to be calculated depend on the model they
don’t have the same boundaries and one model may lead to an analytical solution where the other
fails. This was experienced by the authors. Moreover, both methods calculate the magnetic flux
density and the magnetic field, when needed, is deducted from the former. As the magnetic flux
density is continuous in the space, this may be a reason why solutions are found with this modelling
which the coulombian approach don’t give. But it has to be noted, that the reverse situation is to
be found too! The point is then, that the choice of the model is free and shouldn’t depend on the
source nature. The model which has to be chosen is the one that gives fully analytical formulations
of the magnetic field for the geometry considered. Indeed, the final formulation is the same.

4. FORCE CALCULATIONS

Magnetic sources, coils or magnet, have two great kinds of applications. Of course, they are
primarily used to create magnetic fields (as in MRI devices, wigglers, sensors . . . ) but two sources
are also widely used to interact and thus create forces and torques (as in electrical machines,
magnetic couplings . . . ). This section deals with the force calculation. Then, three interactions can
physically exist: between two magnets, between two coils and between a coil and a magnet. But
as the sources are modelled for the calculation the methods that have to be considered are rather
related to the models. Therefore, Coulomb’s law can be used for the charge model and Lorentz’s
force for the current model. Moreover, is the last case, the force calculation is also closely related
to the calculation of the mutual inductance of the coils.
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4.1. Force and Mutual Inductance

The calculation of the magnetic attraction between two current-carrying coils is closely related
to the calculation of their mutual inductance. Since their mutual energy is equal to the product
of their mutual inductance and the currents in the coils, the component of the magnetic force of
attraction or repulsion in any direction is equal to the product of the currents multiplied by the
differential coefficient of the mutual inductance taken with the respect to that coordinate. Thus,
the magnetic force may be calculated by simple differentiation in cases where a general formula for
the mutual inductance is available,

F = IaIb
M

g
(10)

where Ia and Ib are the currents in the two coils, M their mutual inductance and g the generalized
coordinate [9–13].

4.2. Magnetic Vector Potential and Lorentz’s Force

This section considers the case when the sources are modelled by current sheets and the magnetic
flux density is expressed by the vector potential. Then, the interaction between the two coils can
be described by Lorentz’s force. Indeed, the magnetic flux density,

−→
Ba, created by one of the coil

interacts with the current sheet of the second one,
−→
Kb:

−→
F =

∫∫

S

(−→
Kb ×−→Ba

)
ds (11)

For coaxial sources, only the axial force occurs because of the symmetry of the problem. As a result,
the axial force exerted between two axially polarized cylinder permanent magnet which are coaxial
can be expressed analytically with elliptic integral of the first, second and third kind [14, 15].

4.3. Coulomb’s Law

In the case of sources modelled by two charged planes, the force between the sources is described
by Coulomb’s law. This force is the sum of the four interactions between the four charged planes:

−→
F (−→r ) =

J2

4πµ0

∫∫

S1a

∫∫

S1b

ds1ads1b

|−→r1a
′ −−→r1b

′|2
− J2

4πµ0

∫∫

S1a

∫∫

S2b

ds1ads2b

|−→r1a
′ −−→r2b

′|2

− J2

4πµ0

∫∫

S2a

∫∫

S1b

ds2ads1b

|−→r2a
′ −−→r1b

′|2
+

J2

4πµ0

∫∫

S2a

∫∫

S2b

ds2ads2b

|−→r2a
′ −−→r2b

′|2
(12)

where the indexes a are related to the first source, the indexes b to the second one, the radii −→r1a
′

and −→r1b
′ are the position of the elementary source on the positive charged surfaces, the radii −→r2a

′
and −→r2b

′ the position of the elementary source on the negative charged surfaces. Furthermore, the
sources are supposed to be coaxial and the considered force is the axial one. In this expression,
three of the four integrations in each term can be solved analytically. So, only one remains that
has to be numerically calculated and the calculation is globaly very fast.

5. STIFFNESS CALCULATIONS

Depending on the application, the knowledge of the force may not be sufficient. For example, the
dimensioning of magnetic couplings require the value of the stiffness. Then, a general remark is
that as long as the considered model leads to the calculation of a force, the notion of stiffness makes
sense. But when the model leads to the calculation of a mutual inductance in place of the force,
the notion of stiffness can’t be derived. At this stage, this may be a guideline to help choosing the
model.

For coaxial sources, the axial stiffness, Kz is defined by:

Kz = − ∂

∂z
Fz (13)

where Fz is the axial force.
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6. GENERALIZATION

This paper presents methods for calculations in a very simple case: a cylindrical source. It must be
emphazised here that it thus gives the basis for more complicated geometries. Indeed, numerous
geometries can be considered as the superposition of this basic geometry, but with diferent dimen-
sions or orientations. For example, an axially polarized ring permanent magnet can be seen as
the superposition of two cylinder permanent magnets of same heights, opposite polarizations and
different radii (the radii difference giving the ring radial thickness).

7. CONCLUSION

In conclusion, this paper emphasizes the equivalence of the source models for the calculation of the
magnetic field created by axially magnetized cylindrical permanent magnets and thin wall solenoids
in air. It shows that the starting formulations shoud’nt depend on the source nature as some lead
more easily to analytical solutions. Eventually, it shows that the calculation of forces between
permanent magnets is equivalent to the calculation of the mutual inductance between two coils.

REFERENCES

1. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, “Analytical calculation of
the magnetic field created by permanent-magnet rings,” IEEE Trans. Magn., Vol. 44, No. 8,
1982–1989, 2008.

2. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, “Discussion about the ana-
lytical calculation of the magnetic field created by permanent magnets,” Progress In Electro-
magnetics Research B, Vol. 11, 281–297, 2009.

3. Durand, E., Magnetostatique, Masson Editeur, Paris, France, 1968.
4. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, “The three exact components

of the magnetic field created by a radially magnetized tile permanent magnet,” Progress In
Electromagnetics Research, PIER 88, 307–319, 2008.

5. Babic, S. and C. Akyel, “Improvement in the analytical calculation of the magnetic field
produced by permanent magnet rings,” Progress In Electromagnetics Research C, Vol. 5, 71–
82, 2008.

6. Urankar, L. K., “Vector potentiel and magnetic field of current carrying finite arc segment
in analytical form, part 2: Thin sheet approximation,” IEEE Trans. Magn., Vol. 18, No. 3,
911–917, 1982.

7. Furlani, E. P. and M. Knewston, “A three-dimensional field solution for permanent-magnet
axial-field motors,” IEEE Trans. Magn., Vol. 33, No. 3, 2322–2325, 1997.

8. Azzerboni, B., E. Cardelli, M. Raugi, A. Tellini, and G. Tina, “Magnetic field evaluation for
thick annular conductors,” IEEE Trans. Magn., Vol. 29, No. 3, 2090–2094, 1993.

9. Babic, S. and C. Akyel, “Magnetic force calculation between thin coaxial circular coils in air,”
IEEE Trans. Magn., Vol. 44, No. 4, 445–452, 2008.

10. Babic, S. and C. Akyel, “Improvement in calculation of the self and mutual inductance of thin
wall solenoids and disk coils,” IEEE Trans. Magn., Vol. 36, No. 4, 1970–1975, 2000.

11. Babic, S., C. Akyel, and S. Salon, “New procedures for calculating the mutual inductance of
the system: Filamentary circular coil-massive circular solenoid,” IEEE Trans. Magn., Vol. 39,
No. 3, 1131–1134, 2003.

12. Babic, S., S. Salon, and C. Akyel, “The mutual inductance of two thin coaxial disk coils in
air,” IEEE Trans. Magn., Vol. 40, No. 2, 822–825, 2004.

13. Ravaud, R. and G. Lemarquand, “Analytical expression of the magnetic field created by tile
permanent magnets tangentially magnetized and radial currents in massive disks,” Progress In
Electromagnetics Research B, Vol. 13, 309–328, 2009.

14. Lang, M., “Fast calculation method for the forces and stiffnesses of permanent-magnet bear-
ings,” 8th International Symposium on Magnetic Bearing, 533–537, 2002.

15. Charpentier, J. F., V. Lemarquand, and G. Lemarquand, “A study of permanent-magnet cou-
plings with progressive magnetization using analytical exact formulation,” IEEE Trans. Magn.,
Vol. 35, No. 5, 4206–4217, 1999.

ha
l-0

04
13

19
7,

 v
er

si
on

 1
 - 

3 
Se

p 
20

09


