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Analytical Expressions of the Magnetic Field Created by Tile
Permanent Magnets of Various Magnetization Directions

R. Ravaud and G. Lemarquand
LAUM, UMR CNRS 6613, Universite du Maine, Ave Olivier Messiaen, Le Mans 72085, France

Abstract— This paper presents a thorough study of the magnetic field created by tile perma-
nent magnets uniformly magnetized in air. To do so, we use the coulombian model for determining
the analytical expressions of the three magnetic field components created by the tile magnets.
Moreover, various magnetization directions are considered. Indeed, the direction of the mag-
netization can be radial, tangential or intermediate between radial and tangential. Thus, this
analytical study encompasses most of the magnetization possibilities generally encountered in
electrical engineering applications.

1. INTRODUCTION

The modeling of the magnetic field produced by tile permanent magnets was studied by many
authors [1–3]. Several analytical methods can be used for calculating the three components of
the magnetic field created by permanent magnets [4–9]. According to the coulombian model, the
magnets are represented by fictitious magnetic charge densities [10, 11]. This model implies the
calculation of surface and volume integrals that represent the surface charge densities and the
volume charge densities. We propose in this paper to use the coulombian model for studying the
magnetic field created by tile permanent magnets of various magnetization directions. For each
configuration studied, all the magnetic charges are taken into account. Consequently, our analytical
calculations have been performed without using any simplifying assumption. It has to be noted
that such analytical calculations are possible because the tile permanent magnets considered are in
air [12, 13] and the structures using these tile magnets are ironless [14].

Then, all the expressions given are expressed in a fully analytical part and a semi-analytical
part. For each component, the semi-analytical part cannot be integrated analytically because all
the polarizations considered are uniform. Consequently, the expressions cannot be expressed in
terms of elliptic integrals of the first, second or third kind.

As a result, the given expressions allow the calculation of the three magnetic field components
at any point in the space, may it be outside the magnet as well as inside it. Furthermore, the com-
putational cost is low and so, parametric optimizations can be carried out. Indeed, tile permanent
magnets can be assembled in various ways depending on the intended application. For example,
radially magnetized tiles can be assembled to form a radially magnetized ring magnet and axially
magnetized ring magnets can also be achieved in a similar way with axially magnetized tiles.

Finally, tile permanent magnets of different magnetizations can be associated for the design of
Halbach structures and ring permanent magnets can be stacked for the design of magnetic bearings.
By using such analytical expressions, the magnetic field created by such assemblies can always be
determined accurately and structures using such tile permanent magnets can also be optimized
with regard to criteria applying to the magnetic field values and its spatial variations.

2. NOTATION AND GEOMETRY

The geometry considered and the parameters are shown in Fig. 1. We consider one tile permanent
magnet whose polarization is given by the angles θ and α. Its angular width is θ2 − θ1, its radial
width is r2−r1 and its height is z2−z1. In the coulombian approach, we must determine the fictitious
magnetic charges that are located on the faces of the tile permanent magnet. In our configuration,
the polarization is always uniform. Consequently, there are only surface charge densities that are
given by the scalar product between the polarization vector ~J and the four normal units. We use
two coordinate systems for calculating the magnetic field produced by the tile permanent magnet.
The local coordinate system is (O′,~i,~j) and the global coordinate system is (O, ~ux, ~uy). In the
cartesian coordinate system (O′,~i,~j), the vector ~J is expressed as follows:

~J = J cos(α)~i + J sin(α)~j (1)
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Figure 1: Tile whose polarization is directed in an arbitrary direction.

The relations between the cartesian coordinate systems (O
′
,~i,~j) and (O, ~ux, ~uy) are the following:
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By using (1) and (2), we obtain:

~J = J cos(α)
(
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We obtain
~J = J cos

(
α +

θ1 + θ2

2

)
~ux + J sin

(
α +

θ1 + θ2

2

)
~uy (4)

The four normal units are defined as follows:

~n1 = − cos(θ)~ux − sin(θ)~uy

~n2 = − sin(θ2)~ux + cos(θ2)~uy

~n3 = +cos(θ)~ux + sin(θ)~uy

~n4 = +sin(θ1)~ux − cos(θ1)~uy (5)

By using the relation ~J ·~ni for i = 1 . . . 4, we obtain the four fictitous magnetic pole surface densites
σ∗1, σ∗2, σ∗3 and σ∗4

σ∗1 = −J cos
(
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2

)

σ∗2 = −J sin
(
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2
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)
(6)

Therefore, we have determined the four magnetic charge surface densities that are located on the
four faces of the tile permanent magnet. The magnetic field can be determined from the scalar
potential φ(r, θ, z) produced by the four faces of the tile permanent magnet.

dφ(r, θ, z) =
4∑

z=1

Gz

(
~r, ~r′

)
σ∗zdSz (7)



Progress In Electromagnetics Research Symposium Proceedings, Moscow, Russia, August 18–21, 2009 513

where Gz(~r, ~r′) is the three-dimensional Green’s function applied to the four surfaces and dSz is
the elementary surface of each face of the tile permanent magnet. The associated magnetic field is
determined as follows:

~H(r, θ, z) = −~∇φ(r, θ, z) = Hr(r, θ, z)~ur + Hθ(r, θ, z)~uθ + Hz(r, θ, z)~uz (8)

Thus, the three magnetic field component Hr(r, θ, z), Hθ(r, θ, z) and Hz(r, θ, z) are calculated by
projecting −~∇φ(r, θ, z) on the four directions ~ur, ~uθ and ~uz.

2.1. Expression of the Radial Field Produced by a Tile Permanent Magnet of Various Mag-
netization Direction

The radial component Hr(r, θ, z) of the magnetic field produced by a tile permanent magnet of
various magnetization direction can be expressed as follows:

Hr(r, θ, z) =
J

4πµ0
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where
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with
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√
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2.2. Expression of the Azimuthal Field Produced by a Tile Permanent Magnet of Various
Magnetization Direction

The azimuthal component Hθ(r, θ, z) of the magnetic field produced by a tile permanent magnet
of various magnetization direction can be expressed as follows:
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2.3. Expression of the Axial Field Produced by a Tile Permanent Magnet of Various Magne-
tization Direction

The axial component Hz(r, θ, z) of the magnetic field produced by a tile permanent magnet of
various magnetization direction can be expressed as follows:
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3. APPLICATION : STRUCTURE COMPOSED OF TILE PERMANENT MAGNETS
WITH ROTATING POLARIZATIONS

We illustrate now the interest of using an exact analytical expression of the magnetic field produced
by tile permanent magnets of various magnetization directions in the case of the structure shown
in Fig. 2. The structure is composed of 16 tile permanent magnets with rotating polarizations.
As each tile is uniformly magnetized, some specific effects appear on account of the curvature of
the tile and the uniform polarization. In Fig. 3, the radial field is represented versus the angle θ.
Consequently, the radial field produced by such a configuration is not smooth but presents some
little discontinuities, as shown in Fig. 3.

Figure 2: Structure using 16 tile permanent magnets with rotating polarizations.

-1.5 -1 -0.5 0 0.5 1 1.5 2

-200000

-100000

0

100000

200000

H
r 

[A
/m

]

angle [rad]

Figure 3: Exact radial field produced by a structure using tile permanent magnets with rotating polarizations,
r2 = 0.028m, r1 = 0.025m, r = 0.024m, z2 − z1 = 0.003m, z = 0.0015 m, J = 1 T.
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4. CONCLUSION

We have presented general analytical expressions of the magnetic field produced by tile permanent
magnets of various magnetization directions. The expression are always given in an analytical
part and a semi-analytical part. Such expression cannot be expressed in terms of elliptic integrals
because we consider uniform polairzations, as it is generally the case in practice. Such expressions
have a low computational cost and can be used for the study of Halbach structures.
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