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Abstract

We analyze the asymptotic behavior of a partial differential equation (PDE) model
for hematopoiesis. This PDE model is derived from the original agent-based model
formulated by Roeder et al. in [35], and it describes the progression of blood cell
development from the stem cell to the terminally differentiated state.

To conduct our analysis, we start with the PDE model of [20], which coincides
very well with the simulation results obtained by Roeder et al. We simplify the PDE
model to make it amenable to analysis and justify our approximations using numerical
simulations. An analysis of the simplified PDE model proves to exhibit very similar
properties to those of the original agent-based model, even if for slightly different
parameters. Hence, the simplified model is of value in understanding the dynamics of
hematopoiesis and of chronic myelogenous leukemia, and it presents the advantage of
having fewer parameters, which makes comparison with both experimental data and
alternative models much easier.

Key-words Age-structured equations, hematopoiesis, chronic myelogenous leukemia,
model simplification.

1INRIA Paris-Rocquencourt, BANG, BP105, F78153 LeChesnay Cedex. Email: marie.doumic-
jauffret@inria.fr
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1 Introduction

Chronic myelogenous leukemia (CML) is a cancer of the blood and bone marrow that results
in the uncontrolled growth of myeloid blood cells. More than 90% of all CML cases are
associated with a gene abnormality, known as the Philadelphia (Ph) chromosome [36]. In
addition, CML is highly responsive to treatment by the drug imatinib that specifically targets
the gene abnormality [17].

Recently, CML has been the focus of several mathematical models, which we summarize
below. These works were motivated by the desire to explore the mechanisms that control
the disease with the hope that this will lead to new therapeutical strategies. In 1991, Fokas
et al. formulated the first mathematical model of CML [19]. In 2002, Neiman presented
a model that accounts for the immune response to CML [30]. This work attempted to
explain the transition of leukemia from the stable chronic phase to the accelerated and acute
phases. A more recent work of Moore and Li in 2004 aimed to identify the parameters that
control cancer remission [29]. Their main conclusion was that lower growth rates lead to a
greater chance of cancer elimination. In 2005, Komarova et al. used methods of stochastic
networks to study drug resistance with a particular view toward imatinib [24]. In the same
year, DeConde et al. proposed a model for the interaction between the immune system and
cancer cells after a stem cell (or a bone-marrow) transplant [14]. The main result of that
work was that a slightly elevated autologous (pretransplant) immune response greatly favors
remission.

A new paradigm of cancer development emerged from the idea of cancer stem cells [5].
This hypothesis states that a variety of cancers originate from a self-replenishing, cancer
population, now known as cancer stem cells. Using this idea, Roeder et al. developed a
mathematical model of CML stem cells [35]. In their model, leukemia stem cells continually
circulate between proliferating and quiescent states. This formulation contrasts with the
alternative paradigm of Michor et al. in which leukemia cells differentiate progressively from
stem cells to differentiated cells without circulating back to previous and more dormant
states [28, 27]. Both the Roeder and Michor models are directed to studying the dynamics of
imatinib treatment. However, each model also presents a general paradigm for hematopoiesis
that describes blood cell development with or without CML. In this paper, we focus on the
model of Roeder et al..

The hypothesis of the Roeder model is based on experimental studies that demonstrated
that within a two week period, nearly all hematopoietic stem cells enter cell cycle [6, 11].
A summary of the experimental results and interpretations is also presented in [33]. Based
on these findings, Roeder et al. formulated an agent-based model (ABM) to capture prob-
abilistic effects and intrinsic heterogeneity of the stem cell population [35]. However, since
the ABM is computationally demanding, Roeder et al. developed an analogous PDE model
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that is based on their original ABM model [34]. In a parallel and independent work, Kim et
al. also developed an analogous PDE model [23]. The main difference between the two PDE
models, is that the version of Roeder et al. simplifies the original formulation by eliminating
the explicit representation of the cell cycle, whereas the version of Kim et al. includes the
full complexity of the original ABM.

In this paper, we take the PDE model in [23] and simplify it as much as possible without
altering the fundamental assumptions of Roeder et al. [35]. Then we conduct an analysis
of the asymptotic behavior of the simplified model for hematopoiesis. The assumptions of
Roeder et al. include the fact that stem cells exist in two growth environments: proliferating
and quiescent. In addition, proliferating stem cells gradually progress toward further levels
of differentiation until they differentiate completely. However, proliferating stem cells can
reenter the quiescent state, in which they cease dividing and regress toward more primitive
levels of differentiation, even up to the fully immature state. One can interpret that while
quiescent stem cells cease dividing, they begin performing other regenerative functions such
as returning to the stem cell niche as suggested in [35].

The paper is organized as follows. In Section 2, we present the PDE model from [23],
which proved to coincide very well with the simulation results of Roeder et al. in [35]. In
Section 3, we present four approximations of the PDE model, one of which is very similar to
that presented in [34]. In Section 4, we compare numerical solutions of the four approxima-
tions with simulations of the original ABM. In Section 5, we analyze the asymptotic behavior
of the simplest models given by Approximations 3 and 4.

2 PDE version of Roeder’s model

In this section, we present a PDE version of the original ABM for hematopoiesis developed
by Roeder et al. in [35]. This PDE model is taken from [23]. A state diagram for the model
is shown in Figure 2.1.

In this model, hematopoietic stem cells (HSCs) operate in two growth compartments:
quiescent (Alpha) and proliferating (Omega). Stem cells transfer from Alpha to Omega or
from Omega to Alpha at rates ω and α, respectively, where

α(x, A) = e−γxfα(A),

ω(x, Ω) = amine
γxfω(Ω).

(2.1)

The coordinate x is a state variable that ranges from 0 to 1, and the parameter amin = 0.002
as estimated in [35]. The variables A and Ω denote the population of cells in the Alpha and
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Omega compartments, respectively, and fα and fω are sigmoidal functions, whose definition
can be found in Appendix A.

The equations for the PDE model in [23] are as follows:

∂A

∂t
− ρr

∂A

∂x
= −ω(x, Ω)A(x, t) + α(x, A)

(
∫ c2

c1

Ω(x, c, t)dc + 1G1(x)Ω∗(x, t)

)

(2.2)

dA∗

dt
= ρrA(0, t) − ω(0, Ω)A∗(t) (2.3)

∂Ω

∂t
+ ρd

∂Ω

∂x
+

∂Ω

∂c
= −α(x, A)1[c1,c2)(c)Ω(x, c, t) (2.4)

∂Ω∗

∂t
+ ρd

∂Ω∗

∂x
= −α(x, A)1G1(x)Ω∗(x, t) (2.5)

with boundary conditions

A(1, t) = 0, (2.6)

Ω(x, 0, t) = Ω(x, c2, t) + ω(x, Ω)A(x, t), (2.7)

Ω∗(0, t) =
ω(0, Ω)

ρd
A∗(t), (2.8)

Ω(x, c+
1 , t) = 2Ω(x, c−1 , t), (2.9)

Ω∗((kρdc2 + c1)
+, t) = 2Ω∗((kρdc2 + c1)

−, t), k = 0, 1, 2, . . . . (2.10)

In these equations, x ∈ [0, 1], c ∈ [0, c2], and

G1 =

(

∞
⋃

k=0

[

kρdc2 + c1, (k + 1)ρdc2

)

)

⋂

[0, 1].

The parameter c1 represents the duration of the combined S/G2/M-phases, and c2 represents
the duration of the entire cell cycle. The set G1 is the set of x-values for which Ω∗ cells are in
the G1 phase (defined by c ∈ [c1, c2)). In addition, the total Alpha and Omega populations
are given by

A(t) =

∫ 1

0

A(x, t)dx + A∗(t),

Ω(t) =

∫ 1

0

∫ c2

0

Ω(x, c, t)dc dx +

∫ 1

0

Ω∗(x, t)dx.

(2.11)

As shown in the state diagram in Figure 2.1, the Alpha cells are composed of two subpopu-
lations: A and A∗. As time progresses, A cells decrease their x-coordinate at rate ρr, until
they attain the minimum x-value of 0, at which point they enter A∗.

In a similar manner, the Omega cells are divided into two subpopulations: Ω and Ω∗.
The subpopulation Ω corresponds to cells that have entered the Omega state from A, and
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the subpopulation Ω∗ corresponds to cells that have entered from A∗. As time progresses, all
Omega cells increase their x-coordinate at rate ρd, until they attain the maximum x-value of
1, at which point they differentiate into proliferating precursors. In addition, all Omega cells
progress through the cell cycle as they undergo proliferation. The G1 phase corresponds to
the period during which the cell generates new organelles. Only cells in the G1 phase can
transfer to A. The other phases, S, G2, and M, correspond to the period during which a cell
is undergoing mitosis. Cells in these phases cannot transfer. A cell’s position in the cycle is
measured by its c-coordinate, which ranges from 0 to c2.

A ρr

c2

c1

x = 1x = 0

ρd

1
x2

Ω

ω(Ω,x)

A*

differentiate

to precursors

Ω*

c = 0
S/G2/M-phase

G1-phase

x2

α(A,x)

ω(Ω,0)

Ω(x,.) and Ω*(x) cells in G1-phase transfer to A(x)

*

*

Figure 2.1: State space for the PDE model of CML dynamics in [23]. The variable A(x, t)
represents stem cells in the Alpha (nonproliferating) compartment with intermediate x-
values, and the variable A∗(t) represents cells in the Alpha compartment that have attained
the minimum x-value of 0. The variables Ω(x, c, t) and Ω∗(x, t) represent the stem cells in
the Omega (proliferating) compartment, where Ω and Ω∗ correspond to cells transitioning
from the A and A∗ subpopulations, respectively.

The first term on the RHS of (2.2) accounts for the cells that transfer out of A into Ω.
The transition rate ω is given by (2.1), where Ω is defined in (2.11). The second term on the
RHS of (2.2) is the rate at which cells transfer into A from Ω and Ω∗. The transition rate α
is given by (2.1),and A is given by (2.11). Only Ω and Ω∗ cells in the G1 phase (i.e., with
time counters c between c1 and c2) can transfer into A, which explains the boundaries in the
integral in (2.2) and the indicator function in (2.4). In (2.3), the first term on the RHS is
the rate at which cells flow from A into A∗. These A cells flow from the endpoint x = 0 into
A∗. The second term on the RHS of (2.3) is the rate at which cells flow out of A∗ into Ω∗.
Cells coming from A∗ enter Ω∗ at the point (x, c) = (0, 0).

The expression on the RHS of (2.4) represents cells in the G1-phase that transfer out of
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Ω. The RHS of (2.5) accounts for the rate that cells in the G1-phase flow out of Ω∗ into A.
Boundary condition (2.6) indicates that all Omega cells that attain the maximal value of
x = 1 commit to differentiation and do not transfer back to A. The first term of boundary
condition (2.7) indicates that once cells come to the end of a cell cycle at c = c2, they reset
their time counters to c = 0. The second term accounts for the rate that cells transfer from
A to Ω at the boundary c = 0. It is the negative of the first term on the RHS of (2.2).
Boundary condition (2.8) accounts for the rate that cells transfer from A∗ to Ω at the point
x = 0. This expression balances the second term on the RHS of (2.3), scaled by the advection
rate because it represents a flux. Boundary conditions (2.9) and (2.10) account for division
whenever cells cross the point c = c1 of the cell cycle.

2.1 Rescaled parameters

For convenience, we rescale the parameters from the original ABM [35] to make them more
appropriate for the PDE formulation presented in Section 2. (The values of the parameters
used in [35] are listed in Table A.1.) First, we measure time in units of days rather than
hours. Then, instead of using the affinity to characterize a stem cell’s proclivity to remain
in the Alpha (quiescent) state, we replace the affinity variable, a, with x, which is defined
by

a(x) = e−γx, γ = − log amin = 6.2146.

Since the affinity ranges from amin = 0.002 to amax = 1, x ranges from 0 to 1.
In [35], at every time step of 1 hour, the affinity increases by a factor r for cells in Alpha
and decreases by a factor of d for cells in Omega. Hence, the rescaled advection rates are,
taking into account the time unit of days,

ρr =
24 log r

γ
= 0.3681, ρd =

24 log d

γ
= 0.1884.

We also rescale the cell populations down by a factor of 105 cells, so that the scaling factors
ÑA and ÑΩ become equal to 1 rather than to 105. Unlike [35], we write the transition rates,
α(A(t), x) and ω(Ω(t), x) as functions of x and not of a. Finally, since time is measured in
days, we need to multiply the original transition rates fα/ω by 24 as shown in equation (A.1).
Our rescaled parameters are listed in Table A.1 alongside the original values from [35].

3 Approximations of the PDE system

The PDE system of Section 2 is rather complex and hence difficult to analyze mathematically.
Thus, we introduce several approximation steps that can be used to simplify the system. The
approximation steps are as follows:
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(0) No approximation. This label refers to the full PDE model (2.2)–(2.10) presented in
Section 2.

(1) Eliminate the explicit representation of the cell cycle by averaging the system over the
variable c.

(2) (a) Assume the transition rate ω(x, Ω) vanishes for all x, except x = 0. In other words,
Alpha cells do not transition into Omega, except at the point (x, c) = (0, 0). This
approximation causes the variable Ω vanish.
(b) Assume the advection rate ρr is effectively infinite so that cells transfering from
Omega into Alpha immediately enter A∗ without passing through A. This approxima-
tion causes the variable A to vanish.

(3) Combine Approximations 1 and 2.

(4) Combine Approximations 1 and 2 with the further approximation that the transition
rates α(x, A) and Ω(x, Ω) do not depend on x.

3.1 PDE system for Approximation 1

In this approximation, we eliminate the explicit representation of the cell cycle by averaging
the system over the variable c. which is removed, allowing us to combine Ω and Ω∗ into
one single population. The new unknown Ω now represents the total Omega population, it
satisfies a new PDE that replaces equations (2.4) and (2.5), namely

∂Ω

∂t
+ ρd

∂Ω

∂x
= ω(x, Ω)A(x, t) + (−κα(x, A) + b)Ω(x, t). (3.1)

This averaging procedure leads to continuous rates of division and transfer, b and κα(A, x),
where b is the average growth rate and κ is the proportion of time a cell spends in the
G1-phase of the cell cycle. These parameters are estimated in Section 3.5.
The boundary condition for Ω at x = 0 is the same as the original boundary condition for
Ω∗ given by (2.8), i.e.,

Ω(0, t) =
ω(0, Ω)

ρd

A∗(t), where Ω(t) =

∫ 1

0

Ω(x, t)dx. (3.2)

We complete Equations (3.1) and (3.2) with the following equations for A and A∗.

∂A

∂t
− ρr

∂A

∂x
= −ω(x, Ω)A(x, t) + κα(x, A)Ω(x, t), (3.3)

dA∗

dt
= ρrA(0, t) − ω(0, Ω)A∗(t), (3.4)

A(1, t) = 0. (3.5)
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To obtain the PDE (3.3) for A we have just modified (2.2) to take into account the changes
in the model for the Omega cells. The last term on the RHS balances the corresponding
term in (3.1). The ODE for A∗ and boundary condition for A remain unchanged (equations
(3.4) and (3.5) are exactly equations (2.3) and (2.6). Approximation 1 is essentially the same
PDE system used by Roeder et al. in [34].

3.2 PDE system for Approximation 2

In Approximation 2, we suppose A and Ω are negligible compared to A∗ and Ω∗ . Indeed,
numerical simulations from [23] show that over 98% of Alpha cells remain in the A∗ com-
partment and over 94% of Omega cells remain in Ω∗ compartment over time. Hence, to a
good approximation, we can exclude the A and Ω populations. As a result, we are only left
with the following equations

dA∗

dt
= −ω(0, Ω)A∗(t) +

∫ 1

0

α(x, A∗)1G1(x)Ω∗(x, t)dx, (3.6)

∂Ω∗

∂t
+ ρd

∂Ω∗

∂x
= −α(x, A∗)1G1

(x)Ω∗(x, t), (3.7)

with boundary conditions

Ω∗(0, t) =
ω(0, Ω)

ρd

A∗(t), Ω(t) =

∫ 1

0

Ω∗(x, t)dx, (3.8)

Ω∗(ρd(kc2 + c1)
+, t) = 2Ω∗(ρd(kc2 + c1)

−, t), k = 0, 1, 2, . . . . (3.9)

The first term on the RHS of (3.6) for A∗ accounts for the rate that cells flow from A∗ into
Ω∗, and the second term on the RHS accounts for the rate that cells transfer from Ω∗ directly
into A∗ without passing through A. In the equations above, (3.6) replaces (2.2), (2.3) and
(2.6) and can be obtained by integrating (2.2) with respect to x, adding it to (2.3), and
assuming that

A∗ ≫

∫ 1

0

A(t, x)dx and

∫ 1

0

α(x, A)1G1(x)Ω∗(t, x)dx ≫

∫ 1

0

∫ c2

c1

α(x, A)Ω(t, x, c)dxdc.

Equation (3.7) and boundary conditions (3.8) and (3.9) for Ω∗ remain the same as (2.5),
(2.8) and (2.10), respectively.
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3.3 PDE system for Approximation 3

We combine Approximations 1 and 2 and to simplify notation, replace κα(x, A) by α(x, A∗)
and ω(0, Ω) by ω(Ω). Then we arrive at the system

dA∗

dt
= −ω(Ω)A∗(t) +

∫ 1

0

α(x, A∗)Ω∗(x, t)dx, (3.10)

∂Ω∗

∂t
+ ρd

∂Ω∗

∂x
= (−α(x, A∗) + b) Ω∗(x, t) (3.11)

with boundary condition (2.8), i.e.,

Ω∗(0, t) =
ω(Ω)

ρd

A∗(t), Ω(t) =

∫ 1

0

Ω∗(x, t)dx. (3.12)

The parameter b is defined in the same way as in Section 3.1 and is estimated in Section 3.5.

3.4 PDE system for Approximation 4

We combine Approximations 1 and 2 with the further approximation that the transition
rate α(x, A) does not depend on x. To do so we may replace α(x, A) with its midpoint
approximation α(A∗) = α(0.5, A∗). In addition, we write ω(Ω) in place of ω(0, Ω). Thus, we
arrive at the simplified system

dA∗

dt
= −ω(Ω)A∗(t) + α(A∗)

∫ 1

0

Ω∗(x, t)dx, (3.13)

∂Ω∗

∂t
+ ρd

∂Ω∗

∂x
= (−α(A∗) + b) Ω∗(x, t), (3.14)

with boundary condition

Ω∗(0, t) =
ω(Ω)

ρd
A∗(t), Ω(t) =

∫ 1

0

Ω∗(x, t)dx. (3.15)

3.5 Additional parameters

The parameters b and κ depend on how frequently cells circulate back and forth between the
Alpha and Omega compartments. In particular, frequent turnover results in a decreased cell
cycle. In [34], Roeder et al. estimate b and κ as functions of the total cell population, A+Ω.
For simplicity, we assume the total cell population remains constant at the value 1 × 105.
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Then using the functions in [34], it follows that Omega cells divide once every 39.5 hours on
average and that they spend 54% of their time in the G1-phase [34]. Hence, we estimate

b =
log(2)

c1 + c2

=
log(2)

39.5 hours
= 0.42/days and κ =

c1

c1 + c2

= 0.54

These estimates are listed in Table A.1.

4 Numerical simulations

We compare numerical solutions of the four PDE models presented in Section 3 to simulations
of the ABM from [34]. For the transport PDEs we use the explicit upwind scheme while the
ABM uses the algorithm from [35], which is summarized in Appendix B. All programs are
run in Matlab 7.6.0.

Figure 4.1 shows time plots of numerical solutions to Approximation 0 (i.e., the full PDE
model) and simulations of the ABM for 100 days. In each of the plots, the initial condition
is A∗(t = 0) = 1 while all other variables are 0. All parameters are taken from Table A.1,
except in Figures 4.1a, b, and c, where the differentiation rate d = 1.02, 1.05, and 1.2,
respectively. (For the PDE model, these values of d yield ρd values of 0.0765, 0.1884, and
0.7041, respectively.)

0 50 100
0

1

2

3

4

5

Time (days)

1
0

0
,0

0
0
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e

ll
s Alpha

Omega

0 50 100
0

0.5

1

Time (days)

Alpha

Omega

0 50 100
0

0.5

1

Time (days)

Alpha

Omega

(a) (b) (c)

Figure 4.1: Time plots of numerical solutions to Approximation 0 and simulations of the
ABM. Solutions to Approximation 0 are shown by solid black lines, and simulations of the
ABM are shown by dashed gray lines. The results of Approximation 0 and the ABM are
almost indistinguishable in all cases, except for the Omega population in plot (a). (a) Time
plots for d = 1.02. (b) Time plots for d = 1.05. (c) Time plots for d = 1.2.

The plots in Figures 4.1a, b, and c show the following characteristic behaviors, respec-
tively: approach to periodic behavior, approach to a nonzero steady state, and approach to
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the zero steady state. Furthermore, we see that the behavior of the full PDE model closely
matches the behavior of the ABM in all three cases.

Using the same initial conditions and parameters as above, Figure 4.2 compares Approx-
imation 1 to the ABM. We see that the behavior of Approximation 1 qualitatively matches
the behavior of the ABM to a large extent in all three cases.
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Figure 4.2: Time plots of numerical solutions to Approximation 1 and simulations of the
ABM. Solutions to Approximation 1 are shown by solid black lines, and simulations of the
ABM are shown by dashed gray lines. (a) Time plots for d = 1.02. (b) Time plots for
d = 1.05. (c) Time plots for d = 1.2.

Using the same initial conditions and parameters as before, Figure 4.3 compares Approx-
imation 2 and the ABM. We see that the behavior of Approximation 2 closely replicates the
behavior of the ABM in all three cases. In fact, the results of the two models are almost
indistinguishable in all cases.

Using the same initial conditions and parameters as before, Figure 4.4 compares Approx-
imation 3 and the ABM. Although both Approximations 1 and 2 followed the behavior of
the ABM very well, in this case, we see that combining the two approximations leads to
quite different behavior.

Using the same initial conditions and parameters as before, Figure 4.5 compares Approx-
imation 4 and the ABM. Approximation 4 behaves a lot like Approximation 3, so the added
assumption that the transfer function α does not depend on x does not affect the dynamics
of the model very much.
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Figure 4.3: Time plots of numerical solutions to Approximation 2 and simulations of the
ABM. Solutions to Approximation 2 are shown by solid black lines, and simulations of the
ABM are shown by dashed gray lines. (a) Time plots for d = 1.02. (b) Time plots for
d = 1.05. (c) Time plots for d = 1.2.
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Figure 4.4: Time plots of numerical solutions to Approximation 3 and simulations of the
ABM. Solutions to Approximation 3 are shown by solid black lines, and simulations of the
ABM are shown by dashed gray lines. (a) Time plots for d = 1.02. (b) Time plots for
d = 1.05. (c) Time plots for d = 1.2.
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Figure 4.5: Time plots of numerical solutions to Approximation 4 and simulations of the
ABM. Solutions to Approximation 4 are shown by solid black lines, and simulations of the
ABM are shown by dashed gray lines. (a) Time plots for d = 1.02. (b) Time plots for
d = 1.05. (c) Time plots for d = 1.2.

5 Analysis of Approximations 3 and 4

In this section, we study both the system (3.10)–(3.12) corresponding to Approximation
3 and the simpler system (3.13)–(3.15) corresponding to Approximation 4. To conduct
the analysis we use duality arguments related to the ”General Relative Entropy“ method
introduced in [31, 26] and used widely (see [10, 9, 7, 8, 16] for other examples of applications).
This method requires us to handle the eigenvalue problem and its adjoint, which we do first,
and then use them to build entropy functionals. Another method is to reduce the system to
a delay differential equation (DDE), and we also comment on how this is possible.

5.1 Link with a Delay Differential Equation

In the system (3.13)–(3.15), we can interpret Ω∗ as the maturing and proliferating stem
cell compartment, whereas A∗ represents a reservoir of quiescent, completely immature stem
cells. There are exchanges between these compartments, with the same rules as before,
except that once a cell stops the maturation process and enters the quiescent compartment,
it immediately becomes fully immature, but if it reenters the maturing and proliferating
compartment, it must go through the entire maturation process again. The main idea
remains, however, unchanged, i.e., maturation is considered an invertible process as long as
full maturity (at x = 1) is not reached.

Although this assumption is original, and up to our knowledge has first been proposed
in the ABM model of [35], the simplified system (3.13)–(3.15), has some resemblance with
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the CML models based on delay differential equations (DDEs), proposed by Mackey et al.
[2, 3, 4, 12, 13, 32]. Indeed, we can convert the PDE system (3.13)–(3.15) into an equivalent
DDE system by applying the method of characteristics to (3.14) to obtain

Ω∗(x, t) = Ω∗

(

0, t−
x

ρd

)

exp

{

b

ρd
x −

∫ t

t−x/ρd

α(A∗(u))du

}

=
ω(Ω)

ρd

A∗

(

t −
x

ρd

)

exp

{

b

ρd

x −

∫ t

t−x/ρd

α(A∗(u))du

}

,

for 1 < ρdt, a restriction that discards the initial data and simplifies the setting. Integrating
(3.14) with respect to x and using the equation above to express Ω(t, 1) and Ω(t, 0) in terms
of A∗, we obtain

dΩ

dt
+ ω(Ω)e

b
ρd

−C(t)
A∗(t − 1/ρd) − ω(Ω)A∗ = (b − α(A∗))Ω,

where

C(t) =

∫ t

t− 1
ρd

α(A∗(u))du.

Thus, we obtain the following DDE system:

dΩ

dt
= ω(t)A∗(t) − ω(t)e

b
ρd

−C(t)
A∗(t − 1/ρd) + (b − α(t))Ω(t), (5.1)

dA∗

dt
= −ω(t)A∗(t) + α(t)Ω(t), (5.2)

dC

dt
= α(t) − α(t − 1/ρd), (5.3)

where we use α(t) and ω(t) to denote α(A∗(t)) and ω(Ω(t)). The characteristic equation
obtained from the DDE system (5.1)–(5.3) coincides with the eigenvalue equation (5.31)
given by our analysis of local stability around the nonzero steady state of the PDE system
(3.13)–(3.15). (See Section 5.6.)

5.2 Existence of Steady States for Approximations 3 and 4

The model based on Approximation 4 is simpler and we analyze it first. The method is
extended to Approximation 3 afterwards. Steady states refer to time-independent solutions
(A∗, Ω∗) of system (3.13)–(3.15). They can be found and classified according to the model
parameters.
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Proposition 5.1 Let α(·) and ω(·) be continuous positive bounded functions decreasing to
zero. Then zero is always a steady state, and there is a nonzero steady state (which is unique)
iff α(0) > b∗, where b∗ is uniquely determined by b = b∗ for b = ρd and by the relation

be
− b

ρd = b∗e
− b∗

ρd , b 6= b∗, for b 6= ρd. (5.4)

If α(0) ≤ b∗, then zero is the unique steady state.
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e
-x
/ρ
d

Figure 5.1: The function F (x) = xe
−

x
ρd used in (5.4). Its maximum is attained for x = ρd.

Proof. Obviously (Ω = 0, A∗ = 0) is a steady state. We now consider possible nonzero
steady states. Solving (3.14), we find that nonzero steady state solutions (Ω̃(x), Ã) satisfy

Ω̃(x) = Ω̃(0)e
b−α(Ã)

ρd
x
, (5.5)

where Ω(0) 6= 0. Substituting (5.5) into (3.13) and (3.15), we determine the solution by the
values (Ã, Ω) that satisfy

Ã =
α(Ã)Ω

ω(Ω)
, ρd = α(Ã)

∫ 1

0

e
b−α(Ã)

ρd
x
dx, Ω = Ω̃(0)

∫ 1

0

e
b−α(Ã)

ρd
x
dx. (5.6)

Thus, we have two cases:

Case 1. b = ρd. This is equivalent to b = α(Ã) by the second equation of (5.6). Therefore
b∗ = b = α(Ã) and we can choose an A∗ = Ã 6= 0 under the condition α(0) > b∗. Then the
monotonicity condition on ω(·) allows us to find a unique Ω by the first relation in (5.6).
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Case 2. b 6= ρd and thus b 6= α(Ã). Since the second relation also implies

be
− b

ρd = α(Ã)e
−

α(Ã)
ρd .

we clearly have b∗ = α(Ã) and the result follows as before.

Proposition 5.2 Let α(x, ·) and ω(·) be continuous positive bounded functions decreasing
to zero (for all x in case of α). Then zero is always a steady state, and there is a nonzero
steady state (which is unique) iff

∫ 1

0

α(x, 0)e

x
R

0

b−α(y,0)
ρd

dy
dx > ρd ⇐⇒

∫ 1

0

e

1
R

x

α(y,0)−b
ρd

dy
dx >

ρd

b
. (5.7)

We leave to the reader that this condition is equivalent to α(y, 0) > b∗ in the case α is
independent of x as stated in Proposition 5.1.

Proof. The explicit solution is now given by

Ω∗(x) = Ω∗(0)e

x
R

0

b−α(y,A∗)
ρd

dy
.

Therefore, as in the proof of Proposition 5.1, one reduces the claim to first finding A∗ that
solves

1 =

∫ 1

0

α(x, A∗)

ρd
eu(x,A∗)dx,

with u(x, A∗) =
∫ x

0
b−α(y,A∗)

ρd
dy. Because α(x,A∗)

ρd
= b

ρd
−u′

x(x, A∗), integration by parts reduces
our condition to

1 =
b

ρd

∫ 1

0

eu(x,A∗)dx + eu(0,A∗) − eu(1,A∗),

or also

ρd

b
=

∫ 1

0

eu(x,A∗)−u(1,A∗)dx =

∫ 1

0

e

1
R

x

α(y,A∗)−b
ρd

dy
dx =: H(A∗).

This function H(·) is decreasing and satisfies

H(∞) =
ρd

b
(1 − e−ρd/b) <

ρd

b
.

Therefore our condition (5.7) on H(0) is necessary and sufficient for the existence of a solution
A∗ > 0. The end of the proof is the same as before.
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5.3 An eigenvalue problem for Approximation 3

Our analysis of a priori bounds and stability uses the eigenelements of the linear problem
related to various states. This section introduces the relevant material.

Here we fix A∗ and Ω∗, we set α(x) = α(x, A∗) and ω = ω(Ω), and we consider the
eigenvalue problem to find (λ ∈ R, Ω(x), A) that satisfy

ρd
∂Ω

∂x
= (b − λ − α) Ω, 0 ≤ x ≤ 1, (5.8)

0 =

∫ 1

0

αΩ(x)dx − (λ + ω)A, (5.9)

Ω(0) =
ω

ρd
A,

∫ 1

0

Ω(x)dx = 1. (5.10)

Notice that we can simplify the problem by combining the last two relations to

(λ + ω)Ω(0) =
ω

ρd

∫ 1

0

αΩ(x)dx,

∫ 1

0

Ω(x)dx = 1. (5.11)

Proposition 5.3 Let α(x) > 0 and ω > 0. There exists a unique solution λ, Ω(x) > 0,
A > 0 to (5.8)–(5.10). This λ is the unique real eigenvalue, and it is positive iff

∫ 1

0

α(x)e
1

ρd

x
R

0

(b−α(s))ds
dx > ρd, (5.12)

and it is negative iff
∫ 1

0

α(x)e
1

ρd

x
R

0

(b−α(s))ds
dx < ρd. (5.13)

If α(x) = α is a constant, then (5.12) reduces to α > b∗ where b∗ is defined by (5.4). The
eigenvalue equals 0 iff α = b∗.

Proof. One calculates explicitly from (5.8) that

Ω(x) = Ω(0)e
1

ρd

x
R

0

(b−α(s)−λ)ds
,

and together with (5.11), that the eigenvalue λ must satisfy

ρd

(

λ

ω
+ 1

)

=

∫ 1

0

α(x)e
1

ρd

x
R

0

(b−α(s)−λ)ds
dx.
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We can write this relation in the form G(λ) = L(λ), with

G(λ) = ρd

(

λ

ω
+ 1

)

, L(λ) =

∫ 1

0

α(x)e
1

ρd

x
R

0

(b−α(s)−λ)ds
dx.

The function G increases linearly from −∞ to +∞, whereas L(λ) decreases continuously
from +∞ to 0. Hence, the two curves intersect at a unique value λ ∈ R. Moreover, λ > 0
iff G(0) < L(0), which gives Equation (5.12). If α(x) is constant, we obtain

1 <
α

b − α

(

e
b−α
ρd − 1

)

,

which, with the notation F (z) = ze−z/ρd , simplifies to

1

b − α
F (b) <

1

b − α
F (α)

If b > α, this inequality is equivalent to F (α) > F (b), so α > min(b, b∗) = b∗. If b < α, the
inequality is equivalent to F (α) < F (b), so α > b∗. Thus, in both cases, α > b∗.

Remark. The adjoint problem of (5.8)–(5.10) is

−ρd
∂φ

∂x
= (b − λ − α(x)) φ + α(x)Ψ, (5.14)

(λ + ω)Ψ = ωφ(0), (5.15)

φ(1) = 0, (5.16)

and its solution φ can be explicitly calculated as follows:

φ(x) = φ(0)e
− 1

ρd

x
R

0

(b−α(s)−λ)ds






1 −

∫ x

0
α(s)e

1
ρd

s
R

0

(b−α(σ)−λ)dσ
ds

∫ 1

0
α(s)e

1
ρd

s
R

0

(b−α(σ)−λ)dσ
ds






. (5.17)

5.4 Uniform Bounds

The aim of this section is to show that the population remains bounded under the previous
assumption that α vanishes at infinity (this can be relaxed as shown below). This relies on
the eigenvalue problem and the property that the eigenvalue is negative for large populations.

Proposition 5.4 If ω(·) is bounded, α(A, x) is a nonincreasing function of A and for A
large enough

∫ 1

0

α(x, A)e

x
R

0

b−α(y,A)
ρd

dy
dx < ρd, (5.18)
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then any solution
(

Ω∗(t, x), A∗(t)
)

of (3.10)–(3.12) remains bounded for all t ≥ 0, i.e.,
A∗ ∈ L∞(0,∞) and Ω∗ ∈ L∞((0,∞) × (0, 1)).

Proof. Since (5.18) holds, we can choose Ã large enough so that the condition (5.13) is
fulfilled for α(x) = α(x, Ã). According to Proposition 5.3, there exists a unique eigenvalue
λ < 0 and a unique positive couple (A, Ω) that solves (5.8)–(5.10) with α(x) = α(x, Ã). We
also denote by φ the solution of the adjoint eigenproblem (5.14)–(5.16). Testing the solutions
Ω∗(t, x) of Problem (3.10)–(3.12) against φ gives

d
dt

∫

φΩ∗dx =
∫

φ
(

b − α(x, A∗)
)

Ω∗dx +
∫

ρdΩ
∗ ∂

∂x
φdx + ρdΩ

∗(t, 0)φ(0)

=
∫

Ω∗
(

λφ − α(x, Ã)Ψ
)

dx +
∫ (

α(x, Ã) − α(x, A∗(t))
)

Ω∗φdx
+ρdΩ

∗(t, 0)φ(0)

=
∫

(

Ω∗
(

λφ − α(x,Ã)ω(Ω)

λ+ω(Ω)
φ(0)

)

+
(

α(x, Ã) − α(x, A∗(t))
)

Ω∗φ

)

dx

+φ(0)
(

−dA∗

dt
+
∫ 1

0
α(x, A∗(t))Ω∗dx

)

=
∫

Ω∗
(

λφ + λα(x,Ã)Ψ

ω(Ω)

)

dx +
∫ (

α(x, Ã) − α(x, A∗(t))
)

Ω∗φdx

+φ(0)
(

−dA∗

dt
+
∫ (

α(x, A∗(t)) − α(x, Ã))Ω∗dx)

=
∫

Ω∗
(

λφ + λα(x,Ã)Ψ

ω(Ω)

)

dx +
∫ (

α(x, Ã) − α(x, A∗(t))
)

Ω∗
(

φ(x) − φ(0)
)

dx

−φ(0) d
dt

A∗

Hence, we have obtained the following equality:

d

dt

(
∫

φΩ∗dx + φ(0)A∗

)

= λ

∫

Ω∗

(

φ +
α(x, Ã)Ψ

ω(Ω)

)

dx

+

∫

Ω∗ (φ(x) − φ(0))
(

α(x, Ã) − α(x, A∗(t))
)

dx.

We consider the quantity S(t) =
∫

φ(x)Ω∗(x, t)dx + φ(0)A∗(t) − µ min
(

Ã, A∗(t)
)

, where µ

is a constant such that

∀x ∈ [0, 1], µα(x, Ã) ≥ (−λ + 1)φ + ||α(., .)||∞||φ||∞. (5.19)

Recalling that λ < 0, we obtain

dS

dt
≤ λ

∫

Ω∗φ +

∫

Ω∗ (φ(x) − φ(0))
(

α(x, Ã) − α(x, A∗(t))
)

dx

+ µ1A∗(t)≤Ã

(

ωA∗(t) −

∫ 1

0

α(x, A∗(t))Ω∗(t, x)dx

)

.

(5.20)

We set S0 = φ(0)Ã+µ||ω||∞Ã and we prove that S(t) ≤ max(S(0), S0). Indeed, If S(t) ≥ S0,
we have two cases:
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•First case: A∗(t) ≥ Ã. The last term in the RHS of (5.20) vanishes, the first two terms
are less than or equal to zero, so dS

dt
≤ 0 and S(t) decreases.

• Second case: A∗(t) ≤ Ã. Equation (5.20) implies (recall that α(x, A∗) ≥ α(x, Ã) )

dS

dt
≤ λ

∫

Ω∗φ +

∫

Ω∗φ(0)α(x, A∗(t)) + µωA∗(t) − µ

∫ 1

0

α(x, A∗(t))Ω∗(t, x)dx.

We deduce, using (5.19), that

dS

dt
≤ µ||ω||∞Ã −

∫ 1

0

Ω∗φdx ≤ S0 − S(t) ≤ 0.

This shows that S(t) decreases in both cases, which proves that S(t) ≤ max(S(0), S0)
remains constantly bounded. As a consequence

∫

φ(x)Ω∗(x, t)dx + φ(0)A∗(t) is uniformly
bounded. Then, since A∗(t) is bounded, in (3.12) the boundary term Ω∗(0, t) is also uniformly
bounded and thus Ω∗ ∈ L∞((0,∞) × (0, 1)).

5.5 Stability Analysis near Zero

Proposition 5.5 If α(x, A) is a positive decreasing function of A, and if

∫ 1

0

α(x, 0)e
1

ρd

x
R

0

(b−α(s,0))ds
dx ≤ ρd, (5.21)

then the zero steady state is globally attractive. On the contrary, if

∫ 1

0

α(x, 0)e
1

ρd

R x
0

(b−α(s,0))ds
dx > ρd, (5.22)

then the zero steady state is unstable.

Remark. According to the proof of Proposition 5.2, the stability condition (5.22) is equiva-
lent to condition (5.7) for the existence of a nonzero steady state. Therefore the zero steady
state is stable exactly when it is the unique steady state. Also, the properties of ω(0, Ω) do
not influence the stability of the zero steady state.

Proof. We consider the linear eigenvalue problem (5.8)–(5.10) at zero and let φ, given by
(5.17), be the solution to the adjoint eigenvalue problem. Let (Ω(t, x), A(t)) denote a solution
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to the time-dependent problem (3.13)–(3.15). As in the proof of Proposition 5.4, we test Ω
against φ and define v(t) =

∫

φ(x)Ω(x, t)dx + φ(0)A(t). We have

d

dt
v(t) = λ

∫

Ω

(

φ +
α(x, 0)Ψ

ω(0)

)

dx

+

∫

Ω (φ(x) − φ(0)) (α(x, 0) − α(x, A)) dx.

(5.23)

If λ < 0, which is equivalent to (5.21) according to Proposition 5.3, (5.17) shows that φ is
decreasing, and since we have supposed that α decreases with respect to A, we can conclude
that

d

dt

∫

φΩdx + φ(0)A ≤ λ

∫

φΩdx.

It follows that
∫

φΩdx + φ(0)A is decreasing. Since this integral is nonnegative, it tends to
a limit, and at infinity,

∫

φΩdx tends to 0. Therefore, from the uniform bounds, Ω(t) −→
t→∞

0,

and thus A(t) −→
t→∞

0. Thus, the zero steady state is globally attractive.

If λ = 0, we still have that v(t) is nonincreasing, and one has

d

dt
v(t) =

∫

Ω(x, t) (φ(x) − φ(0)) (α(x, 0) − α(x, A))dx.

Since φ(x) − φ(0) < 0 and α(x, 0) − α(x, A) > 0 for x < 1 and A > 0, it implies that either
Ω(x < 1, +∞) = 0 or A(+∞) = 0. We conclude using (3.13)–(3.15) that Ω = A = 0.

If λ > 0, we define the constant C = ‖φ′‖∞ sup |α′
A(x, A)|/φ(0) where the sup is taken

on 0 ≤ x ≤ 1 and 0 ≤ φ(0)A ≤ ∞. Then, we write

d

dt
v(t) ≥

∫ 1

0

φΩ[λ − Cφ(0)A(t)]dx

≥

∫ 1

0

φΩ[λ − Cv(t)]dx.

This proves that v(t) is increasing whenever v(t) ≤ λ/C and the zero steady state is thus
unstable.

Remark. We have not made any assumption on ω(Ω). Indeed, the population in the A∗

compartment neither divides nor dies. Hence, whether cells in A∗ transfer quickly or slowly
into the Ω compartment does not change the behavior at infinity or at zero. On the contrary,
we can expect it influences the stability of the nonzero steady state, whenever it exists.
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5.6 Stability analysis near the nonzero steady state

To study the local stability of the operator around the nontrivial steady state, denoted Ω̃, Ã,
we consider a small perturbation δΩ = Ω − Ω̃, δA = A − Ã, where A(t, x) and Ω(t, x) are
solutions of System (3.13)–(3.15).

For the sake of simplicity, we denote Ω̃ =
∫

Ω̃dx, α = α
(

Ã
)

, α′ = dα
dA

(

Ã
)

, ω = ω
(

Ω̃
)

and

ω′ = dω
dΩ

(

Ω̃
)

.

At first order in δA and δΩ, the perturbation δΩ, δA satisfies the following equation:

∂δΩ

∂t
+ ρd

∂δΩ

∂x
= (b − α) δΩ − α′Ω̃δA, (5.24)

dδA

dt
= (α − ω′Ã)

∫ 1

0

δΩ(t, x)dx + (

∫ 1

0

α′Ω̃(x)dx − ω)δA, (5.25)

δΩ(0, t) =
ω

ρd

δA(t) +
ω′Ã

ρd

∫ 1

0

δΩ(t, x)dx. (5.26)

We now consider the eigenvalue problem related to the linear system (5.24)–(5.26). Using

α(Ã) = b∗ = be
−

b−b∗

ρd (cf. Equation (5.4)) and the definition of Ω̃ in (5.5), we calculate

∫ 1

0

Ω̃(x)dx = Ω̃(0)ρd
e

b−b∗

ρd − 1

b − b∗
=

Ω̃(0)ρd

b∗
.

We also recall that Ω̃(0)ρd = Ãω by (5.6). Hence, the eigenvalue problem writes

λδΩ + ρd
∂δΩ

∂x
= (b − b∗) δΩ − α′δAΩ̃(0)e

b−b∗

ρd
x
, (5.27)

λδA = b∗
∫ 1

0

δΩ(x)dx + α′δA
Ω̃(0)ρd

b∗
−

Ω̃(0)ρd

Ã
δA − ω′Ã

∫ 1

0

δΩ(x)dx, (5.28)

δΩ(0) =
Ω̃(0)

Ã
δA +

ω′Ã

ρd

∫ 1

0

δΩ(x)dx. (5.29)

(We still denote the eigenvector by (δA, δΩ).) By explicitly solving (5.27), we obtain

δΩ(x) = e
b−b∗−λ

ρd
x

(

δΩ(0) − α′Ω̃(0)δA
e

λ
ρd

x
− 1

λ

)

.

We impose the restriction

∫ 1

0

δΩ(x)dx = 1 =
δΩ(0)ρd

b − b∗ − λ
(

b

b∗
e
− λ

ρd − 1) −
α′Ω̃(0)δAρd

λ

1

b∗
b(1 − e

− λ
ρd ) − λ

b − b∗ − λ
, (5.30)

22



and obtain from (5.28) that

λδA = b∗ + α′δA
Ω̃(0)

b∗
ρd −

Ω̃(0)

Ã
ρdδA − ω′Ã.

In addition, (5.29) yields

δΩ(0) =
ω′Ã

ρd
+

Ω̃(0)

Ã

b∗ − ω′Ã

λ − α′ Ω̃(0)
b∗

ρd + Ω̃(0)

Ã
ρd

,

which we substitute into (5.30) to obtain

1 = f(λ) :=
ρd

b − b∗ − λ

(

b

b∗
e
− λ

ρd − 1

)

(

ω′Ã

ρd
+

Ω̃(0)

Ã

b∗ − ω′Ã

λ − α′Ω̃(0)
b∗

ρd + Ω̃(0)

Ã
ρd

)

−
α′Ω̃(0)ρd

b∗λ

b
(

1 − e
− λ

ρd

)

− λ

b − b∗ − λ

b∗ − ω′Ã

λ − α′ Ω̃(0)
b∗

ρd + Ω̃(0)

Ã
ρd

.

(5.31)

Relation (5.31) defines all eigenvalues of the linearized system (5.27)–(5.29). It is the same as
the characteristic equation obtained from the DDE system (5.1)–(5.3). The transition from
stability to instability regions has been studied in many cases of delay equations and we can
expect that it corresponds to a Hopf bifurcation that explains the appearance of periodic
solutions, see [15, 25]. Section 6 numerically studies this equation, which shows that the
nontrivial steady state can either be stable or unstable depending on the parameters of the
equation.

6 Stability regions

Since the analytic expression of the eigenvalues in Section 5.6 is difficult to work out, we
determine them numerically. To do so we use the Matlab program DDE-BIFTOOL[18] to
determine, equivalently, the eigenvalues of the DDE system (5.1)–(5.3) as the parameters ρd

and b vary. In this way, we can determine the regions of stability for the nonzero steady
state. Futhermore, applying Proposition 5.5, we can numerically determine where this state
disappers and the zero steady state becomes stable.

Notice that this procedure is equivalent to using the eigenvalue equation (5.31) to nu-
merically determine stability regions for the PDE system (3.13)–(3.15). However, since the
DDE-BIFTOOL software already exists, it is easier to numerically analyze the equivalent
DDE system given by (5.1)–(5.3) instead.
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Figure 6.1 shows the stability regions of the system with respect to ρd and b. The variable
ρd denotes the advection rate of Omega cells with respect to x, measured in units of 1/day.
The variable b is the exponential growth rate of Omega cells, measured in units of 1/day.
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1

2
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ρd

b
(a) Unstable, periodic

(b) Stable steady

      state

(c) Stable at 0

Figure 6.1: Stability regions for the PDE system from Section 3.4 in (ρd, b)-space. The
variable ρd denotes the advection rate of Omega cells with respect to x, measured in units
of 1/day. Higher ρd means that cells spend less time in the Omega compartment before
differentiating. The variable b is the exponential growth rate of Omega cells, measured in
units of 1/day. (a) In the top region, the system is unstable and exhibits periodic behavior.
(b) In the middle region, the system is stable at the nonzero steady state. Hence, the Alpha
and Omega populations approach a nontrivial equilibrium. (c) In the bottom region, the
nonzero steady state does not exist, and the system is stable at the zero steady state.

As we can see from Figure 6.1, the region at which the system is stable at the nontrivial
steady state falls between the regions where the system is unstable and where the system is
only stable at zero. Hence, the stability of the system at a nonzero equilibrium depends on a
balance between the rate of differentiation and the growth rate of the Omega (proliferating)
stem cell population.

If the stem cell growth rate increases or if the rate of differentiation decreases sufficiently,
the system transitions to instability, in which case population exhibits periodic behavior.
This transition from a stable equilibrium to unstable periodic behavior might correspond to
the transition between CML and acute myelogenous leukemia (AML), a disease characterized
by the rapid proliferation and invasion of the blood by immature, undifferentiated cells.
Indeed, unstable and high amplitude oscillations in the stem cell population would result in
the sudden overproduction of immature, progenitor cells. These results concur with those
of [1], which presents a DDE model of hematopoiesis and concludes that obstructing cell
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differentation at an early stage of development results in the overproduction of immature
cells, potentially leading to AML.

On the other side, if the growth rate decreases or the differentiation rate increases suf-
ficiently, the system loses the nontrivial equilibrium and becomes stable only at zero. This
result makes sense, since the stem cell population has to proliferate fast enough to replenish
itself as Omega cells continually differentiate. However, it is currently unclear to us whether
this scenario corresponds to a particular disease.

Finally, the program DDE-BIFTOOL can also be used to numerically determine the
trajectories of the rightmost eigenvalue of (5.31) as it crosses the imaginary axis from stability
to instability (i.e., from negative to positive real part) as parameter ρd or b is varied. The
trajectories of the rightmost eigenvalues as ρd and b are increased independently are shown
in Figure 6.2. As also shown in Figure 6.1, we see that the system moves from instability to
stability as ρd increases, whereas the system moves from stability to instability as b increases.
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Figure 6.2: Trajectories of the rightmost eigenvalue around the first stability crossing point.
Each trajectory is associated with a conjugate trajectory (not shown). (a) Trajectory of the
rightmost eigenvalue as ρd varies from 0.0422 to 0.3505. The value of b is fixed at 0.42. (b)
Trajectory of the rightmost eigenvalue as b varies from 0.2 to 1.5. The value of ρd is fixed at
0.1884 (d = 1.05), which is the estimated value from [35]

7 Conclusion

In this paper, we simplify the PDE model of hematopoiesis presented in [23] and perform
a stability analysis. The PDE model from [23] is a time-continuous extension of the ABM
of [35] and has shown to coincide closely with the dynamics of the original ABM. Our
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simplifications render the original PDE model amenable to analysis while closely preserving
the qualitative behavior.

Prior to our analysis, we simplified the PDE model given by (2.2)–(2.5) and (2.6)–(2.10)
to the system labelled Approximation 4 in Section 3.4. As shown in Figure 4.5, Approx-
imation 4 is a good approximation of the original ABM from a qualitative perspective.
Furthermore, Approximation 4 can be analyzed analytically. Hence, the process of simplifi-
cation and analysis in this paper, allows us to apply an analytical approach to an otherwise
inherently complex and intractable ABM. Furthermore, the observation that Approximation
4 is equivalent to a DDE system shows that the ABM of [35] possesses inherent similarities
to other age-structured DDE models proposed by Mackey et al. [2, 3, 4, 12, 13, 32] and
Adimy et al. [1].

In addition, Approximation 2, presented in Section 3.2, generates dynamics that are sur-
prisingly close, even quantitatively, to those of the original ABM. (See Figure 4.3.) Although
Approximation 2 is not as suitable for analysis as Approximation 4, it possesses the same
computational complexity, since it is also a system of two PDEs with one state variable.
Indeed, it only takes minutes to run numerical simulations of Approximation 2 using the
explicit upwind scheme. This speed of processing is comparable to that of Approximation
4 and of the difference equation model presented in [22]. Hence, for the purposes of nu-
merical simulations, Approximation 2 could be used as an alternative to Approximation
4. In addition, since Approximation 2 is a PDE system, one could readily add additional
ODEs, DDEs, or PDEs to the existing system to capture the concurrent dynamics of the
anti-leukemia immune response during imatinib treatment as was done in [21] for the ODE
model of imatinib dynamics in [28]. Since the dynamics of leukemia cells differs between the
ABM model of [35] and the ODE model of [28], especially in the long-term time scale, it will
be useful to examine the impact of the anti-leukemia immune response on the ABM as well.
We leave this for a future work.

Finally, from our analysis, we observe that the system exhibits three types of behavior:
(a) Periodic behavior, (b) A stable nonzero steady state, and (c) Stability at zero. State (c)
corresponds to a state in which the stem cell population cannot maintain itself, and hence
dies out to zero. It would correspond to a condition characterized by insufficient blood
production. State (b) corresponds to the desirable state, in which the hematopoietic stem
cells remain at equilbrium and can maintain a stable population level of blood cells. State (a)
corresponds to a state in which stem cell and blood cell populations fluctuate rapidly. While
state (b) captures the behavior of more stable blood cell growth such as in the case of CML,
state (a) captures some of the relevant dynamics of AML. Hence, the transition from state
(b) to state (a) might provide insight into the specific malfunction (either in differentiation
or growth) that leads to the transition from CML to AML.
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A Parameter estimates

The sigmoidal transition functions are given in [35] by

fα/ω(A/Ω) = 24





1

ν1 + ν2 exp
(

ν3
A/Ω

ÑA/Ω

) + ν4



 , (A.1)

where A and Ω denote the total populations in the Alpha and Omega compartments, re-
spectively (see (2.11). Furthermore,

ν1 =
h1h3 − h2

2

h1 + h3 − 2h2
, ν2 = h1 − ν1, ν3 = ln

(

h3 − ν1

ν2

)

, ν4 = fα/ω(∞),

h1 =
1

fα/ω(0) − fα/ω(∞)
, h2 =

1

fα/ω(ÑA/Ω/2) − fα/ω(∞)
, h3 =

1

fα/ω(ÑA/Ω) − fα/ω(∞)
.

The values of the various parameters are listed in Table A.1.

B Algorithm for the agent-based model

We summarize the algorithm of the ABM from [35]. At every time step (1 hour), the ABM
is defined as the following set of actions:

A. Preliminary calculations.
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Param Description Ph− Ph+/imatinib-affected Rescaled

amin Min value of affinity a 0.002 0.002
amax Max value of affinity a 1.0 1.0
d Differentiation coefficient 1.05 1.05 ρd = 0.1884
r Regeneration coefficient 1.1 1.1 ρr = 0.3681
c1 Duration of S/G2/M-phases 17 hours 17 hours 17/24
c2 Cell cycle duration 49 hours 49 hours 49/24
λp Lifespan of precursor cells 20 days 20 days 20
λm Lifespan of mature cells 8 days 8 days 8
τ̃c Division period for precursors 24 hours 24 hours 1
fα(0) Transition characteristic for fα 0.5 1.0

fα(ÑA/2) Transition characteristic for fα 0.45 0.9

fα(ÑA) Transition characteristic for fα 0.05 0.058
fα(∞) Transition characteristic for fα 0.0 0.0

ÑA Scaling factor 105 105 1
fω(0) Transition characteristic for fω 0.5 1.0 / 0.0500

fω(ÑA/2) Transition characteristic for fω 0.3 0.99 / 0.0499

fω(ÑA) Transition characteristic for fω 0.1 0.98 / 0.0498
fω(∞) Transition characteristic for fω 0.0 0.96 / 0.0496

ÑΩ Scaling factor 105 105 1

rinh Inhibition intensity 0.050 1.2
rdeg Degradation intensity 0.033 0.8

b Expansion rate for Approximations 0.42
κ Fraction of time spent in G1-phase 0.54

Table A.1: Parameters from [35] and rescaled values used in this paper. The inhibition
intensity, rinh, refers to the probability that a proliferative Ph+ cell (i.e., an Ω or Ω∗ cell)
becomes imatinib-affected in a given time interval. The degradation intensity, rdeg, refers to
the probability that an imatinib-affected, proliferative Ph+ cell dies in a given interval. In
the column for rescaled parameters, if the entry is blank, the corresponding parameters are
left unchanged.
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1. Calculate the total populations of A and Ω cells.

2. During imatinib treatment:

• Remove the proliferative Ph+ cells (Ω+ and Ω+/i) that undergo apoptosis.

• Determine which unaffected proliferative Ph+, Ω+, become imatinib-affected.

B. Proliferation, death, change of state, clocks. At this stage, all cells fall into one of
three categories: A stem cells, Ω stem cells, differentiated cells.

1. For each A stem cell:

• Determine whether the cell transfers to Ω. If a cell transfers, skip the remaining
actions for A cells. Note that the transition function depends on whether the cell
is Ph−, Ph+, or imatinib-affected. Calculate transition probabilities based on the
total population of Ω calculated in Step A1.

• Increase the cell’s affinity by a factor of r.

2. For each Ω stem cell:

• Determine whether the cell transfers to A. If a cell transfers, skip the remaining
actions for Ω cells. Calculate transition probabilities based on the total population
of A calculated in Step A1.

• If the cell’s affinity is less than or equal to amin, the cell becomes a differentiated
cell of age 0. If the cell differentiates, skip the remaining actions for Ω cells.

• If a cell’s affinity is greater than amin, decrease the cell’s affinity by a factor of d.

• Increase the counter c by 1.

• If the counter c is greater than or equal to 49, set c to 0 and create a new cell
with identical attributes and state values as the current cell.

3. For each differentiated cell:

• Increase the cell’s age by one.

• If the cell’s age is a multiple of 24 between 24 and 480, inclusively, create a new
differentiated cell with with the same age as the current cell.

• If a cells age reaches 672, that cell dies.

Note that differentiated cells of age less than 480 are considered to be proliferating precur-
sors, whereas differentiated cells of age greater than or equal to 480 are considered to be
nonproliferating mature cells.
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