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Abstract. Median clustering extends popular neural data analysis meth-
ods such as the self-organizing map or neural gas to general data struc-
tures given by a dissimilarity matrix only. This offers flexible and robust
global data inspection methods which are particularly suited for a va-
riety of data as occurs in biomedical domains. In this chapter, we give
an overview about median clustering and its properties and extensions,
with a particular focus on efficient implementations adapted to large
scale data analysis.

1 Introduction

The tremendous growth of electronic information in biological and medical do-
mains has turned automatic data analysis and data inspection tools towards a
key technology for many application scenarios. Clustering and data visualization
constitute one fundamental problem to arrange data in a way understandable by
humans. In biomedical domains, prototype based methods are particularly well
suited since they represent data in terms of typical values which can be directly
inspected by humans and visualized in the plane if an additional low-dimensional
neighborhood or embedding is present. Popular methodologies include K-means
clustering, the self-organizing map, neural gas, affinity propagation, etc. which
have successfully been applied to various problems in the biomedical domain
such as gene expression analysis, inspection of mass spectrometric data, health-
care, analysis of microarray data, protein sequences, medical image analysis, etc.
[1,37,36,41,44,53,54].

Many popular prototype-based clustering algorithms, however, have been
derived for Euclidean data embedded in a real-vector space. In biomedical ap-
plications, data are diverse including temporal signals such as EEG and EKG
signals, functional data such as mass spectra, sequential data such as DNA se-
quences, complex graph structures such as biological networks, etc. Often, the
Euclidean metric is not appropriate to compare such data, rather, a problem
dependent similarity or dissimilarity measure should be used such as alignment,
correlation, graph distances, functional metrics, or general kernels.

Various extensions of prototype-based methods towards more general data
structures exist such as extensions for recurrent and recursive data structures,
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functional versions, or kernelized formulations, see e.g. [27,26,25,7,24] for an
overview. A very general approach relies on a matrix which characterizes the
pairwise similarities or dissimilarities of data. This way, any distance measure
or kernel (or generalization thereof which might violate symmetry, triangle in-
equality, or positive definiteness) can be dealt with including discrete settings
which cannot be embedded in Euclidean space such as alignment of sequences
or empirical measurements of pairwise similarities without explicit underlying
metric.

Several approaches extend popular clustering algorithms such as K-means or
the self-organizing map towards this setting by means of the relational dual for-
mulation or kernelization of the approaches [30,31,51,8,24]. These methods have
the drawback that they partially require specific properties of the dissimilarity
matrix (such as positive definiteness), and they represent data in terms of pro-
totypes which are given by (possibly implicit) mixtures of training points, thus
they cannot easily be interpreted directly. Another general approach leverages
mean field annealing techniques [19,20,33] as a way to optimize a modified cri-
terion that does not rely anymore on the use of prototypes. As for the relational
and kernel approaches, the main drawback of those solutions is the reduced
interpretability.

An alternative is offered by a representation of classes by the median or
centroid, i.e. prototype locations are restricted to the discrete set given by the
training data. This way, the distance of data points from prototypes is well-
defined. The resulting learning problem is connected to a well-studied optimiza-
tion problem, the K-median problem: given a set of data points and pairwise
dissimilarities, find k points forming centroids and an assignment of the data
into k classes such that the average dissimilarities of points to their respective
closest centroid is minimized. This problem is NP hard in general unless the
dissimilarities have a special form (e.g. tree metrics), and there exist constant
factor approximations for specific settings (e.g. metrics) [10,6].

The popular K-medoid clustering extends the batch optimization scheme of
K-means to this restricted setting of prototypes: it in turn assigns data points to
the respective closest prototypes and determines optimum prototypes for these
assignments [38,9]. Unlike K-means, there does not exist a closed form of the
optimum prototypes given fixed assignments such that exhaustive search is used.
This results in a complexity O(N2) for one epoch for K-centers clustering instead
of O(N) for K-means, N being the number of data points. Like K-means, K-
centers clustering is highly sensitive to initialization.

Various approaches optimize the cost function of K-means or K-median by
different methods to avoid local optima as much as possible, such as Lagrange re-
laxations of the corresponding integer linear program, vertex substitution heuris-
tics, or affinity propagation [28,17,18]. In the past years, simple, but powerful
extensions of neural based clustering to general dissimilarities have been pro-
posed which can be seen as generalizations of K-centers clustering to include
neighborhood cooperation, such that the topology of data is taken into account.
More precisely, the median clustering has been integrated into the popular self-



III

organizing map (SOM) [4,40] and its applicability has been demonstrated in a
large scale experiment from bioinformatics [41]. Later, the same idea has been
integrated into neural gas (NG) clustering together with a proof of the conver-
gence of median SOM and median NG clustering [13]. Like K-centers clustering,
the methods require an exhaustive search to obtain optimum prototypes given
fixed assignments such that the complexity of a standard implementation for one
epoch is O(N2K) (this can be reduced to O(N2 + NK2) for median SOM, see
Section 4 and [12]). Unlike K-means, local optima and overfitting can widely be
avoided due to the neighborhood cooperation such that fast and reliable meth-
ods result which are robust with respect to noise in the data. Apart from this
numerical stability, the methods have further benefits: they are given by sim-
ple formulas and they are very easy to implement, they rely on underlying cost
functions which can be extended towards the setting of partial supervision, and
in many situations a considerable speed-up of the algorithm can be obtained, as
demonstrated in [12,29], for example.

In this chapter, we present an overview about neural based median clustering.
We present the principle methods based on the cost functions of NG and SOM,
respectively, and discuss applications, extensions and properties. Afterwards, we
discuss several possibilities to speed-up the clustering algorithms, including exact
methods, as well as single pass approximations for large data sets.

2 Prototype based clustering

Prototype based clustering aims for representing given data from some set X
faithfully by means of prototypical representatives {w1, . . . , wK}. In the stan-
dard Euclidean case, real vectors are dealt with, i.e. X ⊆ R

M and wi ∈ R
M

holds for all i and some dimensionality M . For every data point x ∈ X , the
index of the winner is defined as the prototype

I(x) = argminj{d(x, wj)} (1)

where

d(x, wj) =

M
∑

i=1

(xi − wj
i )

2 (2)

denotes the squared Euclidean distance. The receptive field of prototype wj is
defined as the set of data points for which it becomes winner. Typically, clustering
results are evaluated by means of the quantization error which measures the
distortion being introduced when data is represented by a prototype, i.e.

E :=
1

2
·
∫ K

∑

j=1

δI(x),j · d(x, wj)P (x)dx (3)

for a given probability measure P according to which data are distributed. δij

denotes the Kronecker function. In many training settings, a finite number of
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data X = {x1, . . . , xN} is given in advance and the corresponding discrete error
becomes

Ê :=
1

2N
·

N
∑

i=1

K
∑

j=1

δI(xi),j · d(xi, wj) (4)

The popular K-means clustering algorithm aims at a direct optimization of
the quantization error. In batch mode, it, in turn, determines optimum proto-
types wj given fixed assignments I(xi) and vice versa until convergence:

kij := δI(xi),j, wj :=

∑

i kijx
i

∑

i kij

(5)

This update scheme is very sensitive to the initialization of prototypes such that
multiple restarts are usually necessary.

Neural gas

The self-organizing map and neural gas enrich the update scheme by neighbor-
hood cooperation of the prototypes. This accounts for a topological ordering of
the prototypes such that initialization sensitivity is (almost) avoided. The cost
function of neural gas as introduced by Martinetz [46] has the form

ENG ∼ 1

2
·
∫ K

∑

j=1

hσ(rk(x, wj)) · d(x, wj)P (x)dx (6)

where
rk(x, wj) =

∣

∣

{

wk | d(x, wk) < d(x, wj)
}∣

∣ (7)

denotes the rank of prototype wj sorted according to its distance from the data
point x and hσ(t) = exp(−t/σ) is a Gaussian shaped curve with the neighbor-
hood range σ > 0. σ is usually annealed during training. Obviously, σ → 0
yields the standard quantization error. For large values σ, the cost function is
smoothed such that local optima are avoided at the beginning of training. For a
discrete training set, this cost term becomes

ÊNG ∼ 1

2N
·

N
∑

i=1

K
∑

j=1

hσ(rk(xi, wj)) · d(xi, wj) (8)

This cost function is often optimized by means of a stochastic gradient descent.
An alternative is offered by batch clustering which, in analogy to K-means,
consecutively optimizes assignments and prototype locations until convergence,
as described in [13]:

kij := rk(xi, wj), wj :=

∑

i hσ(kij)x
i

∑

i hσ(kij)
(9)

Neighborhood cooperation takes place depending on the given data at hand by
means of the ranks. This accounts for a very robust clustering scheme which is
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very insensitive to local optima, as discussed in [46]. Further, as shown in [47]
neighborhood cooperation induces a topology on the prototypes which perfectly
fits the topology of the underlying data manifold provided the sampling is suf-
ficiently dense. Thus, browsing within this information space becomes possible.

Self-organizing map

Unlike NG, SOM uses a priorly fixed lattice structure, often a regular low-
dimensional lattice such that visualization of data can directly be achieved.
Original SOM as proposed by Kohonen [39] does not possess a cost function
in the continuous case, but a simple variation as proposed by Heskes does [32].
The corresponding cost function is given by

ESOM ∼ 1

2
·
∫ K

∑

j=1

δI∗(x),j ·
N

∑

k=1

hσ(nd(j, l)) · d(x, wl)P (x)x (10)

where nd(j, l) describes the distance of neurons arranged on a priorly chosen
neighborhood structure of the prototypes, often a regular two-dimensional lat-
tice, and

I∗(x) = argmini

{

K
∑

l=1

hσ(nd(i, l))d(x, wl)

}

(11)

describes the prototype which is closest to x if averaged over the neighborhood.
(This is in practice often identical to the standard winner.) In the discrete case,
the cost function becomes

ÊSOM ∼ 1

2N
·

N
∑

i=1

K
∑

j=1

δI∗(xi),j ·
N

∑

k=1

hσ(nd(j, k)) · d(xi, wk) (12)

SOM is often optimized by means of a stochastic gradient descent or, alterna-
tively, in a fast batch mode, subsequently optimizing assignments and prototypes
as follows:

kij := δI∗(xi),j , wj :=

∑

i,k kikhσ(nd(k, j))xi

∑

i,k kikhσ(nd(k, j))
(13)

As before, the neighborhood range σ is annealed to 0 during training, and the
standard quantization error is recovered. Intermediate steps offer a smoothed
cost function the optimization of which is simpler such that local optima can
widely be avoided and excellent generalization can be observed. Problems can
occur if the priorly chosen topology does not fit the underlying manifold and
topological mismatches can be observed. Further, topological defomations can
easily occur in batch optimization when annealing the neighborhood quickly
as demonstrated in [16]. These problems are not present for the data optimum
topology provided by NG, but, unlike SOM, NG does not offer a direct visualiza-
tion of data. Batch SOM, NG, and K-means converge after a finite and usually
small number of epochs [13].
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3 Median clustering

Assume data is characterized only by a matrix of pairwise nonnegative dissimi-
larities

D = (d(xi, xj))i,j=1,...,N , (14)

i.e. it is not necessarily contained in an Euclidean space. This setting covers
several important situations in biomedical domains such as sequence data which
are compared by alignment, time dependent signals for which correlation anal-
ysis gives a good dissimilarity measure, or medical images for which problem
specific dissimilarity measures give good results. In particular, the data space
X is discrete such that prototypes cannot be adapted smoothly within the data
space.

The idea of median clustering is to restrict prototype locations to data points.
The objective of clustering as stated by the quantization error (4) is well defined
if prototypes are restricted to the data set wj ∈ X and the squared Eucli-
dan metric is substituted by a general term d(xi, wj) given by a dissimilarity
matrix only. Similarly, the cost functions of neural gas and the self-organizing
map remain well-defined for wj ∈ X and arbitrary terms d(xi, wj). Thereby,
the dissimilarities D need not fulfill the conditions of symmetry or the triangle
inequality.

One can derive learning rules based on the cost functions in the same way as
batch clustering by means of a subsequent optimization of prototype locations
and assignments. For NG, optimization of the cost function

ÊNG ∼ 1

2N
·

N
∑

i=1

K
∑

j=1

hσ(rk(xi, wj)) · d(xi, wj)

with the constraint wj ∈ X yields the following algorithm for median NG:

init
repeat

kij := rk(xi, wj)

wj := argmin
x

l

∑N

i=1 hσ(kij)d(xi, xl)

Unlike batch NG, a closed solution for optimum prototype locations does not
exist and exhaustive search is necessary. In consequence, one epoch has time
complexity O(N2K) compared to O(NK) for batch NG (neglecting sorting of
prototypes). Because of the discrete locations of prototypes, the probability that
prototypes are assigned to the same location becomes nonzero. This effect should
be avoided e.g. by means of adding random noise to the distances in every run or
via an explicit collision prevention mechanism, as in [52] for the median SOM.

Similarly, median SOM can be derived from the cost function ÊSOM. The
following algorithm is obtained:

init
repeat

kij := δI∗(xi),j

wj := argmin
x

l

∑N

i=1

∑K

k=1 kikhσ(nd(k, j))d(xi, xl)
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As for median NG, prototypes have to be determined by exhaustive search lead-
ing to O(N2K) complexity per epoch.

Median clustering can be used for any given matrix D. It has been shown
in [13] that both, median SOM and median NG converge in a finite number of
steps, because both methods subsequently minimize the respective underlying
cost function until they arrive at a fixed point of the algorithm. A simple demon-
stration of the behavior of median NG can be found in Fig. 1. The popular iris
data set (see [15,5]) consists of 150 points and 3 classes.

Data are standardized to z-scores and batch NG and median NG is applied
using 6 prototypes. Dimensions 3 and 4 are plotted together with the prototypes
found by batch NG and median NG, respectively in Fig. 1. Obviously, the result
is very similar, the quantization error of batch NG being 40.96, while median
NG displays the slightly larger quantization error 44.85 due to the restriction
of prototypes to data points. The classification accuracy obtained by posterior
labeling is 0.84 for batch NG as compared to 0.92 for median NG. Since the prior
class information is not taken into account during training, standard batch NG
yields a larger classification error despite from its larger prototype flexibility.

Supervision

Often, additional label information is available for (parts of) the data set. Un-
supervised data inspection and clustering does not take this information into
account and cluster boundaries do not follow class distributions of the priorly
known classes unless they coincide with unsupervised clusters in the data. This
can be avoided by taking prior label information into account. We assume that
a class label yi is available for every data point xi. We assume yi ∈ R

d, i.e.
d classes are represented by means of a full disjunctive coding (i.e., yi

j = δci,j ,

where ci is the index of the class for the data point xi), including the possibil-
ity of fuzzy assignments. We equip every prototype wj with a label Y j ∈ R

d

which is adapted during training. This vector represents the class label of the
prototype, i.e. the average labels of data in its receptive field.

The aim of semisupervised clustering and data inspection is to determine
prototypes and their labels in such a way that prototypes represent data point
faithfully and they take the labeling into account, i.e. the prototype labels should
correspond to the label of data points of its receptive field. To achieve this goal,
the distance of a prototype wj from a data point xi is extended towards

dβ(xi, wj) := β · d(xi, wj) + (1 − β) · d(yi, Y j) (15)

where d(yi, Y j) denotes the squared Euclidean distance of the labels yi and Y j ,
and β ∈ (0, 1) balances the goal to represent the input data and the labels within
the receptive field correctly.

This extended distance measure can be directly integrated into the cost func-
tions of NG and SOM. Depending on the form of the distance measure, an
extension of batch optimization or median optimization becomes possible. In



VIII

both cases, the standard batch optimization scheme is accompanied by the label
updates, which yields

Y j =
∑

i

hσ(kij) · yi/
∑

i

hσ(kij) (16)

for batch and median NG, respectively, and

Y j =
∑

ik

kikhσ(nd(k, j)) · yi/
∑

ik

kikhσ(nd(k, j)) (17)

for batch and median SOM, respectively. It can be shown in the same way as for
standard batch and median clustering, that these supervised variants converge
after a finite number of epochs towards a fixed point of the algorithm.

The effect of supervision can exemplarly be observed for the iris data set:
supervised batch NG with supervision parameter β = 0.5 causes the prototypes
to follow more closely the prior class borders in particular in overlapping regions
and, correspondingly, an improved classification accuracy of 0.95 is obtained for
supervised batch NG. The mixture parameter β constitutes a hyperparameter
of training which has to be optimized according to the given data set. However,
in general the sensitivity with respect to β seems to be quite low and the default
value β = 0.5 is often a good choice for training. Further, supervision for only
part of the training data xi is obviously possible.

Experiments

We demonstrate the behavior of median NG for a variety of biomedical bench-
mark problems. NG is intended for unsupervised data inspection, i.e. it can give
hints on characteristic clusters and neighborhood relationships in large data sets.
For the benchmark examples, prior class information is available, such that we
can evaluate the methods by means of their classification accuracy. For semisu-
pervised learning, prototypes and corresponding class labels are directly obtained
from the learning algorithm. For unsupervised training, posterior labeling of the
prototypes based on a majority vote of their receptive fields can be used. For all
experiments, repeated cross-validation has been used for the evaluation.

Wisconsin breast cancer The Wisconsin breast cancer diagnostic database
is a standard benchmark set from clinical proteomics [56]. It consists of 569
data points described by 30 real-valued input features: digitized images of a fine
needle aspirate of breast mass are described by characteristics such as form and
texture of the cell nuclei present in the image. Data are labeled by two classes,
benign and malignant.

The data set is contained in the Euclidean space such that we can compare
all clustering versions as introduced above for this data set using the Euclidean
metric. We train 40 neurons using 200 epochs. The dataset is standardized to
z-scores and randomly split into two halfs for each run. The result on the test set
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averaged over 100 runs is reported. We obtain a test set accuracy of 0.957 for the
supervised version and 0.935 for the unsupervised version, both setting β = 0.1
which is optimum for these cases. Results for simple K-means without neighbor-
hood cooperation yield an accuracy 0.938 for standard (unsupervised) K-means
resp. 0.941 for supervised K-means. Obviously, there are only minor, though
significant differences of the results of the different clustering variants on this
data set: incorporation of neighborhood cooperation allows to improve K-means,
incorporation of label information allows to improve fully unsupervised cluster-
ing. As expected, Euclidean clustering is superior to median versions (using the
squared Euclidean norm) because the number of possible prototype locations is
reduced for median clustering. However, the difference is only 1.3%, which is
quite remarkable because of the comparably small data set, thus dramatically
reduced flexibility of prototype locations.

The article [56] reports a test set accuracy of 0.97% using 10-fold cross-
validation and a supervised learning algorithm (a large margin linear classifier
including feature selection). This differs from our best classification result by
1.8%. Thereby, the goal of our approach is a faithful prototype-based represen-
tation of data, such that the result is remarkable.

Chromosomes The Copenhagen chromosomes database is a benchmark from
cytogenetics [45]. A set of 4200 human chromosomes from 22 classes (the autoso-
mal chromosomes) are represented by the grey levels of their images and trans-
ferred to strings which represent the profile of the chromosome by the thickness
of their silhouettes. This data set is non-Euclidean, consisting of strings of dif-
ferent length, and standard neural clustering cannot be used. Median versions,
however, are directly applicable. The edit distance (also known as the Leven-
shtein distance [43]), is a typical distance measure for two strings of different
length, as described in [35,49]. In our application, distances of two strings are
computed using the standard edit distance whereby substitution costs are given
by the signed difference of the entries and insertion/deletion costs are given by
4.5 [49].

The algorithms have been run using 100 neurons and 100 epochs per run.
Supervised median neural gas achieves an accuracy of 0.89 for β = 0.1. This
improves by 6% compared to median K-means. A larger number of prototypes
allows to further improve this result: 500 neurons yield an accuracy of 0.93 for
supervised median neural gas clustering and 0.91 for supervised median K-means
clustering, both taken for β = 0.1. This is already close to the results of fully
supervised k-nearest neighbor classification which uses all points of the training
set for classification. 12-nearest neighbors with the standard edit distance yields
an accuracy 0.944 as reported in [35] whereas more compact classifiers such as
feedforward networks or hidden Markov models only achieve an accuracy less
than 0.91, quite close to our results for only 100 prototypes.
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Proteins

The evolutionary distance of 226 globin proteins is determined by alignment
as described in [48]. These samples originate from different protein families:
hemoglobin-α, hemoglobin-β, myoglobin, etc. Here, we distinguish five classes
as proposed in [23]: HA, HB, MY, GG/GP, and others.

We use 30 neurons and 300 epochs per run. The accuracy on the test set
averaged over 50 runs is reported in Fig. 2. Here, optimum mixing parameters
can be observed for supervised median neural gas and β ∈ [0.5, 0.9], indicating
that the statistics of the inputs guides the way towards a good classification
accuracy. However, an integration of the labels improves the accuracy by nearly
10% compared to fully unsupervised clustering. As beforehand, integration of
neighborhood cooperation is well suited in this scenario. Unlike the results re-
ported in [23] for SVM which uses one-versus-rest encoding, the classification in
our setting is given by only one clustering model. Depending on the choice of
the kernel, [23] reports errors which approximately add up to 0.04 for the leave-
one-out error. This result, however, is not comparable to our results due to the
different error measure. A 1-nearest neighbor classifier yields an accuracy 0.91
for our setting (k-nearest neighbor for larger k is worse; [23] reports an accumu-
lated leave-one-out error of 0.065 for 1-nearest neighbor) which is comparable to
our (clustering) results.

Thus, unsupervised or semi-supervised data inspection which accounts for
both, data statistics and prior labeling, reaches a classification accuracy compa-
rable to fully supervised approaches, i.e. the clusters found by median NG are
meaningful in these cases.

4 Fast implementations

As pointed out previously, the computational cost of median clustering algo-
rithms is quite high: the exhaustive search for the best prototypes leads to a
cost of O(N2K) per epoch (for both median NG and median SOM). This cost
is induced by the need for evaluating a sum of the following form

N
∑

i=1

αi,l,jd(xi, xl),

where xl is a candidate for prototype j. Evaluating this sum is a O(N) opera-
tion which has to be repeated for each candidate (N possibilities) and for each
prototype (K times). As the coefficients of the sums depends on j, it might seem
at first glance that there is no way to reduce the cost.

4.1 Block summing

However, the prior structure of the SOM can be leveraged to reduce the total cost
to O(N2 + NK2) per epoch [12]. Let C∗

j denote the receptive field of prototype
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j, more precisely

C∗
j :=

{

i ∈ {1, . . . , N} | I∗(xi) = j
}

.

Then the prototype wj is given by

wj = argmin
x

l

K
∑

k=1

hσ(nd(k, j))
∑

i∈C∗

k

d(xi, xl).

The main advantage of this formulation over the standard one is that there is
now a clean separation between components that depend on j (the hσ(nd(k, j))
terms) and those that do not (the sums

∑

i∈C∗

k
d(xi, xl)). This leads to the

following version of the median SOM [12]:

init
repeat

C∗
j :=

{

i ∈ {1, . . . , N} | I∗(xi) = j
}

(receptive field calculation)
S(k, l) :=

∑

i∈C∗

k
d(xi, xl) (block summing)

wj := argmin
x

l

∑K

k=1 hσ(nd(k, j))S(k, l) (prototype calculation)

There are N×K block sums S(k, l) which can be computed in O(N2) operations
as the (C∗

k )1≤k≤N form a partition of the dataset. Then the exhaustive search
involves only summing K values per candidate prototype (and per prototype),
leading to a total cost of O(NK2) (of the same order as the computation of the
receptive fields). The total computational load is therefore O(N2 + NK2). In
practice, the speed up is very high. For instance, with the optimized Java imple-
mentation proposed in [12]3, a standard O(N2K) implementation of the median
SOM uses approximately 5.7 seconds per epoch on the Chromosomes dataset
(N = 4200) for K = 100 prototypes (arranged on a 10 × 10 hexagonal grid) on
a standard workstation4. Under identical conditions, the above algorithm uses
only 0.25 second per epoch while providing exactly the same results (this is 23
times faster than the standard implementation, see Table 1 for a summary of
the timing results for the Median SOM variants).

Obviously, the speed up strongly depends on both N and K. For example if
K is raised to 484 (for a regular hexagonal grid of size 22 × 22), the standard
implementation of the median SOM uses approximately 30.1 seconds per epoch,
with the block summing algorithm uses only 3.67 seconds per epoch. This is still
more than 8 times faster than the standard implementation, but as expected the
speed up factor is worse than with a lower value of K. Nevertheless as reflected in
the theoretical cost analysis, extensive simulations conducted in [12] have shown
that the block summing algorithm is always faster than the standard approach
which has therefore no reason to be used.

3 Available at http://gforge.inria.fr/projects/somlib/
4 AMD Athlon 64 3000+ processor with 2GB of main memory, running Fedora Linux

7 and with Sun 1.6 java virtual machine in server mode

http://gforge.inria.fr/projects/somlib/
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4.2 Heuristic search

Additional reduction in the actual running time of the median SOM can be
obtained via the branch and bound principle from combinatorial optimization
[11]. The goal of branch and bound [42] is to avoid to perform an exhaustive
search to solve a minimization problem by means of two helper procedures.
The first procedure is a partition method to be applied to the search space (the
branch part of the method). The second procedure provides quickly a guaranteed
lower bound of the criterion to be minimized on any class of the partition of the
search space (the bound part of the method). By quickly one means faster than
an exhaustive evaluation of the criterion on the class.

A standard implementation of the minimization of a function f by an ex-
haustive search on the search space S proceeds as follows:

initialise best to s1 ∈ S
initialise fbest to f(best)
for all s ∈ S \ {s1} do

compute f(s)
if f(s) < fbest update best to s and fbest to f(s)

To save some evaluations of f , a branch and bound search proceeds as follows:

compute C1, . . . , CK a partition of S
initialise fbest and best by an exhaustive search in C1

for i = 2, . . . , K
compute a lower bound g for f on Ci

if g < fbest update best and fbest by an exhaustive search in Ci

The gain comes from the possibility of pruning entire regions (classes) of the
search space when the lower bound of the criterion f on such a region is higher
than the best value found so far. The best gain is achieved when all regions
except C1 are pruned. Obviously, the order in which the partition classes are
searched is crucial in obtaining good performances.

In the median SOM, the search space is the dataset. This provides a natu-
ral branching procedure as the receptive fields (C∗

j )1≤j≤K of the prototypes of
the SOM build a partition of the dataset. If the receptive fields have compa-
rable sizes, i.e., around N/K, branch and bound can reduce the search space
for each prototype from a size of N to a size of N/K, in the optimal case
(perfect branching). This could reduce the cost of the search from O(NK2) to
O(NK +K2). Indeed, in the ideal case, one would only evaluate the quality cri-

terion
∑K

k=1 hσ(nd(k, j))S(k, l) for candidate prototypes from one cluster (this
would cost O(K(N/K)) = O(N)) and then compare the best value to the lower
bound of each other cluster (O(K) additional operations).

The bounding procedure needs to provide a tight lower bound for the follow-
ing quantity

min
x

l∈C∗

m

K
∑

k=1

hσ(nd(k, j))S(k, l).
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A class of lower bounds is given by the following equation

η(m, j, Θ) :=
∑

k∈Θ

hσ(nd(k, j)) min
x

l∈C∗

m

S(k, l), (18)

where Θ is a subset of {1, . . . , K}. There are several reasons for using such
bounds. First the quantity min

x
l∈C∗

m
S(k, l) depends only on k and l: it can be

computed once and for all before the exhaustive search phase (in fact in parallel
with the computation of the block sum S(k, l) itself). The additional cost is
negligible compared to other costs (there are K2 values which are computed
in O(NK) operations). However, computing η(m, j, {1, . . . , K}) is costly, as the
search process will need this bound for all m and j, leading to a total cost of
O(K3): this is small compared to O(N2 + NK2) but not negligible when K is
large, especially compared to the best case cost (O(N2 +NK +K2) with perfect
branching).

It is therefore interesting in theory to consider strict subsets of {1, . . . , K},
in particular the singleton Θ = {j} which leads to the very conservative lower
bound hσ(nd(j, j))min

x
l∈C∗

m
S(j, l), for which the computation cost is only O(K2)

for all m and j. Despite its simplicity, this bound leads to very good results in
practice [11] because when the neighborhood influence is annealed during train-
ing, hσ(nd(k, j)) gets closer and closer to the Kronecker function δk,j .

Compared to the improvements generated by reducing the complexity to
O(N2 + NK2), the speed up provided by branch and bound is small. Under
exactly the same conditions as in the previous section, the time needed per epoch
is 0.22 second (compared to 0.25) when the bounds are computed with Θ = {j}
and 0.14 second when Θ = {1, . . . , K} (which shows that perfect branching does
not happen as the O(K3) cost of the bounds calculation does not prevent from
getting a reasonable speed up). Complex additional programming tricks exposed
in [11,12] can reduce even further the running time in some situation (e.g., when
K is very large), but on the Chromosomes dataset with K = 100, the best time
is obtained with the algorithm described above. The speed up compared to a
naive implementation is nevertheless quite large as the training time is divided
by 40, while the results are guaranteed to be exactly identical.

Algorithm K = 100 K = 484

Standard implementation 5.74 30.1
Block Summing 0.248 3.67
Branch and bound Θ = {j} 0.224 2.92
Branch and bound Θ = {1, . . . , K} 0.143 1.23
Branch and bound Θ = {1, . . . , K} and early stopping 0.141 0.933

Table 1. Average time needed to complete an epoch of the Median SOM (in
seconds) for the Chromosomes dataset

When K is increased to 484 as in the previous section, the time per epoch
for Θ = {j} is 2.92 seconds and 1.23 seconds when Θ = {1, . . . , K}. In this case,
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the “early stopping” trick described in [11,12] (see also the next Section) can be
used to bring down this time to 0.93 second per epoch. This is more than 32
times faster than the naive implementation and also almost 4 times faster than
the block summing method. Branch and bound together with early stopping
complement therefore the block summing improvement in the following sense:
when K is small (of the order of

√
N or below), block summing is enough to

reduce the algorithmic cost to an acceptable O(N2) cost. While K grows above
this limit, branch and bound and early stopping manage to reduce the influence
of the O(NK2) term on the total running time.

4.3 Median Neural Gas

Unfortunately the solutions described above cannot be applied to median NG,
as there is no way to factor the computation of

∑N

i=1 hσ(kij)d(xi, xl) in a similar
way as the one used by the median SOM. Indeed, the idea is to find in the sum
sub-parts that do not depend on j (the prototype) so as to re-use them for all
the prototypes. The only way to achieve this goal is to use a partition on the
dataset (i.e., on the index i) such that the values that depend on j, hσ(kij),
remain constant on each class. This leads to the introduction of a partition Rj

whose classes are defined by

Rj
k =

{

i ∈ {1, . . . , N} | rk(xi, wj) = k
}

.

This is in fact the partition induced by the equivalence relation on {1, . . . , N}
defined by i ∼j i′ if and only if hσ(kij) = hσ(ki′j). Using this partition, we have

N
∑

i=1

hσ(kij)d(xi, xl) =

K
∑

k=1

hσ(k)
∑

i∈R
j

k

d(xi, xl). (19)

At first glance, this might look identical to the factorisation used for the me-
dian SOM. However there is a crucial difference: here the partition depends

on j and therefore the block sums
∑

i∈R
j

k

d(xi, xl) cannot be precomputed (this

factorization will nevertheless prove very useful for early stopping).
For both algorithms, the fast decrease of hσ suggests an approximation in

which small values of αi,l,j (i.e., of hσ(kij) and of hσ(nd(k, j))) are discarded.
After a few epochs, this saves a lot of calculation but the cost of initial epochs
remains unchanged. Moreover, this approximation scheme changes the results
of the algorithms, whereas the present section focuses on exact and yet fast
implementation of the median methods.

A possible source of optimization for median NG lies in the so called “early
stopping” strategy exposed for the median SOM in [11,12]. The idea is to leverage
the fact that the criterion to minimize is obtained by summing positive values. If
the sum is arranged in such as way that large values are added first, the partial
result (i.e., the sum of the first terms of the criterion) can exceed the best value
obtained so far (from another candidate). Then the loop that implements the
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summing can be stopped prematurely reducing the cost of the evaluation of
the criterion. Intuitively, this technique works if the calculation are correctly
ordered: individual values in the sum should be processed in decreasing order
while candidate prototypes should be tested in order of decreasing quality.

For the median SOM, as shown in [11,12], early stopping, while interesting
in theory, provides speed up only when K is large as the use of block summing
has already reduced the cost of the criterion evaluation from O(N) to O(K). On
the Chromosomes dataset for instance, the previous Section showed that early
stopping gains nothing for K = 100 and saves approximately 24% of the running
time for K = 484 (see Table 1).

However, as there is no simplification in the criterion for median NG, early
stopping could cause some improvement, especially as the sorting needed to
compute the rk function suggests an evaluation order for the criterion and an
exploration order during the exhaustive search.

The computation of wj := arg minxl

∑N

i=1 hσ(kij)d(xi, xl) by an early stop-
ping algorithm takes the following generic form:

q := ∞
for l ∈ {1, . . . , N} (candidate loop)

s := 0
for i ∈ {1, . . . , N} (inner loop)

s := s + hσ(kij)d(xi, xl)
if s > q break the inner loop

endfor (inner loop)
if s < q then

q := s
wj := xl

endif
endfor (candidate loop)

Ordering Both loops (candidate and inner) can be performed in specific orders.
The candidate loop should analyse the data points xl in decreasing quality order,
i.e., it should start with xl such that

∑N

i=1 hσ(kij)d(xi, xl) is small and end with
the points that have a large value of this criterion. This optimal order is obviously
out of reach because computing it implies the evaluation of all the values of
the criterion, precisely what we want to avoid. However, Median Neural Gas
produces clusters of similar objects, therefore the best candidates for prototype
wj are likely to belong to the receptive field of this prototype at the previous
epoch. A natural ordering consists therefore in trying first the elements of this
receptive field and then elements of the receptive fields of other prototypes in
increasing order of dissimilarities between prototypes. More precisely, with

Ck :=
{

i ∈ {1, . . . , N} | I(xi) = k
}

,

the candidate loop starts with Cj1 = Cj and proceeds through the (Cji
)2≤i≤K

with d(wj , wji−1) ≤ d(wj , wji). Computing this order is fast (O(K2 log K) op-
erations for the complete prototype calculation step).
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Another solution consists in ordering the candidate loop according to increas-
ing ranks klj using the partition Rj defined previously instead of the receptive
fields.

The inner loop should be ordered such that s increases as quickly as possible:
high values of hσ(kij)d(xi, xl) should be added first. As for the candidate loop
this cannot be achieved exactly without loosing all benefits of the early stopping.
A simple solution consists again in using the partition Rj. The rational is that
the value of hσ(kij)d(xi, xl) is likely to be dominated by the topological term
hσ(kij), especially after a few epochs when hσ becomes peaked in 0. This ordering
has three additional benefits. As explained above, the factorized representation
provided by equation (19) allows to save some calculations. Moreover, Rj can be
computed very efficiently, as a side effect of computing the ranks kij . If they are
stored in a NK array, Rj is obtained by a single pass on the index set {1, . . . , N}.
Computing the Rj for all j has therefore a O(NK) cost. Finally, Rj can also be
used for ordering the candidate loop.

It should be noted that using different orderings for the candidate loop can
lead to different final results for the algorithm in case of ties between candidates
for prototypes. In practice, the influence of such differences is extremely small,
but contrarily to the SOM for which all experiments produced in [11,12] and in
this chapter gave exactly the same results, regardless of the actual implementa-
tion, variants of the Median Neural Gas exhibit a small variability in the results
(less than one percent of differences in the quantization error, for instance).
Those differences have been neglected as they could be suppressed via a slightly
more complex implementation in which ties between candidate prototypes are
broken at random (rather than via the ordering); using the same random gen-
erator would produce exactly the same results in all implementations.

Early stopping granularity Experiments conducted in [11,12] have shown
that early stopping introduces a non negligible overhead to the inner loop simply
because it is the most intensive part of the algorithm which is executed N2K
times in the worst case. A coarse grain early stopping strategy can be used to
reduce the overhead at the price of a more complex code and of less early stops.
The idea is to replace the standard inner loop by the following version:

s := 0
for m ∈ {1, . . . , M} (monitoring loop)

for i ∈ Bm (internal loop)
s := s + hσ(kij)d(xi, xl)

endfor (internal loop)
if s > q break the monitoring loop

endfor (monitoring loop)

The main device is a partition B = (B1, . . . , BM ) of {1, . . . , N} which is used to
divide the computation into uninterrupted calculations (internal loops) and to
check on a periodic basis by the monitoring loop. The value of M can be used
to tune the grain of the early stopping with a classical trade-off between the
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granularity of the monitoring and its overhead. In this chapter, we have focused
on a particular way of implementing this idea: rather than using an arbitrary
partition B, we used the Rj partition. It has two advantages over an arbitrary
one: is provides an interesting ordering of the monitoring loop (i.e., in decreasing
order of hσ(kij)) and allows the code to use the factorized equation (19).

Algorithm K = 100 K = 500

Standard implementation 5.31 25.9
Early stopping without ordering 5.26 24.3
Early stopping with candidate loop ordering 4.38 20.7
Full ordering and fine grain early stopping 1.16 7.45
Full ordering and coarse grain early stopping 0.966 5.91

Table 2. Average time needed to complete an epoch of the Median Neural Gas
(in seconds) for the Chromosomes dataset

Experiments Variants of the early stopping principle applied to Median Neural
Gas were tested on the Chromosomes (N = 4200) with K = 100 and K = 500.
They are summarized in Table 2. The standard implementation corresponds to
the exhaustive search O(N2K) algorithm. The need for ordering is demonstrated
by the results obtained by a basic implementation of early stopping in which the
natural data ordering is used for both candidate and inner loops. Moreover, while
the candidate loop order based on receptive fields reduces the running time, the
gain remains limited when the inner loop is not ordered (the running time is
reduced by approximately 20% compared to the standard implementation).

Much better improvements are reached when the Rj partitions are used to
order both loops. The running time is divided by more than 5 for K = 100 and
by more than 4 for K = 500, when a coarse grain early stopping method is used.
The fine grain version is slightly less efficient because of the increased overhead
in the inner loop.

The structure of the Median Neural Gas algorithm prevents the use of the
block summing trick which is the main source of improvement for the Median
SOM. In the case of Neural Gas, early stopping provides better improvement over
the state-of-the-art implementation, than it does for the SOM, because it targets
an internal loop with O(N) complexity whereas the block summing approach
leads to a O(K) inner loop. In the end, the optimized Median SOM remains
much faster than the Median Neural Gas (by a factor 6). However, the SOM
is also very sensitive to its initial configuration whereas Neural Gas is rather
immune to this problem. In practice, it is quite common to restart the SOM
several times from different initial configuration, leading to quite comparable
running time for both methods.
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5 Approximate patch clustering for large data sets

A common challenge today [57], arising especially in computational biology,
image processing, and physics, are huge datasets whose pairwise dissimilarities
cannot be hold at once within random-access memory during computation, due
to the sheer amount of data (a standard workstation with 4 GB of main memory
cannot hold more than N = 215 data points when they are described by a
symmetric dissimilarity matrix). Thus, data access is costly and only a few,
ideally at most one pass through the data set is still affordable.

Most work in this area can be found in the context of heuristic (possibly
hierarchical) clustering on the one side and classical K-means clustering on the
other side. Heuristic algorithms often directly assign data consecutively to clus-
ters based on the distance within the cluster and allocate new clusters as re-
quired. Several popular methods include CURE, STING, and BIRCH [22,55,58].
These methods do not rely on a cost function such that an incorporation of label
information into the clustering becomes difficult.

Extensions of K-means clustering can be distinguished into methods which
provide guarantees on the maximum difference of the result from classical K-
means, such as presented in the approaches [21,34]. However, these variants use
resources which scale in the worst case with a factor depending on N (N being
the number of points) with respect to memory requirements or passes through
the data set. Alternatives are offered by variants of K-means which do not provide
approximation guarantees, but which can be strictly limited with respect to space
requirements and time. An early approach has been proposed in [50]: data are
clustered consecutively in small patches, whereby the characteristics of the data
and the possibility to compress subsets of data are taken into account. A simpler
although almost as efficient method has been proposed in [14]: Standard K-means
is performed consecutively for patches of the data whereby each new patch is
enriched by the prototypes obtained in the previous patch. A sufficient statistics
of the outcome of the last run can thereby easily be updated in a consecutive
way, such that the algorithm provides cluster centres after only one pass through
the data set, thereby processing the data consecutively in patches of predefined
fixed size.

Some of these ideas have been transferred to topographic maps: the original
median SOM [41] proposes simple sampling to achieve efficient results for huge
data sets. Simple sampling is not guaranteed to preserve the statistics of the
data and some data points might not be used for training at all, because of
which reason [41] proposes to use all data in the last run. An approach which
uses all available statistics consists in an extension of patch clustering towards
neural gas and alternatives, as proposed in [3,2]. This method processes data in
patches, thereby integrating the sufficient statistics of results of the previous run,
such that all available information processed so far is used in each consecutive
clustering step. Since the runs rely on a statistics of the data, the overall result
only approximates the optimum solution obtained by standard batch clustering.
However, in practice, results are quite good.
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An extension of this method to median clustering is possible and yields
promising results, as proposed in [29]. Here we give an introduction to this
simple and powerful extension of median clustering to huge data sets. As a side
effect, this method dramatically reduces the complexity of clustering to linear
complexity in N , N being the number of data points.

Assume, as before, a dissimilarity matrix D with entries dij representing
the dissimilarity of patterns. Here we assume symmetry of the matrix, but no
further requirements need to be fulfilled. For huge data sets, only parts of the
matrix D fit into main memory. We assume that access to single elements of the
matrix is possible at any time, e.g. the elements are stored in a database or the
dissimilarity values are computed on the fly by means of some (possibly complex)
dissimilarity measure (such as pairwise alignment of proteins using FASTA). The
exact way how dissimilarities are accessed is not relevant for patch clustering.

During processing of patch Median NG, np disjoint patches of fixed size
p = ⌊m/np⌋ are taken from the dissimilarity matrix D consecutively,5 where
every patch

Pi = (dst)s,t=(i−1)·p,...,i·p−1 ∈ R
p×p

is a submatrix of D, representing data points (i− 1) · p to i · p− 1. The patches
are small such that they fit into main memory. The idea of the patch scheme is
to add the prototypes from the processing of the former patch Pi−1 as additional
datapoints to the current patch Pi, forming an extended patch P ∗

i to work on
further. The additional datapoints – the former prototypes – are weighted ac-
cording to the size of their receptive fields, i.e. how many datapoints they have
been representing in the former patch. Therefore, every datapoint xi, as a po-
tential prototype, is equipped with a multiplicity mi, that is at first initialized
with mi = 1. Unlike simple sampling strategies, every point of the dataset is
considered exactly once and a sufficient statistics of all already processed data
is passed to further patches by means of the weighted prototypes.

Unlike the situation of patch NG in Euclidean space [3,2], where inter-patch
distances can always be recalculated with help of the Euclidean metric, we are
now dealing with an unknown mathematical space. We have to construct the
extended patch from given dissimilarity data. The extended patch P ∗

i is defined
as

P ∗
i =

























d(Ni−1) d(Ni−1, Pi)

d(Ni−1, Pi)
T Pi

























5 The remainder is no further considered here for simplicity. In the practical imple-
mentation the remaining datapoints are simply distributed over the first (M −p ·np)
patches.
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where
d(Ni−1) = (dst)s,t∈Ni−1

∈ R
K×K

d(Ni−1, Pi) = (dst)s∈Ni−1,t=(i−1)·p,...,i·p−1 ∈ R
K×p

denote the inter-distances of former prototypes and the distances between former
prototypes and current patch points, respectively. Every point is weighted with
a multiplicity mj which is set to 1 for all new points j ∈ [(i − 1) · p, i · p − 1].
For points which stem from prototypes, the multiplicity is set to the sum of the
multiplicities of all points in its receptive field.

To apply median clustering, we have to incorporate these multiplicities into
the learning scheme. The cost function becomes

ÊNG ∼ 1

2N
·

N
∑

i=1

K
∑

j=1

hσ(rk(xi, wj)) · mj · d(xi, wj) (20)

where, as before, prototype locations wj are restricted to data points. Optimum
ranks are obtained as beforehand. Optimum prototypes are determined by means
of the formula

wj = argmin
x

l

N
∑

i=1

hσ(rij) · mj · d(xi, xl) (21)

Picking up the pieces, we obtain the following algorithm:

Patch Median Neural Gas

Cut the first Patch P1

Apply Median NG on P1 −→ Prototypes N1

Update Multiplicities mj

Repeat for i = 2, . . . , np

Cut patch Pi

Construct Extended Patch P ∗
i using Pi and Ni−1

Apply modified Median NG with Multiplicities
−→ Prototypes Ni

Update Multiplicities mj

Return final Prototypes Nnp

Median SOM can be extended to patch clustering in a similar way.
We demonstrate the behavior of patch clustering on the breast cancer data

set which has been used beforehand. Here, we compare data points with the
Cosine Measure

dcos(x
i, xj) = 1 − xi · xj

‖xi‖2 · ‖xj‖2
.

Standard median batch NG for 40 neurons and 100 epochs yields an average
classification accuracy of 0.95 in a repeated 10-fold cross-validation. In compari-
son, patch median NG with 5 patches, i.e. 114 data points per patch, arrives at a
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classification accuracy of 0.94, yielding only a slight decrease of the classification
accuracy.

The complexity of standard median NG is improved by incorporation of
patches, as can be seen as follows. Assume a fixed patch size p independent of
the number of datapoints, e.g. p is chosen according to the main memory. Then
the algorithm uses only O(m

p
·(p+K)2) = O(m ·p+m ·K) = O(m) entries of the

dissimilarity matrix, compared to O(m2) in the original Median NG method.
Moreover, every epoch (within a patch) has complexity O(p2) = constant as
opposed to O(N2) for an epoch in full median clustering. Therefore the method
does not only overcome the problem of limited memory, it also dramatically
accelerates the processing of datasets, what might be useful in time critical
applications.

6 Discussion

Neural clustering methods such as SOM and NG offer robust and flexible tools
for data inspection. In biomedical domains, data are often nonvectorial such
that extensions of the original methods towards general dissimilarity data have
to be used. In this chapter, we presented an overview about one particularly
interesting technique which extends NG and SOM towards dissimilarities by
means of the generalized median. Prototypes are restricted to data positions
such that the standard cost functions are well defined and extensions such as
supervision can easily be transferred to this setting. Moreover, this way, clusters
are represented in terms of typical exemplars from the data set, i.e. the idea offers
a data representation which can be easily interpreted by experts in biomedical
domains.

These benefits are paid back by increased costs in a naive implementation
of the algorithms, the complexity of one epoch being of order N2 instead of N ,
where N refers to the number of data points. Since data are represented by a
general N × N dissimilarity matrix instead of N single vectors, these increased
costs are to some extent unavoidable if the full information contained in the data
is considered. Nevertheless, a variety of structural aspects allow to reduce the
costs of median clustering in practical situations.

We discussed a variety of techniques which lead to a dramatic decrease of
the training time while (approximately) preserving the quality of the original
methods. These approaches can be decomposed into exact methods which prov-
ably lead to the same results as the original implementation and approximations
which slightly reduce the quality of the results in return for an improved effi-
ciency. Exact methods include

– block summing for median SOM due to the specific and fixed structure of the
SOM neighborhood; as pointed out in this chapter, block summing leads to
a major reduction of the computation time in this case. The method cannot
be applied to NG, though, because NG does not rely on a priorly fixed lattice
structure.
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– branch and bound methods which allow to reduce the number of necessary
computations depending on the situation at hand; usually, the computational
savings strongly depend on the order in which computations are performed.
As pointed out in this chapter, branching can be done with respect to can-
didate prototypes on the one hand and summands which contribute to the
overall cost associated with one prototype on the other hand. For both set-
tings, the topological ordering of the data suggests a natural decomposition
of the whole search space into parts. This procedure yields to a significant
reduction of the computational costs for NG in particular for later states of
training with partially ordered setting. For SOM, the savings are only minor
compared to savings by means of block summing, though possibly significant
depending on the number of prototypes.

These methods lead to the same results as a naive implementation but run in a
fraction of the time.

Compared to these approaches, approximate methods constitute a compro-
mise of accuracy and complexity. We presented a patch clustering approach for
median clustering, which processes data in patches of fixed size and integrates
the results by means of the sufficient statistics of earlier runs. This way, the
computation time is reduced from O(N2) to O(N). In particular, only a small
part of the dissimilarity matrix is considered in patch training. This has the
additional benefit that, this way, only a finite and fixed memory size is required
and the clustering method can readily be applied to huge streaming data sets.
Further, since only a fraction of the dissimilarity matrix needs to be computed,
this method is particularly suited for biomedical applications with complex dis-
similarity measures such as alignment distance.
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16. J.-C. Fort, P. Letrémy, and M. Cottrell. Advantages and drawbacks of the batch
kohonen algorithm. In M. Verleysen, editor, ESANN’2002, pages 223–230. D Facto,
2002.

17. B. Frey and D. Dueck. Clustering by passing messages between data points. Sci-
ence, 315:972–977, 2007.

18. B. Frey and D. Dueck. Response to ’clustering by passing messages between data
points’. Science, 319:726d, 2008.

19. T. Graepel, R. Herbrich, P. Bollmann-Sdorra, and K. Obermayer. Classification
on pairwise proximity data. In NIPS, vol. 11, pages 438–444. MIT Press, 1999.

20. T. Graepel and K. Obermayer. A stochastic self-organizing map for proximity
data. Neural Computation, 11:139–155, 1999.

21. S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams.
In IEEE Symposium on Foundations of Computer Science, pages 359–366, 2000.

22. S. Guha, R. Rastogi, and K. Shim. Cure: an efficient clustering algorithm for
large datasets. In Proceedings of ACM SIGMOD International Conference on
Management of Data, pages 73–84, 1998.

23. B. Haasdonk and C. Bahlmann. Learning with distance substitution kernels. In
Pattern Rcognition - Proc. of the 26th DAGM Symposium, 2004.

24. B. Hammer and A. Hasenfuss. Relational neural gas. In J. Hertzberg, M. Beetz,
and R. Englert, editors, KI 2007: Advances in Artificial Intelligence, 30th Annual
German Conference on AI, KI 2007, volume 4667 of Lecture Notes in Artificial
Intelligence, pages 190–204, Berlin, 2007. Springer.

25. B. Hammer and B. Jain. Neural methods for non-standard data. In M. Verleysen,
editor, European Symposium on Artificial Neural Networks’2004, pages 281–292.
D-side publications, 2004.

26. B. Hammer, A. Micheli, A. Sperduti, and M. Strickert. Recursive self-organizing
network models. Neural Networks, 17(8-9):1061–1086, 2004.

27. B. Hammer and T. Villmann. Classification using non standard metrics. In M. Ver-
leysen, editor, ESANN’05, pages 303–316. d-side publishing, 2005.



XXIV

28. P. Hansen and M. Mladenovic. Todo. Location Science, 5:207, 1997.
29. A. Hasenfuss and B. Hammer. Single pass clustering and classification of large

dissimilarity datasets. In AIPR. 2008.
30. R. J. Hathaway and J. C. Bezdek. Nerf c-means: Non-euclidean relational fuzzy

clustering. Pattern Recognition, 27(3):429–437, 1994.
31. R. J. Hathaway, J. W. Davenport, and J. C. Bezdek. Relational duals of the

c-means algorithms. Pattern Recognition, 22:205–212, 1989.
32. T. Heskes. Self-organizing maps, vector quantization, and mixture modeling. IEEE

Transactions on Neural Networks, 12:1299–1305, 2001.
33. T. Hofmann and J. M. Buhmann. Pairwise data clustering by deterministic anneal-

ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(1):1–14,
1997.

34. R. Jin, A. Goswami, and G. Agrawal. Fast and exact out-of-core and distributed
k-means clustering. Knowledge and Information System, 1:17–40, 2006.

35. A. Juan and E. Vidal. On the use of normalized edit distances and an efficient
k-nn search technique (k-aesa) for fast and accurate string classification. In ICPR
2000, volume 2, pages 680–683, 2000.
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Fuzzy labeled self-organizing map with label-adjusted prototypes. In F. Schwenker,
editor, Proceedings of Conference Articial Neural Networks in Pattern Recognition
(ANNPR) 2006, pages 46–56. Springer, 2006.

55. W. Wang, J. Yang, and R. Muntz. Sting: a statistical information grid approach to
spatial data mining. In Proceedings of the 23rd VLDB Conference, pages 186–195,
1997.

56. W. Wolberg, W. Street, D. Heisey, and O. Mangasarian. Computer-derived nuclear
features distinguish malignant from benign breast cytology. Human Pathology,
26:792–796, 1995.

57. Q. Yang and X. Wu. 10 challenging problems in data mining research. International
Journal of Information Technology & Decision Making, 5(4):597–604, 2006.

58. T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data clustering
method for very large databases. In Proceedings of the 15th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Databas Systems, pages 103–114,
1996.



XXVI

-2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

4

dim 1

d
im

 2

-2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

dim 1

d
im

 3

-2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

2

dim 1

d
im

 4

-3 -2 -1 0 1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

dim 2

d
im

 3

-3 -2 -1 0 1 2 3 4
-1.5

-1

-0.5

0

0.5

1

1.5

2

dim 2

d
im

 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

dim 3

d
im

 4

-2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

4

dim 1

d
im

 2

-2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

dim 1

d
im

 3

-2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

2

dim 1

d
im

 4

-3 -2 -1 0 1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

dim 2

d
im

 3

-3 -2 -1 0 1 2 3 4
-1.5

-1

-0.5

0

0.5

1

1.5

2

dim 2

d
im

 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

dim 3

d
im

 4

Fig. 1. Results of batch NG (top) and median NG (bottom) on the iris data set
projected to two of the four data dimensions.
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Fig. 2. Results of the methods for the protein database using alignment dis-
tance and varying mixing parameter β. The version indicated with + refers to
(optimum) posterior labeling of prototypes.


