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Force and Stiffness of Passive Magnetic

Bearings Using Permanent Magnets.

Part 1: Axial Magnetization
R. Ravaud, G. LemarquandSenior IEEEand V. Lemarquand

Abstract

This paper deals with the calculation of the force and the stiffness between two ring permanent

magnets whose polarization is axial. Such a configuration corresponds to a passive magnetic bearing. All

the calculations are determined by using the Coulombian model. This paper also discusses the optimal

ring dimensions in order to have a great force or a great stiffness between the rings. Such properties are

commonly searched in passive magnetic bearings and we propose a three-dimensional method allowing

to optimize these parameters. Furthermore, an important result is established in this paper: the exact

relative position of the rings for which the force is the strongest depends on the air gap dimension. As

the expressions presented in this paper give this exact relative position, manufacturers can easily optimize

their passive magnetic bearings. It is noted that this result is new because the curvature effect is taken into

account in this paper. Furthermore, such semi-analytical expressions are more precise than the numerical

evaluation of the magnetic forces obtained with the finite element method. In addition, semi-analytical

expressions have a low computational cost whereas the finiteelement method has a high one. Thereby, as

shown in this paper, such calculations allow an easy optimization of quadripolar lenses or devices using

permanent magnets.
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I. I NTRODUCTION

Passive magnetic bearings are commonly manufactured with permanent magnets axially or radially

magnetized. The quality of such devices depend on the magnetmaterial, its magnetic polarization and the

dimensions of all the magnets used. The first studies concerning passive magnetic bearings with permanent

magnets have been done by Yonnet [1][2]. Such passive magnetic bearings used only permanent magnets

radially or axially magnetized. Permanent magnets are commonly used in many electrical devices and

engineering applications. Indeed, most engineering applications need several ring permanent magnets and

the determination of the magnetic force between them is thusrequired. It is to be noted that several way

of obtaining magnetic forces between rings are possible. Authors generally use either numerical means

or 2D analytical calculations for the determination of the magnetic field or of the magnetic forces created

between ring permanent magnets [3]-[5]. Even if numerical means are very interesting for evaluating

the mechanical properties of structures using ring permanent magnets, we think that analytical or semi-

analytical expressions are more useful because they have a low computational cost. Indeed, the major

problem of a fully numerical approach lies in the fact that ithas a high computational cost. Consequently,

alternative solutions are thus required. Some authors haveproposed semi-analytical expressions of the

magnetic field created by ring permanent magnets [6]-[11]. However, according to our knowledge, no

papers have been written concerning the three-dimensionalcalculation of the magnetic force or the

magnetic stiffness between ring permanent magnets. In any case, some approaches allow to have a very low

computational cost [12]-[20] for the determination of the magnetic forces exerted between ring permanent

magnets. It is noted that it exists another way of calculating the forces between ring permanent magnets

[21]-[24]. The 2D analytical approach allows an easy optimization of the ring dimensions but this approach

is not very precise [25]-[28] if the ring radius is small. When the ring permanent magnets are axially

magnetized, the magnetic field components can be determinedat any point of the space [29]. Such an

approach is appropriate because the algorithms used to calculate elliptic integrals are both very robust and

fast (less than 0,2s to determine the magnetic components ofthe field created by ring permanent magnets

whose polarization is axial). Another interesting papers show that the calculation of the force between

thin coaxial circular coils in air is possible by using special functions [30].

First, this paper presents useful semi-analytical expressions of the force and the stiffness exerted between

two ring permanent magnets whose polarization is axial. Then, this paper deals with the optimization of

the ring dimensions in order to have either a great force or a great stiffness between the rings. We show that

this way of determining these mechanical properties allowsus to optimize precisely the ring dimensions.
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All the expressions determined in this paper are available online [31].

II. CALCULATION OF THE AXIAL FORCE BETWEEN THE TWO RING PERMANENTMAGNETS

This section presents a semi-analytical calculation of theforce exerted between two ring permanent

magnets whose polarization is axial. It is noted that the tworing permanent magnets are radially centered.

The interest of using ring permanent magnets axially magnetized lies in the fact that they are very simple

to realize.

A. Notation and geometry

The geometry considered is shown in Fig 1. A two dimensional representation of the passive magnetic

bearing is shown in Fig 2. We can say that such a configuration corresponds to an axial bearing. The

outer radius of the outer ring isrout and the inner one isrin. The outer ring height ish. The outer radius

of the inner ring isrout2 and the inner one isrin2. The ring inner height iszb − za. It is to be noted that

the Coulombian model of a permanent magnet is used. As a consequence, each ring permanent magnet is

represented by two charged planes located on the upper and lower faces of each ring. For the outer ring,

the upper face is charged with the magnetic pole surface density +σ∗ and the lower face is charged with

the magnetic pole surface density−σ∗. For the inner ring, the upper face is charged with the magnetic

pole surface density−σ∗ and the lower face is charged with the magnetic pole surface density +σ∗.

Moreover, it is noted that all the illustrative calculations are done withσ∗ = ~J.~n = 1T where ~J is the

magnetic polarization vector and~n is the unit normal vector which is directed towards 0.

B. Semi-analytical expression of the magnetic force

The axial passive magnetic bearing studied has two ring permanent magnets which are supposed to be

radially centered. Consequently, there is only the axial component of the magnetic force which is exerted

between the two rings. We call it the axial forceFz. This axial force can be determined by integrating

the magnetic field created by the outer ring on the charge contributions of the inner one [1]. By denoting

Hz, the axial component of the magnetic field produced by the outer ring permanent magnet, the axial

force Fz can be written as follows:

Fz = −

∫ ∫

(Sup)

Hzσ
∗

2dS̃ +

∫ ∫

(Sdown)

Hzσ
∗

2dS̃ (1)
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Fig. 1. Representation of two ring permanent magnets axially magnetized. The inner radius of the outer ring is denotedrin, the

outer one isrout, its height ish. The inner radius of the inner ring is denotedrin2, the outer one isrout2, its height iszb − za.
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Fig. 2. Axial magnetic bearing using magnets radially magnetized for mutual attraction. The inner radius of the outer ring is

denotedrin, the outer one isrout, its height ish. The inner radius of the inner ring is denotedrin2, the outer one isrout2, its

height iszb − za.
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whereSup is the upper face of the inner ring permanent magnet andSdown is the lower face of the inner

ring permanent magnet. We deduct that this axial force can beexpressed as follows:

Fz = −

∫ 2π

θ1=0

∫ 2π

θ2=0

∫ rout

r1=rin

∫ rout2

r2=rin2

zaa(za)r1r2dr1dr2dθ1dθ2

−

∫ 2π

θ1=0

∫ 2π

θ2=0

∫ rout

r1=rin

∫ rout2

r2=rin2

(za + b − h) a(za + b − h)r1r2dr1dr2dθ1dθ2

+

∫ 2π

θ1=0

∫ 2π

θ2=0

∫ rout

r1=rin

∫ rout2

r2=rin2

(za + b)a(za + b)r1r2dr1dr2dθ1dθ2

+

∫ 2π

θ1=0

∫ 2π

θ2=0

∫ rout

r1=rin

∫ rout2

r2=rin2

(za − h)a(za − h)r1r2dr1dr2dθ1dθ2

(2)

with

a(ξ) =
σ∗

1σ∗

2

4πµ0

1

(r2
1 + r2

2 − 2r1r2 cos(θ) + ξ2)
3

2

(3)

whereµ0 is the permeability of the vacuum,b = zb − za, σ∗

1 is the magnetic pole surface density owing

to the outer ring permanent magnet andσ∗

2 is the magnetic pole surface density owing to the inner

ring permanent magnet. After three analytical integrations according tor1, r2 andθ2, we obtain a semi-

analytical expression of the axial force using only one numerical integration. As the expression obtained

own only one numerical integration, its calculation is veryfast.

Fz =
σ1σ2

2µ0

∫ 2π

θ=0

(A(0) + A(h − b) − A(−b) − A(h)) dθ (4)

A(x) = f(x, za, rout, θ, rin2, rout2) − f(x, za, rin, θ, rin2, rout2) (5)

f(x, za, y, θ, rin2, rout2) = X((za − x)2, y2, y cos(θ), cos(2θ), rin2, rout2) (6)

X(a, b, d, g, r2) = −

√

a

2(1 + g)2

(

4(1 + g)
√

a + b + r2(−2d + r2) +
α1 log[β1]

√

ξ1
−

α2 log[β2]
√

ξ2

)

(7)

α1 = (−1)
3

4

√

2a
(√

2a(−1 + g)
√

1 + g + 2id(1 + g)
)

(8)

α2 = (−1)
1

4

√

2a
(√

2a(−1 + g)
√

1 + g − 2id(1 + g)
)

(9)
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β1 =
−2(β11 + β12)(1 + g)2

ξ1
√

a
(√

2a(−1 + g)
√

1 + g + 2id(1 + g)
) (√

2a
√

1 + g − i(1 + g)r2

) (10)

β11 = (1 + i)(b + bg + a(1 + g)) + 2(−1)
3

4

√

a
√

1 + g(d − r2) (11)

β12 = −(1 + i)(dr2 + dgr2) + i
√

2
√

1 + gξ1

√

a + b − 2dr2 + r2
2 (12)

ξ1 =

√

−ia(−1 + g) + 2
√

2ad
√

1 + g − ib(1 + g) (13)

β2 =
2(1 + g)2 (β21 + β22)

ξ2
√

a
(√

2a(−1 + g)
√

1 + g − 2id(1 + g)
) (√

2a
√

1 + g + i(1 + g)r2

) (14)

β21 = −(1 − i)(b + bg + a(1 + g)) + 2(−1)
1

4

√

a
√

1 + g(d − r2) (15)

β22 = (1 − i)dr2(1 + g) + i
√

2
√

1 + gξ2

√

a + b − 2dr2 + r2
2 (16)

ξ2 =

√

ia(−1 + g) + 2
√

2ad
√

1 + g + ib(1 + g) (17)

Figure 3 represents the axial force exerted between two ringpermanent magnets versus the axial

displacement of the inner ring permanent magnet for the following dimensions:rin = 0.025m, rout =

0.028m, rin2 = 0.0219m, rout2 = 0.0249m, J = 1T, h = 0.003m, zb − za = 0.003m.

C. Determination of the stiffness between two ring permanent magnets whose polarization is axial

This section presents a semi-analytical calculation of themagnetic stiffness exerted between two ring

permanent magnets whose polarization is axial. It is noted that the two ring permanent magnets are

assumed to be radially centered. The axial stiffnessKz can be determined as follows:

Kz = −
∂

∂za

Fz (18)

whereFz is the axial force (4) exerted between two ring permanent magnets.
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Fig. 3. Representation of the axial force exerted between two ring permanent magnets versus the axial displacement of the inner

ring permanent magnet. The inner radius of the outer ring is denotedrin, the outer one isrout, its height ish. The inner radius

of the inner ring is denotedrin2, the outer one isrout2, its height iszb − za.

So, we obtain :

Kz = +
∂

∂za

∫ 2π

θ1=0

∫ 2π

θ2=0

∫ rout

r1=rin

∫ rout2

r2=rin2

zaa(za)r1r2dr1dr2dθ1dθ2

+
∂

∂za

∫ 2π

θ1=0

∫ 2π

θ2=0

∫ rout

r1=rin

∫ rout2

r2=rin2

(za + b − h) a(za + b − h)r1r2dr1dr2dθ1dθ2

−
∂

∂za

∫ 2π

θ1=0

∫ 2π

θ2=0

∫ rout

r1=rin

∫ rout2

r2=rin2

(za + b) a(za + b)r1r2dr1dr2dθ1dθ2

−
∂

∂za

∫ 2π

θ1=0

∫ 2π

θ2=0

∫ rout

r1=rin

∫ rout2

r2=rin2

(za − h) a(za − h)r1r2dr1dr2dθ1dθ2

(19)

wherea(ξ) is given by (3) andb = zb − za.

After calculating the derivative with respect toza and integrating according toθ2 and r1, the axial

stiffness can be expressed as follows:

Kz =

∫ 2π

θ=0

∫ rout2

r2=rin2

f̃dr2dθ (20)

f̃ = f(h, za + b) − f(h, za) + f(0, za) − f(0, za + b) (21)
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f(α, β) = −

8r2(−α + β)2
(

(α − β)2 + r2
2 − r2rin cos(θ)

)

√

r2
2 + r2

in + (α − β)2 − 2r2rin cos(θ) (2(α − β)2 + r2
2 − r2

2 cos(2θ))
2

+
8r2(−α + β)2

(

(α − β)2 + r2
2 − r2rout cos(θ)

)

√

r2
2 + r2

out + (α − β)2 − 2r2rout cos(θ) (2(α − β)2 + r2
2 − r2

2 cos(2θ))
2

+
4r2(−α + β)2

√

r2
2 + r2

in + (α − β)2 − 2r2rin cos(θ) (2(α − β)2 + r2
2 − r2

2 cos(2θ))
2

−
4r2(−α + β)2

√

r2
2 + r2

out + (α − β)2 − 2r2rout cos(θ) (2(α − β)2 + r2
2 − r2

2 cos(2θ))
2

−

2r2(−α + β)2
(

(α − β)2 + r2
2 − r2rin cos(θ)

)

(r2
2 + r2

in + (α − β)2 − 2r2rin cos(θ))
3

2 (2(α − β)2 + r2
2 − r2

2 cos(2θ))
2

+
2r2(−α + β)2

(

(α − β)2 + r2
2 − r2rout cos(θ)

)

(r2
2 + r2

out + (α − β)2 − 2r2rout cos(θ))
3

2 (2(α − β)2 + r2
2 − r2

2 cos(2θ))
2

+
2r2

(

(α − β)2 + r2
2 − r2rin cos(θ)

)

√

r2
2 + r2

in + (α − β)2 − 2r2rin cos(θ) (2(α − β)2 + r2
2 − r2

2 cos(2θ))
2

−

2r2

(

(α − β)2 + r2
2 − r2rout cos(θ)

)

√

r2
2 + r2

out + (α − β)2 − 2r2rout cos(θ) (2(α − β)2 + r2
2 − r2

2 cos(2θ))
2

(22)

It is noted that the expression of the axiall stiffness obtained is very simple tu use. Figure 4 represents

the axial force exerted between two ring permanent magnets versus the axial displacement of the inner

ring permanent magnet for the following dimensions:rin = 0.025m, rout = 0.028m, rin2 = 0.021m,

rout2 = 0.024m, J = 1T, h = 0.003m, zb − za = 0.003m.

III. O PTIMIZATION OF THE INNER RING PERMANENT MAGNET DIMENSIONS

This section discusses the optimal dimensions of the inner ring permanent magnet and the air gap in

order to have either a great axial force or a great axial stiffness.

A. Influence of the air gap dimension on the axial force and theaxial stiffness

First, we study the influence of the air gap width on the axial force and the axial stiffness between the

two ring permanent magnets. To do so, we represent the axial force versus the axial displacement of the

inner ring permanent magnet for different air gaps in Fig 5. Ii is noted that, in our configuration, the air

gap width corresponds to the difference betweenrin androut2. Furthermore, the width and the height of

each ring permanent magnet are constant. We takerin = 0.025m, rout = 0.028m, rout2−rin2 = 0.003m,
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Fig. 4. Representation of the axial stiffness exerted between two ring permanent magnets axially magnetized versus theaxial

displacement of the inner ring permanent magnet.rin = 0.025m, rout = 0.028m, rin2 = 0.021m, rout2 = 0.024m, J = 1T,

h = 0.003m, zb − za = 0.003m

J = 1T, h = 0.003m, zb − za = 0.003m.

Fig 5 shows three important points.

First, we see that the smaller the air gap between the ring permanent magnets is, the greater the axial force

is. Consequently, it is necessary to have the smallest air gap between two ring permanent magnets if a

great axial force is searched. This result is well-known. Itwas shown with the two-dimensional approach.

Second, we see that the exact position of the maximal force exerted between two ring permanent magnets

depends slightly on the air gap width. This result is new because our study uses a three-dimensional

approach of the magnetic force whereas the previous ones used a two-dimensional approach. As a

consequence, the magnet curvature must be taken into account in order to obtain precisely the position

of the maximal force exerted between two ring magnets. The exact position of the maximal force versus

the air gap width is represented in Fig 6. Such result is very useful because it clearly shows that if a

great axial force is searched, the relative height between two rings must be chosen according to the air

gap width.

Eventually, Fig 5 shows that the stiffness depends greatly on the air gap width. Indeed, we see that

the smaller the air gap width is, the greater the axial stiffness is. Indeed, the gradient of the curves is

the most important for small air gaps. Furthermore, this result is consistent with the representation of the

axial stiffness versus the axial displacement of the inner ring permanent magnet (Fig 7). Moreover, we
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Fig. 5. Representation of the axial force exerted between two ring permanent magnets axially magnetized versus the axial

displacement of the inner ring permanent magnet for different air gaps.rin = 0.025m, rout = 0.028m, rin2 = 0.021m,

rout2 = 0.024m, J = 1T, h = 0.003m, zb − za = 0.003m
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Fig. 6. Representation of the position of the maximal value of the axial force versus the air gap width:rin = 0.025m, rout =

0.028m, rin2 = 0.021m, rout2 = 0.024m, J = 1T, h = 0.003m, zb − za = 0.003m
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Fig. 7. Representation of the axial stiffness between two ring permanent magnets axially magnetized versus the axial displacement

of the inner ring permanent magnet for different air gaps:rin = 0.025m, rout = 0.028m, rin2 = 0.021m, rout2 = 0.024m,

J = 1T, h = 0.003m, zb − za = 0.003m

see that when the axial force is maximal in Fig 5, the axial stiffness equals zero in Fig 7, which is still

consistent.

B. Determination of the optimal width of the inner ring permanent magnet

Another parameter which can be optimized in a passive bearing is the width of the inner ring permanent

magnet. To do so, the axial force is represented versus the axial displacement of the inner ring permanent

magnet for several inner ring widths in Fig 8. The values taken for the parameters are the same as the

previous ones. Fig 8 shows that the greater the inner ring width is, the greater the axial force is. However,

it is noted that a good compromise in the ring dimensions mustbe found because the cost of the magnet

must be taken into account. This good compromise can be foundas follows: if the inner ring width equals

two times its height, the axial force is 71.8N whenz = −0.0018m. It the inner ring width equals three

times its height, the axial force equals is 72.3N. Consequently, we deduct that it is not necessary to have

an inner ring width which is greater than two times its height.

The optimal stiffness depends also on the ring inner width. To see that, we have represented in Fig 9

the axial stiffness versus the inner ring width versus the axial displacement of the inner ring permanent
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Fig. 8. Representation of the axial force between two ring permanent magnets axially magnetized versus the axial displacement of

the inner ring permanent magnet for different inner ring widths:rin = 0.025m, rout = 0.028m, rin2 = 0.021m, rout2 = 0.024m,

J = 1T, h = 0.003m, zb − za = 0.003m

magnet. Fig 9 shows that when the inner ring width equals two times its height, a good compromise can

be done for the design of magnetic passive bearings.

IV. OBTAINING THE BEST CONFIGURATION

The previous section shows that the ring dimensions must be optimized in order to create a very good

axial passive magnetic bearing. The air gap must be the smallest, the ring heights must be the same and

we have shown that the inner ring width must equal two times its height. All these parameters have been

determined with a outer ring whose cross-section is a square. However, we can also optimize the outer

ring in order to improve the passive bearing. By taking into account the optimal dimensions found in

the previous section, we can compare three configurations. The first one, shown in Fig 10-A, consists

of two rings whose cross-section is a square. The second one,shown in Fig 10-B, consists of two rings

whose cross-section is a rectangle whose width equals two times its height . The third one, shown in Fig

10-C, consists of two rings whose cross-section is a rectangle whose height equals two times its width.

For each structure presented in Fig 10, the axial force and the axial stiffness are determined versus the
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Fig. 9. Representation of the axial stiffness between two ring permanent magnets axially magnetized versus the axial displacement of

the inner ring permanent magnet for different inner ring widths:rin = 0.025m, rout = 0.028m, rin2 = 0.021m, rout2 = 0.024m,

J = 1T, h = 0.003m, zb − za = 0.003m

axial displacement of the inner ring permanent magnet. The axial force is shown in Fig 11 and the axial

stiffness is shown in Fig 12.

Fig 11 shows that the best configuration is order to have a great axial force is the configuration presented

in Fig 10-B. Fig 12 shows that two configurations are equivalent for the case when the greatest axial

stiffness is searched. Consequently, according to the involved application, the configurations presented in

Fig 10-B and 10-C can be used.

At least, we can say that the configuration presented in Fig 10-A is the least interesting configuration.
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C

A

B

Fig. 10. Representation of three passive magnetic bearings. A = rin = 0.025m, rout = 0.028m, rout2 = 0.0249m, rin2 =

0.0219m, h = 0.003m, zb − za = 0.003m. B =rin = 0.025m, rout = 0.031m, rout2 = 0.0249m, rin2 = 0.0189m,

h = 0.003m, zb − za = 0.003m. C= rin = 0.025m, rout = 0.028m, rout2 = 0.0249m, rin2 = 0.0219m, h = 0.006m,

zb − za = 0.006m.
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Fig. 11. Representation of the axial force exerted between two ring permanent magnets versus inner ring widthrin = 0.025m,

rout = 0.028m,rout2 = 0.0249m, J = 1T, h = 0.003m, zb − za = 0.003m.
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Fig. 12. Representation of the axial stiffness exerted between two ring permanent magnets versus inner ring widthrin = 0.025m,

rout = 0.028m,rout2 = 0.0249m, J = 1T, h = 0.003m, zb − za = 0.003m.

V. CONCLUSION

This paper has presented the semi-analytical expressions of the force and the stiffness exerted between

two ring permanent magnets whose polarization is axial. Such a configuration corresponds to an axial

passive magnetic bearing. Thanks to the exact expressions of the force and the stiffness, we have shown

that we can optimize the ring dimensions in order to have either a great force or a great stiffness. A

great force can be obtained if the ring width equals two timesits height. Then, we have shown that two

configurations are equivalent for the case when a great axialstiffness is searched.
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