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Asymptotic tracking of a reference trajectory by

output-feedback for a class of non linear systems

V. Andrieu∗, L. Praly†and A. Astolfi‡

September 3, 2009

Abstract

We consider the problem of approximately tracking a reference trajectory by means
of output feedback for a class of nonlinear systems with some non-globally Lipschitz
nonlinearities. We solve this problem combining dynamic scaling, homogeneity in the
bi-limit and new small gain arguments.

1 Introduction

The problem of controlling a system in such a way that its state follows a reference trajectory
has been widely studied in control theory and it is still an active field of research (see [7, 8, 13]).
When only the output is available for measurement, it can be formulated as follows. Given :

1. a system η̇ = f(η, u) with output y = h(η),

2. a bounded state and input reference trajectory (ηr, ur), available at each time but not
ahead of time

design an output feedback ẇ = θ(w, y, ηr), u = ϕ(w, y, ηr) which ensures global convergence or,
asymptotic closeness (in a sense to be specified) of η to ηr.

This problem is challenging since, as shown in [17], controllability and observability are
not sufficient to guarantee the existence of a solution, as is the case for linear systems. Hence,
some restrictions have to be imposed on the nonlinear function f .

Given a state feedback controller, the key step to design an output feedback controller, is
the synthesis of an appropriate observer (see [1] for more details). The observer problem is
solved in [16, 18, 15], for instance by requiring the nonlinear function f to be linear in the
unmeasured variable, or in [13] where f is required to be globally Lipschitz with a Lipschitz
constant depending on the output.
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Recently, the problem of practical tracking has been solved in [8] for a class of systems not
globally Lipschitz in the unmeasured state components, under the assumption the reference
trajectory is bounded and this bound is known. The aim of this paper is to extend this result
to achieve asymptotic tracking while not requiring the knowledge of an upper-bound for the
reference trajectory.

To illustrate the key ideas of the design and to relate our contribution to existing results
we first consider an illustrative example1 :






ż = −z + x1+d
2 ,

ẋ1 = x2 ,
ẋ2 = u + x1+d

2 + z ,
y = x1 ,

(1)

where y in R is the available measurement, u in R is the control input and d is a real number
in [0, 1). Given a bounded time function t 7→ (xr1(t), xr2(t), ur(t)), together with a solution of

żr = −zr + x1+d
2,r

we define a state and input reference trajectory ((zr, xr,1, xr,2), ur), which is an approximate
solution of (1), i.e. it solves






żr = −zr + x1+d
2,r ,

ẋr,1 = xr,2 + δr,1 ,
ẋr,2 = ur + x1+d

r,2 + zr + δr,2 ,
(2)

where (δr,1, δr,2) quantifies the approximation error. The problem is to find an output feedback
such that the state (z, x1, x2) of (1) approaches (in a sense to be specified) (zr, xr,1, xr,2) despite
the presence of (δr,1, δr,2).

Note that system (1) is neither linear nor globally Lipschitz with respect to its unmeasured
state components due to the presence of the term x1+d

2 . Hence, none of the tracking results
developed in [16, 18, 15, 13] can be used. Moreover functions zr, xr,1, xr,2, ur, δr,1 and δr,2 are
not required to be bounded in norm by some known quantities, and this impedes the use of
the technique proposed in [8].

In this paper, the tracking problem is recast into the problem of finding ũ = u − ur,
depending on (zr, xr,1, xr,2) and x̃1 = x1 − xr,1 such that the solutions of the error systems






˙̃z = −z̃ + (xr,2 + x̃2)
1+d − x1+d

r,2 ,
˙̃x1 = x̃2 − δr,1 ,
˙̃x2 = ũ + (xr,2 + x̃2)

1+d − x1+d
r,2 + z̃ − δr,2 ,

asymptotically converges to a ball centered at the origin, with radius depending only on the
asymptotic behavior of δr,1 and δr,2.

To solve this problem we follow a domination approach based on homogeneity. This leads
to regard the term (xr,2 + x̃2)

1+d − x1+d
r,2 + z̃ − δr,2 in the definition of ˙̃x2 as a perturbation

which can be upper bounded as :

|(xr,2 + x̃2)
1+d − x1+d

r,2 + z̃ − δr,2| ≤ (1 + d) |xr,2|d |x̃2| + |x̃2|1+d + |z̃| + |δr,2| . (3)

This bound is composed of four terms each of which motivate some particular features of the
proposed design.

1 For any real numbers w 6= 0 and r, wr denotes sign(w) |w|r .
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1. The term (1 + d) |xr,2|d |x̃2| is a known time function which multiplies a linear function
of the tracking error. To deal with this kind of term we follow an idea introduced in
[19] and design a high-gain output feedback with a dynamic scaling with a gain updated
from the reference signal xr,2.

2. The second term, namely |x̃2|1+d, is a power of the norm of the tracking error |x̃2|. To
deal with this term, we use the homogeneous in the bi-limit output feedback design
tool we have introduced in [2] (see Appendix A for the definition of homogeneity in the
bi-limit).

3. The term |z̃| depends on the state of the appended dynamics. We deal with this one by
imposing a minimum phase assumption and invoking a small gain argument. Note that
the gain obtained is time-varying (it depends on xr,2), and this requires, in the design,
to rely on a time-varying small-gain argument.

4. Finally, the term |δr,2| coming from the approximation error of the reference is a pertur-
bation which is not necessary vanishing at the origin. This implies that exact tracking
cannot be obtained. Nevertheless, the use of high gain allows to reduce the effect of this
disturbance.

In conclusion, the solution to this tracking problem is based on a domination approach and
combines high-gain with dynamic scaling and homogeneity in the bi-limit.

In Section 2 the main result of the paper is stated, commented and compared with existing
results related to this topic. Section 3 is devoted to the proof of the main result. More
precisely, in Section 3.1 we introduce a homogeneous in the bi-limit output feedback design
for a chain of integrators compatible with the use of dynamic scaling. With this tool in hand,
we propose an output feedback and adjust some of its parameters by studying the closed-loop
system in Section 3.2. A brief summary of the homogeneity in the bi-limit theory is given in
Appendix A, while some technical results are proved in Appendix B.

2 Main result of the paper

2.1 Problem statement and Assumptions

Consider a system whose dynamics are described by :





ż = F (z, x) ,
ẋ1 = x2 + f1(z, x) ,
ẋ2 = x3 + f2(z, x) ,

...
ẋn = u + fn(z, x) ,

y = x1 , (4)

where x = (x1, . . . xn) is in R
n, y is the output in R, u is the input in R and z in R

nz is the
state of some appended dynamics2.

2 Depending on the structure of the functions F and fi’s these dynamics are usually referred as ”inverse
dynamics”. For instance, this is the case if F (z, x) = F (z, x1).
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Let t 7→ (xr(t), ur(t)) ∈ R
n × R be a bounded function to which corresponds a bounded3

solution t 7→ zr(t) ∈ R
nz of the appended state dynamics

żr = F (zr, xr) . (5)

We consider t 7→ (xr(t), zr(t), ur(t)) ∈ R
n ×R as a state and input reference trajectory. It is a

solution of (4) up to an approximation error t 7→ δr(t) = (δr,1(t), . . . , δr,n(t)) ∈ R
n, defined as :






δr,1 = xr,2 + f1(zr, xr) − ẋr,1 ,
δr,2 = xr,3 + f2(zr, xr) − ẋr,2 ,

...
δr,n−1 = xr,n + fn−1(zr, xr) − ẋr,n−1 ,

δr,n = ur + fn(zr, xr) − ẋr,n ,

(6)

we wish to design an output feedback controller for system (4) to ensure convergence (or
closeness, see inequality (15)) of the solutions (x, z) toward this state reference trajectory
(xr, zr).

In the design, the z part can be “neglected” provided the appended dynamics with fi

as output and x as input are incremental ISS (see [6]). Specifically, we make the following
assumptions4.

Assumption 1 (Minimum-Phase) There exist non-negative C1 functions Zi and C0 functions
γi, such that,

1.1) for each c ≥ 0, the set {z̃ : ∃zr : |zr| +
∑n

i=1 Zi(zr, z̃) ≤ c} is compact.

1.2)
∂Zi

∂zr

(zr, z̃) F (zr, xr) +
∂Zi

∂z̃
(zr, z̃) [F (zr + z̃, xr + x̃) − F (zr, xr)] ≤

−Zi(zr, z̃) + γi(zr, xr, x̃) .

As shown in [17] in the context of global asymptotic stabilization of the origin, the tracking
problem under consideration might be unsolvable. Consequently, we need to impose some
restrictions on the functions fi. In this regard, we make the following assumption.

Assumption 2 (Nonlinear bound) : There exist positive real numbers q1 and q2, a real number
d∞ in

[
0, 1

n−1

)
, a positive real number c∞, a non-negative continuous function Ω, and non-

negative functions µi such that :

2.1) the functions µi are zero at zero, C1 on (0 + ∞) and continuous at 0, the functions µq1

i

are convex and :
s µ′

i(s) ≤ q2 µi(s) ∀s > 0 ; (7)

2.2) for all i in {1, . . . , n} and all (zr, z̃, xr, x̃) in R
2nz+2n,

|fi(zr + z̃, xr + x̃) − fi(zr, xr)| ≤ Ω(zr, xr)
i∑

j=1

|x̃j | + c∞

i∑

j=1

|x̃j |
1−d∞(n−i−1)
1−d∞(n−j) + µi(Zi(zr, z̃)) .

3With Assumption 1, boundedness of zr is implied by the boundedness of xr.
4See Section 2.3.2 for some discussions on Assumptions 1, 2 and 3.
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Finally, for the appended dynamics, we impose a bound on the gain between its input x
and its outputs fi.

Assumption 3 (Bound on the gain) There exists a strictly positive real number υ such that,
for all i in {1, . . . , n} and all (zr, xr, x̃) in R

nz+2n, we have,

µi((1 + υ) γi(x̃, zr, xr)) ≤ Ω(zr, xr)
i∑

j=1

|x̃j| + c∞

i∑

j=1

|x̃j|
1−d∞(n−i−1)
1−d∞(n−j) .

where the functions γi, µi, Ω and the positive real number c∞ are as in Assumptions 1 and 2.

2.2 Main result

For systems satisfying Assumptions 1, 2 and 3, the high-gain output feedback we propose to
solve the tracking problem is expressed as :

u = ur + Ln+bφ(L−1x̂) , ˙̂x = S x̂ + B Ln+bφ(L−1x̂) + L L K

(
x̂1 − (y − xr,1)

Lb

)
, (8)

where
L = diag(Lb, . . . , Ln+b−1) , (9)

S denotes the left shift matrix of order n, i.e.

S x̂ = (x̂2, . . . , x̂n−1, 0)T ,

and b is a positive real number chosen to satisfy 5, for 1 ≤ j ≤ i ≤ n,

1 − d∞(n − i − 1)

1 − d∞(n − j)
<

i + b

j − 1 + b
<

i

j − 1
, (10)

for all 1 ≤ j ≤ i ≤ n and with d∞ as given in Assumption 2. Similarly to [2], the functions
K and φ are designed by following the procedure described in Section 3.1.3. Unlike [2], the
high-gain parameter L is updated on line as :

L̇ = −a1 L + L max
{
0, a1(a2 + 1 − Lǫ) + a3 Ω(zr, xr)

}
, (11)

where :

Ω(zr, xr) = max

{
Ω(zr, xr)

c∞
, 1

} dU+d∞

1−d∞(n−2)

,

and where dU , a1, a2, and a3 are positive real numbers to be defined, with a1 sufficiently small
and dU , a2 and a3 sufficiently large, and ǫ is selected to satisfy, for 1 ≤ j ≤ i ≤ n,

0 < ǫ < i + b − (b + j − 1)
1 − d∞ (n − i − 1)

1 − d∞ (n − j)
. (12)

5 This choice is always possible since, for 1 ≤ j ≤ i ≤ n, we have :

i+b
j−1+b

< i
j−1 ∀ b > 0,

and 1 ≤ 1−d∞ (n−i−1)
1−d∞ (n−j) < i

j−1 ∀ d∞ ∈ [0, 1
n−1 ) .
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The update law (11) is a modification of the one introduced in [19, (24)] and in [7, (3.12)] or
[14, (134)]. Its right hand side depends only on the state reference trajectory (xr, zr). Since
the reference trajectory is bounded by assumption, L is upper bounded along any closed-loop

solution. Moreover, if L(0) > a
1
ǫ

2 , L(t) remains larger than a
1
ǫ

2 along any closed-loop solution.
In particular, L(t) > 1 if we select a2 ≥ 1. Finally the presence of the term −a1 L allows
to recover the main property of [19, (24)], i.e. L “follows” its driving term. Specifically, as
established in Appendix B, we have :

lim sup
t→+∞

L(t) ≤
[
a2 +

a3

a1
lim sup
t→+∞

{Ω(zr(t), xr(t))}
] 1

ǫ

, (13)

lim inf
t→+∞

L(t) ≥
[
a2 +

a3

a1
lim inf
t→+∞

{Ω(zr(t), xr(t))}
] 1

ǫ

. (14)

We are now ready to state the main result of the paper (proved in Section 3).

Theorem 1 Under Assumptions 1,2 and 3, given any strictly positive real numbers b satis-
fying (10) and a sufficiently large real number dU , there exist a positive real number cr and
functions K and φ such that, for all sufficiently small strictly positive real number a1 and
sufficiently large real numbers a2 and a3, the following holds.
For any bounded state and input reference trajectory t 7→ (xr(t), zr(t), ur(t)), with bounded ap-
proximation error t 7→ δr(t) given by (6), the solutions of system (4) with the output feedback
(8),(11) are bounded in positive time and satisfy

lim sup
t→+∞

|L−1(x(t) − xr(t))| ≤ (15)

cr lim sup
t→+∞

{
n−1∑

i=1

|δr,i(t)|
L(t)i+b

+

( |δr,i(t)|
L(t)i+b

) 1
1−d∞(n−i−1)

+ 2
|δr,n(t)|
L(t)n+b

}

with L defined in (9).

2.3 Some remarks

2.3.1 About the result

If the reference trajectory is an exact solution of (4) (i.e. if δr(t) = 0) or if δr(t) converges
to zero as t goes to infinity, the output feedback given in Theorem 1 ensures that (x(t), z(t))
converges to (xr(t), zr(t)).

In general, (15) implies

lim sup
t→+∞

|y(t) − xr,1(t)| ≤

cr

lim supt→+∞ L(t)b

lim inft→+∞ L(t)
1+b

1+d∞

lim sup
t→+∞

{
n−1∑

i=1

|δr,i(t)| + |δr,i(t)|
1

r∞,i+d∞ + 2|δr,n(t)|
}

.

Therefore, if the reference trajectory is known in advance, for all κ > 0 we can select the
parameter a2 strictly larger than

lim sup
t→+∞




max





a3

a1
Ω(zr(t), xr(t)), c

ǫ
r

(∑n−1
i=1 |δr,i(t)| + |δr,i(t)|

1
r∞,i+d∞ + 2|δr,n(t)|

κ

)ǫ

2b









 .
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Then, by (13) and (14),
lim sup
t→+∞

|y(t) − xr,1(t)| ≤ κ .

Hence, as in6 [8], we recover a practical result in its usual formulation.
On the other hand, we do not need to know in advance the whole reference trajectory or

even a bound on it to design the controller and to get asymptotically closeness of the closed
loop system solutions toward the reference one. This differs from the results proposed in [8]
and [15].

2.3.2 About the Assumptions

Note that for system (1),

• Assumption 1 follows from inequality (3) taking

Z1(zr, z̃) = Z2(zr, z̃) = |z̃|2 ,

and

γ1(x̃, zr, xr) = γ2(x̃, zr, xr) =
∣∣∣ (1 + d) |xr,2|d |x̃2| + |x̃2|1+d

∣∣∣
2

.

• Assumption 2 is satisfied setting d∞ = d, c∞ =
√

2 and picking

Ω(zr, xr) =
√

2 (1 + d) |xr,2|d , µ1(s) = µ2(s) =
√

s , q1 = 2 , q2 =
1

2
.

• Finally, Assumption 3 is satisfied with υ = 1.

Consequently, system (1) belongs to the class of systems satisfying Assumption 1,2 and 3 and
Theorem 1 applies.

When compared with what can be found in the textbooks [18, 16] or in [15] for instance,
our approach allows us to deal with dynamics which, in appropriate coordinates, may have
some polynomial growth in the unmeasured state components (as expressed by Assumption
2).

Assumption 1 is more general than the incremental property introduced in [6] (see also [3])
since the gain γi in Assumption 1.2 depends also on (zr, xr). Nevertheless it retains its main
property on the behavior of the solutions. Specifically it implies that, for all bounded time
functions t 7→ (x(t), xr(t)), if a corresponding solution t 7→ zr(t) of the appended dynamics of
system (4), i.e. solution of :

żr = F (zr, xr) ,

is bounded, then all solutions t 7→ z(t) of :

ż = F (z, x)

are bounded as well. If furthermore, for all i, γi(zr(t), xr(t), x(t) − xr(t)) goes to zero when t
goes to infinity, then |z(t) − zr(t)| goes to zero.

The presence of the δr,i offers a great flexibility for checking our Assumptions. Specifically,
it follows from our proof that Assumptions 1 and 2 need not to hold for all (zr, xr). It is

6See Section 2.3.2 for more details.
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sufficient they are satisfied with F (zr, xr) and δr,i given by (6). For example, in the case with
no appended dynamics, by letting :

δr,1 = ẋr,1 − f1(xr) , xr,i = 0 , δr,i = fi(xr) ∀i ≥ 2 ,

Assumption 2 becomes :

|fi(x̃)| ≤ Ω(xr)

i∑

j=1

|x̃j | + c∞

i∑

j=1

|x̃j|
1−d∞(n−i−1)
1−d∞(n−j) .

Then, with fi locally Lipschitz, around the origin, we recover the result on practical tracking
in [8] where standard homogeneity and domination is also used.

In the same way, by letting

F (zr, xr) = 0 , δr,i = fi(0, xr) − fi(zr, xr) ,

Assumption 1.2 reduces to a simple ISS property as assumed for example in [15].
Finally, the presence of the function Ω in Assumptions 2 and 3 is an important feature.

It is necessary to account for the fact that the local Lipschitz constant depend on around
where the solution is and therefore around where (zr, xr) is. But, not knowing in advance
the reference trajectory, we have no a priori upperbound for this term. This term makes the
analysis much more involved and requires ad hoc small gain arguments.

2.3.3 About the reference trajectory

The standard output tracking problem consists in designing a feedback which guarantees
boundedness of the closed loop solutions while ensuring convergence of the output to a desired
reference signal yr. To solve this problem, we follow the classical two degrees of freedom design
technique. Namely we separate the problem into two subproblems :

• trajectory generation,

• feedback compensation.

Feedback compensation is the object we present in full details in this paper. The purpose
of trajectory generation is to synthesize a state and input reference trajectory (xr, zr, ur) for
the system given the desired reference signal yr. Here we do not require this trajectory to
be feasible since a ”dynamical mismatch” quantified by δr is allowed. In addition we do
not require this state and input reference trajectory, and therefore the reference signal to be
available ahead of time.

The problem of state and input reference trajectory generation is rendered more difficult by
the presence of appended dynamics. When the system we consider is right invertible (see [10]),
one way to solve this problem (among many others) is to decompose it in two sub-problems:

1. generation of the time derivatives of the desired reference signal yr,

2. transformation of these derivatives into a state and input reference trajectory.

8



The problem of obtaining the time derivative of the desired reference signal is an observer
problem. It can be solved once we have a model of the system which generates the reference
signal, the so-called exo-system in regulation theory [11]. For example, we could pick as

approximate exo-system y
(m)
r (t) = 0, i.e. yr(t) is approximated as a polynomial of degree

m − 1 in t (the model used in [8] is ẏr = 0).
Then, to obtain the appropriate signals (xr, ur) and zr, from yr and its time derivatives

y
(i)
r , we follow a standard inversion procedure (see [10]). Specifically, if we can partition x in

(xa, xb) so that (4) takes the specific form7






ż = F (z, xa) ,
ẋa1 = xa2 + f1(xa1) ,

...
ẋana−1 = xana

+ fna−1(xa1, ..., xana−1) ,
ẋana

= xb1 + fna
(z, xa) ,

ẋb1 = xb2 + fna+1(z, xa, xb1) ,
...

ẋbnb
= u + fna+nb

(z, xa, xb1, ..., xbnb
) ,

y = xa1 , (16)

then by formal differentiation we obtain functions φai so that xr,ai = φai(yr, ..., y
(i−1)
r ), and by

on-line integration of
żr = F (zr, xr,a) ,

we obtain zr from xr,a. Finally, again by formal differentiation, we obtain functions φbi so that

xr,bi = φbi(zr, yr..., y
(na+i−1)
r ) , ur = φbn(zr, yr..., y

(na+nb)
r ) .

If, for the z subsystem there exist a particular initial condition z(0) and a bounded time
function t 7→ xa(t) (considered here as input) such that the corresponding solution t 7→ z(t)
is bounded, then, by the minimum phase Assumption 1.1.2, the above procedure yields a
bounded state and input reference trajectory provided that the function t 7→ (yr(t), ..., y

(na+nb)
r (t))

is bounded. Note that we rely on a minimum phase assumption and this is not surprising in
view of the key role this assumption plays, as discussed in [9].

For system (1) it is possible to compute an exact state and input trajectory from yr, ẏr

and ÿr selecting xa = (x1, x2) with xb = ∅. Indeed, we obtain :

xr,2 = ẏr , ur = ÿr − (ẏr)
1+d − zr , żr = −zr + (ẏr)

1+d .

Unfortunately, in general, the estimation process yielding the time function ẏr(t) and ÿr(t)
from the knowledge of yr(t) is not exact, and consequently generates an approximation for
this reference trajectory (i.e. non-zero δ1 and δ2).

The procedure above is only one of many possible solutions. Others may exploit optimal
control or flatness [24].

3 Proof of Theorem 1

The proof of inequality (15) is divided into two parts. In the first part we introduce the
functions K and φ appearing in the output feedback given in (8). In the second part we show

7 xb is not an argument of F and z is not an argument of f1, . . . , fna−1.
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how a proper selection of the parameters dU , a1, a2 and a3 in the high-gain update law (11)
yields the result.

3.1 Construction of K and φ

3.1.1 Posing the problem as an output feedback stabilization problem

The first step is to pose the tracking problem as a problem of stabilization by output feedback.
Setting

ũ = u − ur , x̃ = x − xr , z̃ = z − zr ,

we obtain : {
˙̃z = F (zr + z̃, xr + x̃) − F (zr, xr) ,
˙̃x = S x̃ + B ũ + f(zr + z̃, xr + x̃) − f(zr, xr) − δr ,

(17)

where B = (0, . . . , 1)T and δr = (δr,1, . . . , δr,n).
The objective is to find ũ depending on the output x̃1 = y−xr,1 and on the state reference

trajectory (zr, xr) such that (15) holds.

3.1.2 A high-gain domination approach

The x̃ dynamics of the system (17) have the structure of a chain of integrators disturbed by
nonlinear terms depending on the tracking error (x̃, z̃), the state reference trajectory (xr, zr)
and the approximation error δr. This motivates us to use the domination approach introduced
in [12] (see also [21]). In this context, the nonlinear functions (the fi’s) are not used in the
design but considered as perturbations and the output feedback is designed on a dominating
model which in this case is the chain of integrators. To ensure robustness to these nonlinear-
ities, we employ high-gain techniques. This leads us to design the controller with the scaled
coordinates :

X̃ i = Lb+1−i x̃i (18)

where L is the updated high-gain and b is a positive real number satisfying (10). Compared
to the scaled coordinates used in the high-gain approach in [12], we add an extra high-gain
parameter b which has been introduced in [19] and which allows gain adaptation.

3.1.3 Homogeneous in the bi-limit output feedback for a chain of integrators

Following the domination approach, we focus on the dominant part of system (17) in the
scaled coordinate (18), i.e. a chain of integrators, with state X = (X1, . . . , Xn) in R

n described
by :

Ẋ = S X + B u , y = X1 . (19)

To design the output feedback controller for system (19) we use the tools developed within
the framework of homogeneity in the bi-limit, introduced in [2]. (See Appendix A for a brief
summary.)

Selecting d0 = 0 and with d∞ given by Assumption 2, homogeneity in the bi-limit is
obtained for system (19) with the weights r0 = (r0,1, . . . , r0,n) and r∞ = (r∞,1, . . . , r∞,n) as8 :

r0,i = 1 , r∞,i = 1 − d∞ (n − i) , i ∈ {1, . . . n} . (20)

8 Note that r∞,i increases with i and is in (0, 1].
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In [2] we have proposed an output feedback for system (19) given by :

u = φ(X̂) ,
˙̂
X = S X̂ + B φ(X̂) + K(X̂1 − X1) , (21)

where X̂ = (X̂1, . . . , X̂n) is in R
n, K is a homogeneous in the bi-limit vector field with weights

r0 and r∞, and degrees 0 and d∞ and φ is a homogeneous in the bi-limit function with weights
r0 and r∞, and degrees 1 and 1 + d∞. Setting :

E = (e1 . . . , en)T = X̂ − X

the chain of integrators (19) with the controller (21) can be described by :
{

˙̂
X = S X̂ + B φ(X̂) + K(e1)

Ė = S E + K(e1) .
(22)

In [2], the design of K and φ is performed recursively by following an observer / controller
approach in such a way that there exists a homogeneous in the bi-limit Lyapunov function U
of degree dU satisfying, for some real number c1,

∂U

∂E
(X̂, E) (S E + K(e1)) +

∂U

∂X
(X̂, E)

(
S X̂ + B φ(X̂) + K(e1)

)
≤ (23)

−c1

(
U(X̂, E) + U(X̂, E)

dU+d∞

dU

)
.

To combine this tool with dynamic scaling we need to establish a specific property on the
Lyapunov function U . This property is a homogeneous in the bi-limit version of the one given
in [19, equation (16)] or in [13, Lemma A1] and also used in the context of observer design in
[4]. Namely, given the diagonal matrix

D = diag(b, 1 + b, . . . , n − 1 + b) ,

where b is a positive real number satisfying (10), the function φ and the vector field K are
selected such that the Lyapunov function U satisfies (23), and also :

∂U

∂E
(X̂, E) D E +

∂U

∂X̂
(X̂, E) D X̂ ≥ c2 U(X̂, E) , (24)

for some positive real number c2.
Such a property can be obtained by modifying the recursive procedure given in [2] as

claimed in the following statement the proof of which is omitted but can be found in [5].

Theorem 2 Let dU be a positive real number satisfying dU ≥ 2 max1≤j≤n r0,j + d∞. There
exists a homogeneous in the bi-limit function φ : R

n → R+ with associated triples (r0, 1, φ0)
and (r∞, 1 + d∞, φ∞), a homogeneous in the bi-limit vector field K : R → R

n, with associated
triples (r0, d0, K0) and (r∞, d∞, K∞) and a positive definite, proper and C1 function U : R

2n →
R+, homogeneous in the bi-limit with associated triples (r0, dU , U0) and (r∞, dU , U∞), such that
the following holds.

1. The homogeneous approximating functions U0 and U∞ are positive definite and proper
and for all j in {1, . . . , n}, the functions ∂U

∂ej
and ∂U

∂X̂j
are homogeneous in the bi-limit

with approximating functions
(

∂U0

∂ej
, ∂U∞

∂ej

)
and

(
∂U0

∂X̂ j
, ∂U∞

∂X̂ j

)
respectively.

2. There exist two positive real numbers c1 and c2 such that (23) and (24) are satisfied.
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We choose dU satisfying also dU−1
1+d∞

> q1, with q1 given in Assumption 2. In this way the

functions µq
i are convex for all q ≥ dU−1

1+d∞
. In what follows the parameters dU and b, the vector

field K and the function φ are assumed fixed, it remains to select the parameters a1, a2 and
a3 appearing in the high-gain updated law (11).

3.2 Properties of the closed loop system

3.2.1 ISS property with respect to the δr,i’s

The system (4) with the controller (8), (11), introduced in Section 2.2, can be fully described
by the high-gain update law (11), the z̃ dynamics in (17) and the equations9






Ė = L(S E + K(e1)) − L̇

L
D E − ∆f (L) − ∆δ(L) ,

˙̂
X = L(S X̂ + B φ(X̂) + K(e1)) − L̇

L
D X̂

(25)

where E = (e1, . . . , en)T and X̂ = (X̂1, . . . , X̂n)T are defined as :

X̂ = L−1x̂ , E = L−1(x̂ − x̃) (26)

and

∆f (L) = L−1(f(zr + z̃, xr + x̃) − f(zr, xr)) , ∆δ(L) = L−1 (δr,1, . . . , δr,n)

are regarded as perturbations.
By inequality (23), the function U obtained from Theorem 2 satisfies, along the solutions

of system (25),
˙︷ ︷

U(X̂, E) ≤ −c1 L θ
(
U(X̂, E)

)
+ TDS + TDist , (27)

where θ is the function defined on R+ as :

θ(s) = s + s
d∞+dU

dU , (28)

and

TDS = −L̇

L

(
∂U

∂X̂
(X̂, E) D X̂ +

∂U

∂E
(X̂, E) D E

)
,

TDist = − ∂U

∂E
(X̂, E) [∆f(L) + ∆δ(L)] .

The above discussion and Assumption 2 yield the following result, the proof of which is
given in Appendix B.2.

Lemma 1 There exist two positive real numbers c3 and c4 such that, for all sufficiently small
strictly positive real numbers a1 and sufficiently large real numbers a2 and a3, inequality (27)
becomes :

˙︷ ︷
U(X̂, E) ≤ − 4 c3L θ

(
U(X̂, E)

)
+ c4L

1−ǫ

n∑

i=1

ζi(Yi) + L c4

n∑

i=1

ζi

(
δr,i

Li+b

)
, (29)

9 Note that
˙︷ ︷

L−1 = −L−1 L̇ D L−1.
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where
Yi = Lǫ−(i+b) µi(Zi(zr, z̃)) (30)

and the ζi are C1, convex, strictly increasing and homogeneous in the bi-limit functions with
weights 1 and r∞,i + d∞ and degrees dU and dU + d∞, defined as10 :

ζi(s) =
∫ s

0
max{|σ|dU−1, |σ|

dU−r∞,i

r∞,i+d∞ }dσ , ∀ i ∈ {1 . . . , n − 1} ,

ζn(s) =
∫ s

0
min{|σ|dU−1, |σ|

dU−1

1+d∞ }dσ .
(31)

If the functions Zi’s were not present (via Yi), inequality (29) would give readily an ISS

property between
δr,i

Li+b and (X̂, E). To prove this claim note that the function

s ∈ R
n 7→

(
n−1∑

i=1

|si| + |si|
1

r∞,i+d∞ +
|sn|

1 + |sn|
(
1 + |sn|

1
1+d∞

))dU

is positive definite, homogeneous in the bi-limit with weights 1 and r∞,i + d∞ and degrees dU

and dU and its homogeneous approximating functions (i.e.
∑n

i=1 |si|dU and
∑n

i=1 |si|
dU

r∞,i+d∞ )

are positive definite. Furthermore, since the function s ∈ R
n 7→ θ−1

(
c4
c3

∑n

i=1 ζi (si)
)

is

homogeneous in the bi-limit with the same weights and degree11 by Claim A.3 in Appendix
A, there exists a positive real number c5 such that :

θ−1
(

c4
c3

∑n

i=1 ζi (si)
)

≤ cdU

5

(∑n−1
i=1 |si| + |si|

1
r∞,i+d∞ + |sn|

1+|sn|

(
1 + |sn|

1
1+d∞

))dU

,

≤ cdU

5

(∑n−1
i=1 |si| + |si|

1
r∞,i+d∞ + 2|sn|

)dU

.

(32)

Hence, without Yi in the inequality (29), we would have (see [22]) :

lim sup
t→+∞

U(X̂, E(t)) ≤ cdU

5 lim sup
t→+∞

[
n−1∑

i=1

( |δr,i(t)|
L(t)i+b

)
+

( |δr,i(t)|
L(t)i+b

) 1
r∞,i+d∞

+ 2
|δr,n(t)|
L(t)n+b

]dU

.

(33)
In addition, since the function U is positive definite, homogeneous in the bi-limit with degrees
dU and dU and its homogeneous approximating functions are positive definite, and since r∞,i

is smaller or equal to 1, Claim A.3 in Appendix A implies the existence of a positive real
number c13 such that :

U(X, E) ≥ c13

∣∣∣X̂ − E
∣∣∣
dU

= c13

∣∣L−1x̃
∣∣dU , (34)

which implies that (15) holds with cr =
c5

cdU

13

.

10Recall that dU − 1 ≥ dU−r∞,i

r∞,i
for all i in {1, . . . , n − 1} and dU − 1 ≥ dU−1

1+d∞
.

11 θ : R+ → R+ defined in (28) is a bijective, homogeneous in the bi-limit function, and satisfies all
assumptions of [2, Proposition 2.11]. This implies homogeneity in the bi-limit of its inverse map θ−1 : R+ → R+

with approximating homogeneous functions s and s
dU

d∞+dU . Then [2, Proposition 2.10] implies that the function

θ−1
(

c4

c3

∑n

i=1 ζi (si)
)

is homogeneous in the bi-limit with degrees dU and dU .

13



3.2.2 Small-gain arguments.

To establish an inequality like (33) in the presence of Zi (or Yi), we need a more advanced
argument relying on a small gain theorem.

First of all, note that, Assumptions 1 and 3 yield the following result, the proof of which
is in Appendix B.3.

Lemma 2 There exist two positive real numbers c6 and c7 such that, for all sufficiently small
strictly positive real number a1 and sufficiently large real numbers a2 and a3, we have, along
the trajectories of the closed-loop system,

˙︷ ︷
ζi(Yi) ≤ −c6 ζi(Yi) + c7 Ω(zr, xr) θ

(
U(X̂, E)

)
, ∀ i {1, . . . , n} . (35)

Lemma 2 quantifies the ISS gain between (X̂, E) and Yi, which, unfortunately, depends on
(xr, zr) (through the function Ω). Nevertheless, due to the special structure of the high-gain
update law (11), an inequality similar to (33) can still be obtained.

Suppose that a1 is sufficiently small and that a2 and a3 are sufficiently large such that
Lemmas 1 and 2 apply. Then, inequality (35) yields, for all 0 ≤ s ≤ t,

ζi(Yi(t)) ≤ exp( c6(s − t))ζi(Yi(s)) +

∫ t

s

exp( c6(r − t)) c7 Ω(r) θ(U(r)) dr ,

where we have used the compact notation :

U(t) = U(X̂(t), E(t)) , Yi(t) = L(t)ǫ−(i+b) µi(Zi(zr(t), z̃(t))) , Ω(t) = Ω(zr(t), xr(t)) .

The inequality above, together with definition (30) and inequality (29) divided by L1−ǫ, yields :

˙︷ ︷
U(t)

L(t)1−ǫ
≤ − 4 c3L(t)ǫ θ (U(t)) + L(t)ǫ c4

n∑

i=1

ζi

(
δr,i(t)

L(t)i+b

)

+ c4 exp(c6(s − t))

n∑

i=1

ζi

(
L(s)ǫ−(i+b)(µi(Zi(s))

)

+ n c4 c7

∫ t

s

exp(c6(r − t))
[
Ω(r) θ(U(r))

]
dr ,

(36)

where :
Zi(t) = Zi(zr(t), z̃(t)) .

This yields :

˙︷ ︷
U(t)

L(t)1−ǫ
≤ − 4 c3L(t)ǫ θ (U(t)) + L(t)ǫ c4

n∑

i=1

ζi

(
δr,i(t)

L(t)i+b

)
(37)

+ c4 exp(c6(s − t))

n∑

i=1

ζi

(
L(s)ǫ−(i+b)(µi(Zi(s))

)

+ n c4 c7 sup
[s,t]

{
exp

(c6

2
(r − t)

)
θ(U(r))

} ∫ t

s

exp
(c6

2
(r − t)

)
Ω(r)dr ,
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Now, assume for the time being that L satisfies12 :

L(t)ǫ ≥ 1

c3

[
n c4 c7

∫ t

s

exp
(c6

2
(r − t)

)
Ω(r)dr + 1

]
∀t ≥ 0 . (38)

In this case (37) becomes, for all s ≤ t,

˙︷ ︷
U(t)

L(t)1−ǫ
≤ − 4 c3L(t)ǫ θ (U(t)) + L(t)ǫ c4

n∑

i=1

ζi

(
δr,i(t)

L(t)i+b

)

+ c4 exp(c6(s − t))

n∑

i=1

ζi

(
L(s)ǫ−(i+b)(µi(Zi(s))

)

+ [c3L(t)ǫ − 1] exp
(
−c6

2
t
)

sup
[s,t]

{
exp

(c6

2
r
)

θ(U(r))
}

,

≤ − [4 c3L(t)ǫ + 1] θ (U(t)) + L(t)ǫ c4

n∑

i=1

ζi

(
δr,i(t)

L(t)i+b

)

+ c4 exp(c6(s − t))
n∑

i=1

ζi

(
L(s)ǫ−(i+b)(µi(Zi(s))

)

+ c3L(t)ǫ exp
(
−c6

2
t
)

sup
[s,t]

{
exp

(c6

2
r
)

θ(U(r))
}

.

(39)

Since the functions δ and L are upper bounded on R+ and L(0) > a
1
ǫ

2 ≥ 1, there exist ∂m and
Lm that satisfy :

∂m ≥
n∑

i=1

ζi

(
δr,i(t)

L(t)i+b

)
, Lm ≥ L(t) ≥ a

1
ǫ

2 ≥ 1 , ∀ t ≥ 0 . (40)

Then, given the initial conditions L(0) and Zi(0), we can find a sufficiently large positive real
number Um, strictly larger than U(0), and satisfying, for all i,

θ(Um) ≥ c4

n∑

i=1

ζi

(
L(0)ǫ−(i+b)(µi(Zi(0))

)
+ c4 Lǫ

m∂m . (41)

Suppose there exists a time tm in the positive time domain of existence of the solution such
that U(tm) = Um and U(r) < Um for all r in [0, tm). This implies

sup
[0,tm]

{
exp

(c6

2
r
)

θ(U(r))
}

= exp
(c6

2
tm

)
θ(U(tm)) .

On the other hand, by (41), setting s = 0 and t = tm in (39) yields

˙︷ ︷
U(tm)

L(tm)1−ǫ
≤ − 3 c3 L(tm)ǫ θ(U(tm)) < 0 .

This contradicts the definition of tm. Consequently, Um upper bounds the function t 7→ U(t)
in the positive time domain of existence of the solution. Since t 7→ L(t) is bounded, the same

12This property will be established at the end of the proof.
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holds for t 7→ (x̂(t), x̃(t)) and therefore also for t 7→ γi(zr(t), xr(t), x̃(t)). Then, by integration,
we obtain from Assumption 1.2 that, for all i, the function t 7→ Zi(zr(t), z̃(t)) is bounded on
the positive time domain of existence of the solution. Hence, by Assumption 1.1, the same
holds for t 7→ z̃(t). This implies that the positive time domain of existence is [0, +∞) and
that the closed loop solution is bounded on this interval.

It remains to establish (15). Let U be any positive real number satisfying

U > cdU

5 lim sup
t→+∞

(
n−1∑

i=1

|δr,i(t)|
L(t)i+b

+

( |δr,i(t)|
L(t)i+b

) 1
r∞,i+d∞

+ 2
|δr,n(t)|
L(t)b+n

)dU

, (42)

with c5 given in (32). By definition of lim sup, there exists tl such that

U ≥ cdU

5

(
n−1∑

i=1

( |δr,i(t)|
L(t)i+b

)
+

( |δr,i(t)|
L(t)i+b

) 1
r∞,i+d∞

+ 2
|δr,n(t)|
L(t)b+n

)dU

, ∀t ≥ tl . (43)

Furthermore, using (32), we obtain :

L(t)ǫ c4

n∑

i=1

ζi

(
δr,i(t)

L(t)i+b

)
≤ c3 L(t)ǫ θ (U) , ∀t ≥ tl . (44)

Let Zi,m be a bound for the function t 7→ Zi(t) and :

tk =
1

c6
ln



c4

∑n
i=1 ζi(a

1− i+b
ǫ

2 µi(Zi,m))

c3 a2 θ (U)



 .

By (40), we have :

c4 exp(c6(s − t))
n∑

i=1

ζi

(
L(s)ǫ−(i+b)(µi(Zi(s))

)
≤ c3 L(t)ǫ θ (U) , ∀t ≥ s + tk . (45)

Define now
U(s) = sup

r≥s

U(r) ,

and assume that we have :
U(s) ≥ U ∀s ≥ tl . (46)

Then, by (44) and (45), (39) with s ≥ tl, gives :

˙︷ ︷
U(t)

L(t)1−ǫ
≤ − [4 c3 L(t)ǫ + 1] θ(U(t)) + 3 c3 L(t)ǫθ(U(s)) ∀t ≥ s + tk .

So, for each time t ≥ s + tk for which we have θ(U(t)) ≥ 3
4
θ(U(s)), we obtain :

˙︷ ︷
U(t) < −θ(U(t)) .

It follows from the proof of [23, Theorem 1] that we have :

lim sup
t→+∞

θ(U(t)) ≤ 3
4
θ(U(s)) .
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But the definition (28) of θ gives :

θ(a) ≤ ρ θ(b) ⇒ a ≤ ρ
dU

d∞+dU b ∀a, b ≥ 0 , ∀ρ ∈ [0, 1] .

This yields :

lim sup
t→+∞

U(t) ≤ (3
4
)

dU
d∞+dU U(s)

and this for all s ≥ tl. By taking the limit for s going to infinity, we get

lim sup
t→+∞

U(t) ≤ (3
4
)

dU
d∞+dU lim supt→+∞ U(t)

and therefore lim supt→+∞ U(t) = 0, which contradicts (46). We conclude that, for each U
satisfying (42), there exists s satisfying :

U(s) = sup
r≥s

U(r) < U

from which (15) follows.
To complete the proof it remains to show that the property (38) is satisfied. By letting

M = Lǫ ,

(11) gives :

Ṁ = −ǫ a1 M + ǫ M max
{
0, a1(a2 + 1 − M) + a3 Ω(zr, xr)

}
.

Since M ≥ a2 ≥ 1, when :

a1(a2 + 1) + a3 Ω(zr, xr) ≥ a1 M ,

we get :

Ṁ ≥ −ǫ a1 M + ǫ
[
a1(a2 + 1 − M) + a3 Ω(zr, xr)

]
,

≥ −2 ǫ a1 M + ǫ
[
a1(a2 + 1) + a3 Ω(zr, xr)

]
.

and, when :
a1(a2 + 1) + a3 Ω(zr, xr) < a1 M ,

we get :

Ṁ = −2 ǫ a1 M + ǫ a1 M ,

≥ −2 ǫ a1 M + ǫ
[
a1(a2 + 1) + a3 Ω(zr, xr)

]
.

By integration this yields :

M(t) ≥ exp(−2ǫ a1 t) (M(0) − a2+1
2

) + ε a3

∫ t

0

exp(2ǫ a1(r − t)) Ω(zr(r), xr(r)) dr + a2+1
2

.

Picking L(0)ǫ = M(0) ≥ a2, the inequality (38) holds provided a1 is chosen sufficiently small
and a2 and a3 sufficiently large.
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4 Conclusion

We have solved a tracking problem by output feedback for minimum phase non-linear systems
which admit globally a strict normal form. Unlike most existing results, we allow nonlinearities
in the model satisfying a polynomial type growth in the unmeasured state components. In
particular, the result obtained generalizes the one obtained in [8] since asymptotic tracking
may be obtained without knowing an upper-bound on the reference trajectory.

This has been achieved by exploiting the tools of domination, homogeneity in the bi-limit,
dynamic scaling and a novel time varying small gain argument.
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A Homogeneity in the bi-limit

For details on the notion of homogeneity in the bi-limit the reader is referred to [2]. For
completeness, we recall the definition and state the main properties used in the paper.

Given a weight r = (r1, . . . , rn) in (R+/{0})n, we define the dilation of a vector x in R
n as

λr ⋄ x = (λr1 x1, . . . , λrn xn)T .
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Definition 1 (Homogeneity in the 0-limit)

• A continuous function φ : R
n → R is said homogeneous in the 0-limit with associ-

ated triple (r0, d0, φ0), where r0 in (R+/{0})n is the weight13, d0 in R+ the degree and
φ0 : R

n → R the approximating function, respectively, if φ0 is continuous and not iden-
tically zero and, for each compact set C in R

n \ {0} and each ε > 0, there exists λ∗ such
that we have :

max
x∈C

∣∣∣∣
φ(λr0 ⋄ x)

λd0
− φ0(x)

∣∣∣∣ ≤ ε ∀λ ∈ (0, λ∗].

• A vector field f =
∑n

i=1 fi
∂

∂xi
is said homogeneous in the 0-limit with associated triple

(r0, d0, f0), where f0 =
∑n

i=1 f0,i
∂

∂xi
, if, for each i in {1, . . . , n}, the function fi is homo-

geneous in the 0-limit with associated triple (r0, d0 + r0,i, f0,i)
14.

Definition 2 (Homogeneity in the ∞-limit)

• A continuous function φ : R
n → R is said homogeneous in the ∞-limit with associ-

ated triple (r∞, d∞, φ∞) where r∞ in (R+/{0})n is the weight, d∞ in R+ the degree and
φ∞ : R

n → R the approximating function, respectively, if φ∞ is continuous and not
identically zero and, for each compact set C in R

n \ {0} and each ε > 0, there exists λ∗

such that we have :

max
x∈C

∣∣∣∣
φ(λr∞ ⋄ x)

λd∞
− φ∞(x)

∣∣∣∣ ≤ ε ∀λ ∈ [λ∗, +∞) .

• A vector field f =
∑n

i=1 fi
∂

∂xi
is said homogeneous in the ∞-limit with associated triple

(r∞, d∞, f∞), with f∞ =
∑n

i=1 f∞,i
∂

∂xi
, if, for each i in {1, . . . , n}, the function fi is

homogeneous in the ∞-limit with associated triple (r∞, d∞ + r∞,i, f∞,i).

Definition 3 (Homogeneity in the bi-limit)
A continuous function φ : R

n → R (or a vector field f) is said homogeneous in the bi-limit if
it is homogeneous in the 0-limit and homogeneous in the ∞-limit.

We now recall some properties of homogeneous in the bi-limit functions. Let η and γ be
two continuous homogeneous in the bi-limit functions with weights r0, r∞, degrees dη,0, dη,∞

and dγ,0, dγ,∞, and continuous approximating functions η0, η∞, γ0, γ∞.

Claim A.1. The function x 7→ η(x)γ(x) is homogeneous in the bi-limit with associated triples
(r0, dη,0 + dγ,0, η0 γ0) and (r∞, dη,∞ + dγ,∞, η∞ γ∞).

Claim A.2. If the degrees satisfy dη,0 ≥ dγ,0 and dη,∞ ≤ dγ,∞, and γ(x) ≥ 0, and we have the
following implications for all non-zero x in R

n :

13 If x is partitioned as (xa, xb), we use (r0a, r0b) (respectively (r∞a, r∞b)) to denote the weights of xa and
xb.

14In the case of a vector field the degree d0 can be negative as long as d0 + r0,i ≥ 0, for all 1 ≤ i ≤ n.
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γ(x) = 0 ⇒ η(x) < 0 ,

γ0(x) = 0 ⇒ η0(x) < 0 ,

γ∞(x) = 0 ⇒ η∞(x) < 0 ,

then there exists a real number k∗ such that, for all k ≥ k∗, and for all non-zero x in R
n :

η(x) < kγ(x) , η0(x) < kγ0(x) , η∞(x) < kγ∞(x) .

Claim A.3. If the degrees satisfy dη,0 ≥ dγ,0 and dη,∞ ≤ dγ,∞ and the functions γ, γ0 and γ∞

are positive definite then there exists a positive real number c satisfying η(x) ≤ c γ(x) for all
x in R

n.

B Technical proofs

B.1 Proof of inequalities (13) and (14)

For any t0 ≥ 1, let

L̄t0 =

(
a2 +

1

t0
+

a3

a1
sup
s≥t0

Ω(s)

) 1
ǫ

.

Then from (11)

L̇(t) ≤ −a1 L(t) + L(t) max{0 , a1(1 − 1
t0

+ L̄ǫ
t0
− L(t)ǫ)} ∀t ≥ t0 .

It follows that
L̇(t) ≤ −a1

t0
L(t) ∀t ≥ t0 ≥ 1 : L(t) ≥ L̄t0 .

From the proof of [23, Theorem 1], this yields :

lim sup
t→+∞

L(t) ≤ L̄t0 .

As a result inequality (13) follows letting t0 go to +∞.
Similarly, let

Lt0
=

(
a2 −

1

t0
+

a3

a1
inf
s≥t0

Ω(s)

) 1
ǫ

.

This gives

˙︷ ︷
Lt0

− L(t) ≤ −a1

t0
L(t) ≤ −a4

t0
(Lt0

− L(t)) ∀t ≥ t0 : Lt0
≥ L(t) (≥ a

1
ǫ

2 ) ,

where :

a4 =
a1a

1
ǫ

2

Lt0
− a

1
ǫ

2

.

It follows that
lim inf
t→+∞

L(t) ≥ Lt0
,

from which (14) follows letting t0 go to +∞.
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B.2 Proof of Lemma 1

This proof is composed of two steps. We first give a bound on TDS and then on TDist.

Bound on the term TDS. Equation (24), and the expression of L̇ in (11), give :

TDS ≤ −[a1(a2 − Lǫ) + a3 Ω(zr, xr)]

(
∂U

∂X̂
(X̂, E)DX̂ +

∂U

∂E
(X̂, E)DE

)
.

From Theorem 2, point 1), for each i in {1, . . . , n} the functions ∂U
∂ei

(X̂, E) and ∂U
∂X̂ i

(X̂, E) are
homogeneous in the bi-limit with the same weights (r0, r0) and (r∞, r∞) and degrees dU − 1
and dU − r∞,i. Hence, by Claim A.1 in Appendix A, the function (X̂, E) 7→ ∂U

∂X̂
(X̂, E)DX̂ +

∂U
∂E

(X̂, E)DE is homogeneous in the bi-limit with weights (r0, r0) and (r∞, r∞) and degrees dU

and dU . Hence Claim A.3 yields a positive real number c11 such that :

∂U

∂X̂
(X̂, E) D X̂ +

∂U

∂E
(X̂, E) D E ≤ c11 U(X̂, E) .

Finally, using (24) once again and since a
1
ǫ

2 ≤ Lǫ ≤ L, we get

TDS ≤ −c2 a3 Ω(zr, xr) U(X̂, E) + c11 a1 L U(X̂, E) . (47)

Bound on the term TDist. By Assumption 2, (9), (26) and (20), we have, for all i,

|(∆f (L))i|
= L1−i−b|fi(zr + z̃, xr + x̃) − fi(zr, xr)| ,

≤ Ω(zr, xr)
i∑

j=1

Lj−i|X̂ j − ej | + c∞ L1−i−b

i∑

j=1

|Lb+j−1(X̂ j − ej)|
r∞,i+d∞

r∞,j + L1−i−bµi(Zi) .

Inequality (12) implies that, for all L ≥ a
1
ǫ

2 ≥ 1,

1

a2
≥ L−ǫ ≥ L

(b+j−1)
r∞,i+d∞

r∞,j
−i−b

.

Consequently, for all (X̂, E) in R
2n and L ≥ a

1
ǫ

2 ≥ 1,

|(∆f (L))i| ≤ Ω(zr, xr)

i∑

j=1

|X̂ j − ej| +
c∞
a2

L

i∑

j=1

|X̂ j − ej |
r∞,i+d∞

r∞,j + L1−i−bµi(Zi) .

On the other hand, the functions
∣∣∣ ∂U
∂ei

(E)
∣∣∣ |X̂ j − ej | and

∣∣∣ ∂U
∂ei

(E)
∣∣∣ |X̂ j − ej|

r∞,i+d∞

r∞,j are homoge-

neous in the bi-limit with weights (r0, r0) and (r∞, r∞) and degrees dU and dU +r∞,j −r∞,i (≤
dU) and, respectively, dU − 1 +

r∞,i+d∞

r∞,j
(≥ dU) and dU + d∞. Hence, Claim A.3 yields positive

real numbers c12 and c13 such that :

|TDist| ≤ c12 Ω(zr, xr) U(X̂, E) +
c∞ c13

a2

L θ
(
U(X̂, E)

)
(48)

+

n∑

i=1

∣∣∣∣
∂U

∂ei

(X̂, E)

∣∣∣∣L
1−i−b µi(Zi) +

n∑

i=1

∣∣∣∣
∂U

∂ei

(X̂, E)

∣∣∣∣L
1−i−b δr,i .

Collecting (27), (47) and (48) with Ω ≥ Ω
c∞

, we obtain
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˙︷ ︷
U(X̂, E) ≤ −

[
c1 − c11a1 − c∞c13

a2

]
Lθ
(
U(X̂, E)

)
− [c2a3 − c12c∞]Ω(zr, xr)U(X̂, E)

+
n∑

i=1

∣∣∣∣
∂U

∂ei

(X̂, E)

∣∣∣∣L
1−i−b µi(Zi) +

n∑

i=1

∣∣∣∣
∂U

∂ei

(X̂, E)

∣∣∣∣L
1−i−b δr,i .

Hence setting c3 = c1
10

, for all sufficiently small a1 and large a2 and a3, we have

˙︷ ︷
U(X̂, E) ≤ − 5 c3L θ

(
U(X̂, E)

)
+

n∑

i=1

∣∣∣∣
∂U

∂ei

(X̂, E)

∣∣∣∣
µi(Zi)

Li+b−1
+

n∑

i=1

∣∣∣∣
∂U

∂ei

(X̂, E)

∣∣∣∣
δr,i

Li+b−1
. (49)

The function (X̂, E, δr,i) 7→ ∂U
∂ei

(X̂, E) δr,i is homogeneous in the bi-limit with degrees dU and

dU + d∞ and the weights 1 and r∞,i + d∞ for δr,i. Hence there exists a positive real number c4

satisfying for any E, i, Zi and L ≥ 1,

∣∣∣∣
∂U

∂ei

(X̂, E)

∣∣∣∣
δr,i

Li+b
≤ c3

2n
θ
(
U(X̂, E)

)
+ c4 ζi

(
δr,i

Li+b

)
,

L1−ǫ

∣∣∣∣
∂U

∂ei

(X̂, E)

∣∣∣∣
µi(Zi)

Li+b−ǫ
≤ L

c3

2n
θ
(
U(X̂, E)

)
+ c4 L1−ǫ ζi

(
µi(Zi)

Li+b−ǫ

)
,

where ζi is the homogeneous in the bi-limit functions defined in (31). Hence, inequality (49)
becomes (29) and yields the claim of Lemma 1.

B.3 Proof of Lemma 2

Before entering the proof of Lemma 2, it is useful to list some properties of the functions µi

and ζi. The functions µq1

i are zero at zero and convex, hence by (7), we have :

1

q1

µi(s) ≤ s µ′
i(s) ≤ q2 µi(s) ∀s > 0 . (50)

Similarly, by definition (31) of the functions ζi, we have :

ζi(s) ≤ s ζ ′
i(s) ≤ dU + d∞

1 − d∞(n − 2)
ζi(s) ∀s ≥ 0 . (51)

By integration, this gives :

ζi(rs) ≤ r
dU+d∞

1−d∞(n−2) ζi(s) ∀s ≥ 0 , ∀r ≥ 1 . (52)

Also, since dU satisfies dU−1
1+d∞

> q1, the functions s 7→ ζi(µi(s)) are convex, C1 and zero at zero.
It follows that we have :

∂

∂r
ζi(rµi(s)) = ζ ′

i(rµi(s)) µi(s) ,
∂

∂s
ζi(rµi(s)) = r ζ ′

i(rµi(s)) µ′
i(s) if s > 0 ,

= 0 if s = 0 ,

(53)

0 ≤ ∂

∂s
ζi(rµi(s1)) ≤ ∂

∂s
ζi(rµi(s2)) ∀0 ≤ s1 ≤ s2 , ∀r ≥ 0 . (54)
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Proof of Lemma 2 By (53) and Yi defined in (30), Assumption 1.2 gives :

˙︷ ︷
ζi(Yi) (55)

≤ [ǫ − (i + b)] L̇
L
ζ ′
i(Yi)Yi + Lǫ−(i+b)ζ ′

i(Yi)µ
′
i(Zi(zr, z̃))

[
− Zi(zr, z̃) + γi(x̃, zr, xr)

]
if Zi 6= 0 ,

= 0 if Zi = 0 .

Since L̇ + a1L is non-negative and ǫ satisfies (12), we have :

[ǫ − (i + b)]
L̇

L
ζ ′
i(Yi)Yi ≤ [(i + b) − ǫ]a1 ζ ′

i(Yi)Yi .

To exhibit an upper bound on Lǫ−(i+b)ζ ′
i(Yi)µ

′
i(Zi(zr, z̃))

[
− Zi(zr, z̃) + γi(x̃, zr, xr)

]
we

distinguish two cases :

1) γi(x̃, zr, xr) ≤
Zi(zr, z̃))

1 + υ
, 2) γi(x̃, zr, xr) >

Zi(zr, z̃))

1 + υ
,

with υ given in Assumption 3.
Case 1) : (50) yields :

Lǫ−(i+b) ζ ′
i(Yi) µ′

i(Zi(zr, z̃))
[
− Zi(zr, z̃) + γi(x̃, zr, xr)

]

≤ − υ
1+υ

Lǫ−(i+b) ζ ′
i(Yi) µ′

i(Zi(zr, z̃))Zi(zr, z̃)) ,

≤ − υ
q1(1+υ)

ζ ′
i(Yi) Lǫ−(i+b) µi(Zi(zr, z̃)) ,

≤ − υ
q1(1+υ)

ζ ′
i(Yi) Yi .

Case 2) : By using successively (54), (50) and (51), we get :

Lǫ−(i+b) ζ ′
i(Yi) µ′

i(Zi(zr, z̃))
[
− Zi(zr, z̃) + γi(x̃, zr, xr)

]

≤ Lǫ−(i+b) ζ ′
i

(
Lǫ−(i+b)µi ((1 + υ)γi(x̃, zr, xr))

)
µ′

i ((1 + υ)γi(x̃, zr, xr)) γi(x̃, zr, xr) − 1
q1

ζ ′
i(Yi) Yi ,

≤ ζ ′
i

(
Lǫ−(i+b)µi ((1 + υ)γi(x̃, zr, xr))

)
q2

1+υ
Lǫ−(i+b)µi ((1 + υ)γi(x̃, zr, xr)) − 1

q1
ζ ′
i(Yi) Yi ,

≤ dU+d∞

1−d∞(n−2)
q2

1+υ
ζi

(
Lǫ−(i+b)µi ((1 + υ)γi(x̃, zr, xr))

)
− 1

q1
ζ ′
i(Yi) Yi ,

where by Assumption 3, (26) and L ≥ 1, we have :

Lǫ−(i+b) µi ((1 + υ)γi(x̃, zr, xr)) ≤ Lǫ−(i+b)
i∑

j=1

Ω(zr, xr)|x̃j | + c∞ |x̃j |
r∞,i+d∞

r∞,j

≤ max

{
Ω(zr, xr)

c∞
, 1

}
c∞

i∑

j=1

|X̂ j − ej | + |X̂ j − ej |
r∞,i+d∞

r∞,j .

Since the function (sj) 7→
∑i

j=1 |sj| + |sj|
r∞,i+d∞

r∞,j is homogeneous in the bi-limit with weights
r0 and r∞ and degrees 1 and r∞,i + d∞, the function ζi is homogeneous in the bi-limit with
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weights 1 and r∞,i + d∞ and degrees dU and dU + d∞, and the function (X̂, E) 7→ θ
(
U(X̂, E)

)

is positive definite, proper and homogeneous in the bi-limit with weights (r0, r0) and (r∞, r∞)
and degrees dU and dU + d∞, there exists a positive real number c7 such that we have :

dU + d∞

1 − d∞(n − 2)

q2

1 + υ
ζi

(
c∞

i∑

j=1

|X̂ j − ej | + |X̂ j − ej |
r∞,i+d∞

r∞,j

)
≤ c7 θ

(
U(X̂, E)

)
.

Hence, with (52), we have obtained :

dU+d∞

1−d∞(n−2)
q2

1+υ
ζi

(
Lǫ−(i+b)µi((1 + υ)γi(x̃, zr, xr))

)

≤ c7 max
{

Ω(zr ,xr)
c∞

, 1
} dU+d∞

1−d∞(n−2)
θ
(
U(X̂, E)

)
.

Combining the two cases, we get :

Lǫ−(i+b)ζ ′
i(Yi)µ

′
i(Zi(zr, z̃))

[
− Zi(zr, z̃) + γi(x̃, zr, xr)

]
≤

− υ
q1(1+υ)

ζ ′
i(Yi) Yi + c7 max

{
Ω(zr,xr)

c∞
, 1
} dU +d∞

1−d∞(n−2)
θ
(
U(X̂, E)

)

which implies for (55) :

˙︷ ︷
ζi(Yi) ≤ −

(
υ

q1(1 + υ)
− [(i + b) − ǫ]a1

)
ζ ′
i(Yi)Yi

+ c7 max

{
Ω(zr, xr)

c∞
, 1

} dU+d∞

1−d∞(n−2)

θ
(
U(X̂, E)

)
,

≤ −c6 ζi(Yi) + c7 max

{
Ω(zr, xr)

c∞
, 1

} dU+d∞

1−d∞(n−2)

θ
(
U(X̂, E)

)
,

where to get the latter inequality we have used (51) and chosen c6 satisfying :

c6 <
υ

q1(1 + υ)

and a1 satisfying

a1 <

υ
q1(1+υ)

− c6

n + b
.

This completes the proof of the Lemma.
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