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Introduction

The problem of controlling a system in such a way that its state follows a reference trajectory has been widely studied in control theory and it is still an active field of research (see [START_REF] Chen | Global robust servomechanism problem for uncertain lower triangular nonlinear systems by output feedback control[END_REF][START_REF] Gong | Global practical tracking of a class of nonlinear systems by output feedback[END_REF][START_REF] Krishnamurthy | Global high-gain based observer and backstepping controller for generalized output-feedback canonical form[END_REF]). When only the output is available for measurement, it can be formulated as follows. Given : 1. a system η = f (η, u) with output y = h(η), 2. a bounded state and input reference trajectory (η r , u r ), available at each time but not ahead of time design an output feedback ẇ = θ(w, y, η r ), u = ϕ(w, y, η r ) which ensures global convergence or, asymptotic closeness (in a sense to be specified) of η to η r . This problem is challenging since, as shown in [START_REF] Mazenc | Global stabilization by output feedback : Examples and Counter-Examples[END_REF], controllability and observability are not sufficient to guarantee the existence of a solution, as is the case for linear systems. Hence, some restrictions have to be imposed on the nonlinear function f . Given a state feedback controller, the key step to design an output feedback controller, is the synthesis of an appropriate observer (see [START_REF] Andrieu | A Unifying point of view on output feedback designs[END_REF] for more details). The observer problem is solved in [START_REF] Krstić | Nonlinear and adaptive control design[END_REF][START_REF] Marino | Nonlinear control design. Geometric, adaptive, robust[END_REF][START_REF] Krishnamurthy | Global output feedback tracking for nonlinear systems in generalized output-feedback canonical form[END_REF], for instance by requiring the nonlinear function f to be linear in the unmeasured variable, or in [START_REF] Krishnamurthy | Global high-gain based observer and backstepping controller for generalized output-feedback canonical form[END_REF] where f is required to be globally Lipschitz with a Lipschitz constant depending on the output.

Recently, the problem of practical tracking has been solved in [START_REF] Gong | Global practical tracking of a class of nonlinear systems by output feedback[END_REF] for a class of systems not globally Lipschitz in the unmeasured state components, under the assumption the reference trajectory is bounded and this bound is known. The aim of this paper is to extend this result to achieve asymptotic tracking while not requiring the knowledge of an upper-bound for the reference trajectory.

To illustrate the key ideas of the design and to relate our contribution to existing results we first consider an illustrative example 1 :

       ż = -z + x 1+d 2 , ẋ1 = x 2 , ẋ2 = u + x 1+d 2 + z , y = x 1 , (1) 
where y in R is the available measurement, u in R is the control input and d is a real number in [0, 1). Given a bounded time function t → (x r1 (t), x r2 (t), u r (t)), together with a solution of żr = -z r + x 1+d 2,r we define a state and input reference trajectory ((z r , x r,1 , x r,2 ), u r ), which is an approximate solution of (1), i.e. it solves

   żr = -z r + x 1+d 2,r , ẋr,1 = x r,2 + δ r,1 , ẋr,2 = u r + x 1+d r,2 + z r + δ r,2 , (2) 
where (δ r,1 , δ r,2 ) quantifies the approximation error. The problem is to find an output feedback such that the state (z, x 1 , x 2 ) of ( 1) approaches (in a sense to be specified) (z r , x r,1 , x r,2 ) despite the presence of (δ r,1 , δ r,2 ). Note that system (1) is neither linear nor globally Lipschitz with respect to its unmeasured state components due to the presence of the term x 1+d 2 . Hence, none of the tracking results developed in [START_REF] Krstić | Nonlinear and adaptive control design[END_REF][START_REF] Marino | Nonlinear control design. Geometric, adaptive, robust[END_REF][START_REF] Krishnamurthy | Global output feedback tracking for nonlinear systems in generalized output-feedback canonical form[END_REF][START_REF] Krishnamurthy | Global high-gain based observer and backstepping controller for generalized output-feedback canonical form[END_REF] can be used. Moreover functions z r , x r,1 , x r,2 , u r , δ r,1 and δ r,2 are not required to be bounded in norm by some known quantities, and this impedes the use of the technique proposed in [START_REF] Gong | Global practical tracking of a class of nonlinear systems by output feedback[END_REF].

In this paper, the tracking problem is recast into the problem of finding ũ = uu r , depending on (z r , x r,1 , x r,2 ) and x1 = x 1x r,1 such that the solutions of the error systems

   ż = -z + (x r,2 + x2 ) 1+d -x 1+d r,2 , ẋ1 = x2 -δ r,1 , ẋ2 = ũ + (x r,2 + x2 ) 1+d -x 1+d
r,2 + zδ r,2 , asymptotically converges to a ball centered at the origin, with radius depending only on the asymptotic behavior of δ r,1 and δ r,2 .

To solve this problem we follow a domination approach based on homogeneity. This leads to regard the term (x r,2 + x2 ) 1+dx 1+d r,2 + zδ r,2 in the definition of ẋ2 as a perturbation which can be upper bounded as :

|(x r,2 + x2 ) 1+d -x 1+d r,2 + z -δ r,2 | ≤ (1 + d) |x r,2 | d |x 2 | + |x 2 | 1+d + |z| + |δ r,2 | . ( 3 
)
This bound is composed of four terms each of which motivate some particular features of the proposed design. To deal with this kind of term we follow an idea introduced in [START_REF] Praly | Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate[END_REF] and design a high-gain output feedback with a dynamic scaling with a gain updated from the reference signal x r,2 .

2. The second term, namely |x 2 | 1+d , is a power of the norm of the tracking error |x 2 |. To deal with this term, we use the homogeneous in the bi-limit output feedback design tool we have introduced in [START_REF] Andrieu | Homogeneous approximation, Recursive observer design and Output feedback[END_REF] (see Appendix A for the definition of homogeneity in the bi-limit).

3. The term |z| depends on the state of the appended dynamics. We deal with this one by imposing a minimum phase assumption and invoking a small gain argument. Note that the gain obtained is time-varying (it depends on x r,2 ), and this requires, in the design, to rely on a time-varying small-gain argument.

4. Finally, the term |δ r,2 | coming from the approximation error of the reference is a perturbation which is not necessary vanishing at the origin. This implies that exact tracking cannot be obtained. Nevertheless, the use of high gain allows to reduce the effect of this disturbance.

In conclusion, the solution to this tracking problem is based on a domination approach and combines high-gain with dynamic scaling and homogeneity in the bi-limit.

In Section 2 the main result of the paper is stated, commented and compared with existing results related to this topic. Section 3 is devoted to the proof of the main result. More precisely, in Section 3.1 we introduce a homogeneous in the bi-limit output feedback design for a chain of integrators compatible with the use of dynamic scaling. With this tool in hand, we propose an output feedback and adjust some of its parameters by studying the closed-loop system in Section 3.2. A brief summary of the homogeneity in the bi-limit theory is given in Appendix A, while some technical results are proved in Appendix B.

2 Main result of the paper

Problem statement and Assumptions

Consider a system whose dynamics are described by :

             ż = F (z, x) , ẋ1 = x 2 + f 1 (z, x) , ẋ2 = x 3 + f 2 (z, x) , . . . ẋn = u + f n (z, x) , y = x 1 , (4) 
where

x = (x 1 , . . . x n ) is in R n , y is the output in R, u is the input in R and z in R nz is the state of some appended dynamics 2 .
Let t → (x r (t), u r (t)) ∈ R n × R be a bounded function to which corresponds a bounded 3 solution t → z r (t) ∈ R nz of the appended state dynamics żr = F (z r , x r ) .

(5)

We consider t → (x r (t), z r (t), u r (t)) ∈ R n × R as a state and input reference trajectory. It is a solution of (4) up to an approximation error t → δ r (t) = (δ r,1 (t), . . . , δ r,n (t)) ∈ R n , defined as :

             δ r,1 = x r,2 + f 1 (z r , x r ) -ẋr,1 , δ r,2 = x r,3 + f 2 (z r , x r ) -ẋr,2 , . . . δ r,n-1 = x r,n + f n-1 (z r , x r ) -ẋr,n-1 , δ r,n = u r + f n (z r , x r ) -ẋr,n , (6) 
we wish to design an output feedback controller for system (4) to ensure convergence (or closeness, see inequality ( 15)) of the solutions (x, z) toward this state reference trajectory (x r , z r ).

In the design, the z part can be "neglected" provided the appended dynamics with f i as output and x as input are incremental ISS (see [START_REF] Angeli | A Lyapunov approach to incremental stability[END_REF]). Specifically, we make the following assumptions 4 .

Assumption 1 (Minimum-Phase) There exist non-negative

C 1 functions Z i and C 0 functions γ i , such that, 1.1) for each c ≥ 0, the set {z : ∃z r : |z r | + n i=1 Z i (z r , z) ≤ c} is compact. 1.2) ∂Z i ∂z r (z r , z) F (z r , x r ) + ∂Z i ∂ z (z r , z) [F (z r + z, x r + x) -F (z r , x r )] ≤ -Z i (z r , z) + γ i (z r , x r , x) .
As shown in [START_REF] Mazenc | Global stabilization by output feedback : Examples and Counter-Examples[END_REF] in the context of global asymptotic stabilization of the origin, the tracking problem under consideration might be unsolvable. Consequently, we need to impose some restrictions on the functions f i . In this regard, we make the following assumption.

Assumption 2 (Nonlinear bound) :

There exist positive real numbers q 1 and q 2 , a real number d ∞ in 0, 1 n-1 , a positive real number c ∞ , a non-negative continuous function Ω, and nonnegative functions µ i such that : 2.1) the functions µ i are zero at zero, C 1 on (0 + ∞) and continuous at 0, the functions µ q 1 i are convex and :

s µ ′ i (s) ≤ q 2 µ i (s) ∀s > 0 ; (7) 2.
2) for all i in {1, . . . , n} and all (z r , z, x r , x) in R 2nz+2n ,

|f i (z r + z, x r + x) -f i (z r , x r )| ≤ Ω(z r , x r ) i j=1 |x j | + c ∞ i j=1 |x j | 1-d∞(n-i-1) 1-d∞(n-j) + µ i (Z i (z r , z)) .
3 With Assumption 1, boundedness of z r is implied by the boundedness of x r .

4 See Section 2.3.2 for some discussions on Assumptions 1, 2 and 3.

Finally, for the appended dynamics, we impose a bound on the gain between its input x and its outputs f i .

Assumption 3 (Bound on the gain)

There exists a strictly positive real number υ such that, for all i in {1, . . . , n} and all (z r , x r , x) in R nz+2n , we have,

µ i ((1 + υ) γ i (x, z r , x r )) ≤ Ω(z r , x r ) i j=1 |x j | + c ∞ i j=1 |x j | 1-d∞(n-i-1) 1-d∞(n-j) .
where the functions γ i , µ i , Ω and the positive real number c ∞ are as in Assumptions 1 and 2.

Main result

For systems satisfying Assumptions 1, 2 and 3, the high-gain output feedback we propose to solve the tracking problem is expressed as :

u = u r + L n+b φ(L -1 x) , ẋ = S x + B L n+b φ(L -1 x) + L L K x1 -(y -x r,1 ) L b , (8) 
where

L = diag(L b , . . . , L n+b-1 ) , (9) 
S denotes the left shift matrix of order n, i.e. S x = (x 2 , . . . , xn-1 , 0) T , and b is a positive real number chosen to satisfy 5 , for 1

≤ j ≤ i ≤ n, 1 -d ∞ (n -i -1) 1 -d ∞ (n -j) < i + b j -1 + b < i j -1 , (10) 
for all 1 ≤ j ≤ i ≤ n and with d ∞ as given in Assumption 2. Similarly to [START_REF] Andrieu | Homogeneous approximation, Recursive observer design and Output feedback[END_REF], the functions K and φ are designed by following the procedure described in Section 3.1.3. Unlike [START_REF] Andrieu | Homogeneous approximation, Recursive observer design and Output feedback[END_REF], the high-gain parameter L is updated on line as :

L = -a 1 L + L max 0, a 1 (a 2 + 1 -L ǫ ) + a 3 Ω(z r , x r ) , (11) 
where :

Ω(z r , x r ) = max Ω(z r , x r ) c ∞ , 1 d U +d∞ 1-d∞(n-2)
, and where d U , a 1 , a 2 , and a 3 are positive real numbers to be defined, with a 1 sufficiently small and d U , a 2 and a 3 sufficiently large, and ǫ is selected to satisfy, for 1 ≤ j ≤ i ≤ n,

0 < ǫ < i + b -(b + j -1) 1 -d ∞ (n -i -1) 1 -d ∞ (n -j) . ( 12 
)
5 This choice is always possible since, for 1 ≤ j ≤ i ≤ n, we have :

i+b j-1+b < i j-1 ∀ b > 0, and 1 ≤ 1-d∞ (n-i-1) 1-d∞ (n-j) < i j-1 ∀ d ∞ ∈ [0, 1 n-1 ) .
The update law [START_REF] Isidori | Nonlinear control systems: an introduction[END_REF] is a modification of the one introduced in [19, [START_REF] Van Nieuwstadt | Real-time trajectory generation for differentially flat systems[END_REF]] and in [7, (3.12)] or [14, (134)]. Its right hand side depends only on the state reference trajectory (x r , z r ). Since the reference trajectory is bounded by assumption, L is upper bounded along any closed-loop solution. Moreover, if L(0) > a 1 ǫ 2 , L(t) remains larger than a 1 ǫ 2 along any closed-loop solution. In particular, L(t) > 1 if we select a 2 ≥ 1. Finally the presence of the term -a 1 L allows to recover the main property of [19, (24)], i.e. L "follows" its driving term. Specifically, as established in Appendix B, we have :

lim sup t→+∞ L(t) ≤ a 2 + a 3 a 1 lim sup t→+∞ {Ω(z r (t), x r (t))} 1 ǫ , ( 13 
) lim inf t→+∞ L(t) ≥ a 2 + a 3 a 1 lim inf t→+∞ {Ω(z r (t), x r (t))} 1 ǫ . ( 14 
)
We are now ready to state the main result of the paper (proved in Section 3).

Theorem 1 Under Assumptions 1,2 and 3, given any strictly positive real numbers b satisfying [START_REF] Hirschorn | Invertibility of nonlinear control systems[END_REF] and a sufficiently large real number d U , there exist a positive real number c r and functions K and φ such that, for all sufficiently small strictly positive real number a 1 and sufficiently large real numbers a 2 and a 3 , the following holds.

For any bounded state and input reference trajectory t → (x r (t), z r (t), u r (t)), with bounded approximation error t → δ r (t) given by ( 6), the solutions of system (4) with the output feedback [START_REF] Gong | Global practical tracking of a class of nonlinear systems by output feedback[END_REF], [START_REF] Isidori | Nonlinear control systems: an introduction[END_REF] are bounded in positive time and satisfy

lim sup t→+∞ |L -1 (x(t) -x r (t))| ≤ (15) c r lim sup t→+∞ n-1 i=1 |δ r,i (t)| L(t) i+b + |δ r,i (t)| L(t) i+b 1 1-d∞(n-i-1) + 2 |δ r,n (t)| L(t) n+b
with L defined in [START_REF] Grizzle | Necessary Conditions for Asymptotic Tracking in Nonlinear Systems[END_REF].

Some remarks 2.3.1 About the result

If the reference trajectory is an exact solution of (4) (i.e. if δ r (t) = 0) or if δ r (t) converges to zero as t goes to infinity, the output feedback given in Theorem 1 ensures that (x(t), z(t)) converges to (x r (t), z r (t)).

In general, [START_REF] Krishnamurthy | Global output feedback tracking for nonlinear systems in generalized output-feedback canonical form[END_REF] implies

lim sup t→+∞ |y(t) -x r,1 (t)| ≤ c r lim sup t→+∞ L(t) b lim inf t→+∞ L(t) 1+b 1+d∞ lim sup t→+∞ n-1 i=1 |δ r,i (t)| + |δ r,i (t)| 1 r ∞,i +d∞ + 2|δ r,n (t)| .
Therefore, if the reference trajectory is known in advance, for all κ > 0 we can select the parameter a 2 strictly larger than

lim sup t→+∞    max    a 3 a 1 Ω(z r (t), x r (t)), c ǫ r n-1 i=1 |δ r,i (t)| + |δ r,i (t)| 1 r ∞,i +d∞ + 2|δ r,n (t)| κ ǫ 2 b       .
Then, by ( 13) and ( 14), lim sup

t→+∞ |y(t) -x r,1 (t)| ≤ κ .
Hence, as in 6 [8], we recover a practical result in its usual formulation.

On the other hand, we do not need to know in advance the whole reference trajectory or even a bound on it to design the controller and to get asymptotically closeness of the closed loop system solutions toward the reference one. This differs from the results proposed in [START_REF] Gong | Global practical tracking of a class of nonlinear systems by output feedback[END_REF] and [START_REF] Krishnamurthy | Global output feedback tracking for nonlinear systems in generalized output-feedback canonical form[END_REF].

About the Assumptions

Note that for system (1),

• Assumption 1 follows from inequality (3) taking

Z 1 (z r , z) = Z 2 (z r , z) = |z| 2 ,
and

γ 1 (x, z r , x r ) = γ 2 (x, z r , x r ) = (1 + d) |x r,2 | d |x 2 | + |x 2 | 1+d 2 . • Assumption 2 is satisfied setting d ∞ = d, c ∞ = √ 2 and picking Ω(z r , x r ) = √ 2 (1 + d) |x r,2 | d , µ 1 (s) = µ 2 (s) = √ s , q 1 = 2 , q 2 = 1 2 .
• Finally, Assumption 3 is satisfied with υ = 1.

Consequently, system (1) belongs to the class of systems satisfying Assumption 1,2 and 3 and Theorem 1 applies.

When compared with what can be found in the textbooks [START_REF] Marino | Nonlinear control design. Geometric, adaptive, robust[END_REF][START_REF] Krstić | Nonlinear and adaptive control design[END_REF] or in [START_REF] Krishnamurthy | Global output feedback tracking for nonlinear systems in generalized output-feedback canonical form[END_REF] for instance, our approach allows us to deal with dynamics which, in appropriate coordinates, may have some polynomial growth in the unmeasured state components (as expressed by Assumption 2).

Assumption 1 is more general than the incremental property introduced in [START_REF] Angeli | A Lyapunov approach to incremental stability[END_REF] (see also [START_REF] Andrieu | Trajectory tracking by output feedback for some non linear systems[END_REF]) since the gain γ i in Assumption 1.2 depends also on (z r , x r ). Nevertheless it retains its main property on the behavior of the solutions. Specifically it implies that, for all bounded time functions t → (x(t), x r (t)), if a corresponding solution t → z r (t) of the appended dynamics of system (4), i.e. solution of :

żr = F (z r , x r ) , is bounded, then all solutions t → z(t) of : ż = F (z, x)
are bounded as well. If furthermore, for all i, γ i (z r (t), x r (t), x(t)x r (t)) goes to zero when t goes to infinity, then |z(t)z r (t)| goes to zero. The presence of the δ r,i offers a great flexibility for checking our Assumptions. Specifically, it follows from our proof that Assumptions 1 and 2 need not to hold for all (z r , x r ). It is sufficient they are satisfied with F (z r , x r ) and δ r,i given by [START_REF] Angeli | A Lyapunov approach to incremental stability[END_REF]. For example, in the case with no appended dynamics, by letting :

δ r,1 = ẋr,1 -f 1 (x r ) , x r,i = 0 , δ r,i = f i (x r ) ∀i ≥ 2 ,
Assumption 2 becomes :

|f i (x)| ≤ Ω(x r ) i j=1 |x j | + c ∞ i j=1 |x j | 1-d∞(n-i-1) 1-d∞(n-j)
.

Then, with f i locally Lipschitz, around the origin, we recover the result on practical tracking in [START_REF] Gong | Global practical tracking of a class of nonlinear systems by output feedback[END_REF] where standard homogeneity and domination is also used.

In the same way, by letting

F (z r , x r ) = 0 , δ r,i = f i (0, x r ) -f i (z r , x r ) ,
Assumption 1.2 reduces to a simple ISS property as assumed for example in [START_REF] Krishnamurthy | Global output feedback tracking for nonlinear systems in generalized output-feedback canonical form[END_REF]. Finally, the presence of the function Ω in Assumptions 2 and 3 is an important feature. It is necessary to account for the fact that the local Lipschitz constant depend on around where the solution is and therefore around where (z r , x r ) is. But, not knowing in advance the reference trajectory, we have no a priori upperbound for this term. This term makes the analysis much more involved and requires ad hoc small gain arguments.

About the reference trajectory

The standard output tracking problem consists in designing a feedback which guarantees boundedness of the closed loop solutions while ensuring convergence of the output to a desired reference signal y r . To solve this problem, we follow the classical two degrees of freedom design technique. Namely we separate the problem into two subproblems :

• trajectory generation,

• feedback compensation.
Feedback compensation is the object we present in full details in this paper. The purpose of trajectory generation is to synthesize a state and input reference trajectory (x r , z r , u r ) for the system given the desired reference signal y r . Here we do not require this trajectory to be feasible since a "dynamical mismatch" quantified by δ r is allowed. In addition we do not require this state and input reference trajectory, and therefore the reference signal to be available ahead of time.

The problem of state and input reference trajectory generation is rendered more difficult by the presence of appended dynamics. When the system we consider is right invertible (see [START_REF] Hirschorn | Invertibility of nonlinear control systems[END_REF]), one way to solve this problem (among many others) is to decompose it in two sub-problems: 1. generation of the time derivatives of the desired reference signal y r , 2. transformation of these derivatives into a state and input reference trajectory. The problem of obtaining the time derivative of the desired reference signal is an observer problem. It can be solved once we have a model of the system which generates the reference signal, the so-called exo-system in regulation theory [START_REF] Isidori | Nonlinear control systems: an introduction[END_REF]. For example, we could pick as approximate exo-system y (m) r (t) = 0, i.e. y r (t) is approximated as a polynomial of degree m -1 in t (the model used in [START_REF] Gong | Global practical tracking of a class of nonlinear systems by output feedback[END_REF] is ẏr = 0).

Then, to obtain the appropriate signals (x r , u r ) and z r , from y r and its time derivatives y (i) r , we follow a standard inversion procedure (see [START_REF] Hirschorn | Invertibility of nonlinear control systems[END_REF]). Specifically, if we can partition x in (x a , x b ) so that (4) takes the specific form

7                          ż = F (z, x a ) , ẋa1 = x a2 + f 1 (x a1 ) , . . . ẋana-1 = x ana + f na-1 (x a1 , ..., x ana-1 ) , ẋana = x b1 + f na (z, x a ) , ẋb1 = x b2 + f na+1 (z, x a , x b1 ) , . . . ẋbn b = u + f na+n b (z, x a , x b1 , ..., x bn b ) , y = x a1 , (16) 
then by formal differentiation we obtain functions φ ai so that x r,ai = φ ai (y r , ..., y

(i-1) r
), and by on-line integration of żr = F (z r , x r,a ) , we obtain z r from x r,a . Finally, again by formal differentiation, we obtain functions φ bi so that

x r,bi = φ bi (z r , y r ..., y (na+i-1) r ) , u r = φ bn (z r , y r ..., y (na+n b ) r ) .
If, for the z subsystem there exist a particular initial condition z(0) and a bounded time function t → x a (t) (considered here as input) such that the corresponding solution t → z(t) is bounded, then, by the minimum phase Assumption 1.1.2, the above procedure yields a bounded state and input reference trajectory provided that the function t → (y r (t), ..., y

(na+n b ) r
(t)) is bounded. Note that we rely on a minimum phase assumption and this is not surprising in view of the key role this assumption plays, as discussed in [START_REF] Grizzle | Necessary Conditions for Asymptotic Tracking in Nonlinear Systems[END_REF].

For system (1) it is possible to compute an exact state and input trajectory from y r , ẏr and ÿr selecting x a = (x 1 , x 2 ) with x b = ∅. Indeed, we obtain :

x r,2 = ẏr , u r = ÿr -( ẏr ) 1+d -z r , żr = -z r + ( ẏr ) 1+d .
Unfortunately, in general, the estimation process yielding the time function ẏr (t) and ÿr (t) from the knowledge of y r (t) is not exact, and consequently generates an approximation for this reference trajectory (i.e. non-zero δ 1 and δ 2 ). The procedure above is only one of many possible solutions. Others may exploit optimal control or flatness [START_REF] Van Nieuwstadt | Real-time trajectory generation for differentially flat systems[END_REF].

Proof of Theorem 1

The proof of inequality ( 15) is divided into two parts. In the first part we introduce the functions K and φ appearing in the output feedback given in [START_REF] Gong | Global practical tracking of a class of nonlinear systems by output feedback[END_REF]. In the second part we show how a proper selection of the parameters d U , a 1 , a 2 and a 3 in the high-gain update law [START_REF] Isidori | Nonlinear control systems: an introduction[END_REF] yields the result.

Construction of K and φ

Posing the problem as an output feedback stabilization problem

The first step is to pose the tracking problem as a problem of stabilization by output feedback. Setting

ũ = u -u r , x = x -x r , z = z -z r , we obtain : ż = F (z r + z, x r + x) -F (z r , x r ) , ẋ = S x + B ũ + f (z r + z, x r + x) -f (z r , x r ) -δ r , (17) 
where B = (0, . . . , 1) T and δ r = (δ r,1 , . . . , δ r,n ).

The objective is to find ũ depending on the output x1 = yx r,1 and on the state reference trajectory (z r , x r ) such that (15) holds.

A high-gain domination approach

The x dynamics of the system [START_REF] Mazenc | Global stabilization by output feedback : Examples and Counter-Examples[END_REF] have the structure of a chain of integrators disturbed by nonlinear terms depending on the tracking error (x, z), the state reference trajectory (x r , z r ) and the approximation error δ r . This motivates us to use the domination approach introduced in [START_REF] Khalil | Adaptive stabilization of a class of nonlinear systems using high-gain feedback[END_REF] (see also [START_REF] Qian | Output feedback control of a class of nonlinear systems : a nonseparation principle paradigm[END_REF]). In this context, the nonlinear functions (the f i 's) are not used in the design but considered as perturbations and the output feedback is designed on a dominating model which in this case is the chain of integrators. To ensure robustness to these nonlinearities, we employ high-gain techniques. This leads us to design the controller with the scaled coordinates :

Xi = L b+1-i xi ( 18 
)
where L is the updated high-gain and b is a positive real number satisfying [START_REF] Hirschorn | Invertibility of nonlinear control systems[END_REF]. Compared to the scaled coordinates used in the high-gain approach in [START_REF] Khalil | Adaptive stabilization of a class of nonlinear systems using high-gain feedback[END_REF], we add an extra high-gain parameter b which has been introduced in [START_REF] Praly | Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate[END_REF] and which allows gain adaptation.

Homogeneous in the bi-limit output feedback for a chain of integrators

Following the domination approach, we focus on the dominant part of system [START_REF] Mazenc | Global stabilization by output feedback : Examples and Counter-Examples[END_REF] in the scaled coordinate [START_REF] Marino | Nonlinear control design. Geometric, adaptive, robust[END_REF], i.e. a chain of integrators, with state X = (X 1 , . . . , X n ) in R n described by :

Ẋ = S X + B u , y = X 1 . (19) 
To design the output feedback controller for system [START_REF] Praly | Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate[END_REF] we use the tools developed within the framework of homogeneity in the bi-limit, introduced in [START_REF] Andrieu | Homogeneous approximation, Recursive observer design and Output feedback[END_REF]. (See Appendix A for a brief summary.) Selecting d 0 = 0 and with d ∞ given by Assumption 2, homogeneity in the bi-limit is obtained for system [START_REF] Praly | Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate[END_REF] with the weights r 0 = (r 0,1 , . . . , r 0,n ) and r ∞ = (r ∞,1 , . . . , r ∞,n ) as8 :

r 0,i = 1 , r ∞,i = 1 -d ∞ (n -i) , i ∈ {1, . . . n} . (20) 
In [START_REF] Andrieu | Homogeneous approximation, Recursive observer design and Output feedback[END_REF] we have proposed an output feedback for system [START_REF] Praly | Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate[END_REF] given by :

u = φ( X) , Ẋ = S X + B φ( X) + K(X 1 -X 1 ) , (21) 
where X = (X 1 , . . . , Xn ) is in R n , K is a homogeneous in the bi-limit vector field with weights r 0 and r ∞ , and degrees 0 and d ∞ and φ is a homogeneous in the bi-limit function with weights r 0 and r ∞ , and degrees 1 and 1 + d ∞ . Setting :

E = (e 1 . . . , e n ) T = X -X
the chain of integrators [START_REF] Praly | Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate[END_REF] with the controller (21) can be described by :

Ẋ = S X + B φ( X) + K(e 1 ) Ė = S E + K(e 1 ) . (22) 
In [START_REF] Andrieu | Homogeneous approximation, Recursive observer design and Output feedback[END_REF], the design of K and φ is performed recursively by following an observer / controller approach in such a way that there exists a homogeneous in the bi-limit Lyapunov function U of degree d U satisfying, for some real number

c 1 , ∂U ∂E ( X, E) (S E + K(e 1 )) + ∂U ∂X ( X, E) S X + B φ( X) + K(e 1 ) ≤ (23) 
-c 1 U( X, E) + U( X, E) d U +d∞ d U
.

To combine this tool with dynamic scaling we need to establish a specific property on the Lyapunov function U. This property is a homogeneous in the bi-limit version of the one given in [19, equation (16)] or in [13, Lemma A1] and also used in the context of observer design in [START_REF] Andrieu | High gain observers with updated high-gain and homogeneous correction terms[END_REF]. Namely, given the diagonal matrix

D = diag(b, 1 + b, . . . , n -1 + b) ,
where b is a positive real number satisfying [START_REF] Hirschorn | Invertibility of nonlinear control systems[END_REF], the function φ and the vector field K are selected such that the Lyapunov function U satisfies [START_REF] Sontag | Smooth stabilization implies coprime factorization[END_REF], and also :

∂U ∂E ( X, E) D E + ∂U ∂ X ( X, E) D X ≥ c 2 U( X, E) , (24) 
for some positive real number c 2 . Such a property can be obtained by modifying the recursive procedure given in [START_REF] Andrieu | Homogeneous approximation, Recursive observer design and Output feedback[END_REF] as claimed in the following statement the proof of which is omitted but can be found in [START_REF] Andrieu | An output feedback for a chain of integrator suitable for the use of dynamic scaling[END_REF].

Theorem 2 Let d U be a positive real number satisfying d U ≥ 2 max 1≤j≤ n r 0,j + d ∞ . There exists a homogeneous in the bi-limit function φ : R n → R + with associated triples (r 0 , 1, φ 0 ) and (r ∞ , 1 + d ∞ , φ ∞ ), a homogeneous in the bi-limit vector field K : R → R n , with associated triples (r 0 , d 0 , K 0 ) and (r ∞ , d ∞ , K ∞ ) and a positive definite, proper and C 1 function U : R 2n → R + , homogeneous in the bi-limit with associated triples (r 0 , d U , U 0 ) and (r ∞ , d U , U ∞ ), such that the following holds.

1. The homogeneous approximating functions U 0 and U ∞ are positive definite and proper and for all j in {1, . . . , n}, the functions ∂U ∂e j and ∂U ∂ X j are homogeneous in the bi-limit with approximating functions ∂U 0 ∂e j , ∂U∞ ∂e j and ∂U 0 ∂ X j , ∂U∞ ∂ X j respectively.

2. There exist two positive real numbers c 1 and c 2 such that ( 23) and ( 24) are satisfied.

We choose d U satisfying also d U -1 1+d∞ > q 1 , with q 1 given in Assumption 2. In this way the functions µ q i are convex for all q ≥ d U -1 1+d∞ . In what follows the parameters d U and b, the vector field K and the function φ are assumed fixed, it remains to select the parameters a 1 , a 2 and a 3 appearing in the high-gain updated law [START_REF] Isidori | Nonlinear control systems: an introduction[END_REF].

3.2 Properties of the closed loop system 3.2.1 ISS property with respect to the δ r,i 's

The system (4) with the controller ( 8), [START_REF] Isidori | Nonlinear control systems: an introduction[END_REF], introduced in Section 2.2, can be fully described by the high-gain update law [START_REF] Isidori | Nonlinear control systems: an introduction[END_REF], the z dynamics in [START_REF] Mazenc | Global stabilization by output feedback : Examples and Counter-Examples[END_REF] and the equations 9   

   Ė = L(S E + K(e 1 )) - L L D E -∆ f (L) -∆ δ (L) , Ẋ = L(S X + B φ( X) + K(e 1 )) - L L D X (25) 
where E = (e 1 , . . . , e n ) T and X = (X 1 , . . . , Xn ) T are defined as :

X = L -1 x , E = L -1 (x -x) (26) 
and

∆ f (L) = L -1 (f (z r + z, x r + x) -f (z r , x r )) , ∆ δ (L) = L -1 (δ r,1 , . . . , δ r,n )
are regarded as perturbations. By inequality [START_REF] Sontag | Smooth stabilization implies coprime factorization[END_REF], the function U obtained from Theorem 2 satisfies, along the solutions of system (25),

˙ U( X, E) ≤ -c 1 L θ U( X, E) + T DS + T Dist , ( 27 
)
where θ is the function defined on R + as :

θ(s) = s + s d∞+d U d U , (28) 
and

T DS = - L L ∂U ∂ X ( X, E) D X + ∂U ∂E ( X, E) D E , T Dist = - ∂U ∂E ( X, E) [∆ f (L) + ∆ δ (L)] .
The above discussion and Assumption 2 yield the following result, the proof of which is given in Appendix B.2.

Lemma 1 There exist two positive real numbers c 3 and c 4 such that, for all sufficiently small strictly positive real numbers a 1 and sufficiently large real numbers a 2 and a 3 , inequality (27) becomes :

˙ U( X, E) ≤ -4 c 3 L θ U( X, E) + c 4 L 1-ǫ n i=1 ζ i (Y i ) + L c 4 n i=1 ζ i δ r,i L i+b , ( 29 
)
where

Y i = L ǫ-(i+b) µ i (Z i (z r , z)) (30)
and the ζ i are C 1 , convex, strictly increasing and homogeneous in the bi-limit functions with weights 1 and r ∞,i + d ∞ and degrees d U and d U + d ∞ , defined as 10 :

ζ i (s) = s 0 max{|σ| d U -1 , |σ| d U -r ∞,i r ∞,i +d∞ }dσ , ∀ i ∈ {1 . . . , n -1} , ζ n (s) = s 0 min{|σ| d U -1 , |σ| d U -1 1+d∞ }dσ . (31) 
If the functions Z i 's were not present (via Y i ), inequality (29) would give readily an ISS property between δ r,i L i+b and ( X, E). To prove this claim note that the function

s ∈ R n → n-1 i=1 |s i | + |s i | 1 r ∞,i +d∞ + |s n | 1 + |s n | 1 + |s n | 1 1+d∞ d U
is positive definite, homogeneous in the bi-limit with weights 1 and r ∞,i + d ∞ and degrees d U and d U and its homogeneous approximating functions (i.e.

n i=1 |s i | d U and n i=1 |s i | d U r ∞,i +d∞ ) are positive definite. Furthermore, since the function s ∈ R n → θ -1 c 4 c 3 n i=1 ζ i (s i
) is homogeneous in the bi-limit with the same weights and degree 11 by Claim A.3 in Appendix A, there exists a positive real number c 5 such that :

θ -1 c 4 c 3 n i=1 ζ i (s i ) ≤ c d U 5 n-1 i=1 |s i | + |s i | 1 r ∞,i +d∞ + |sn| 1+|sn| 1 + |s n | 1 1+d∞ d U , ≤ c d U 5 n-1 i=1 |s i | + |s i | 1 r ∞,i +d∞ + 2|s n | d U . (32)
Hence, without Y i in the inequality (29), we would have (see [START_REF] Sontag | Input to state stability: Basic concepts and results[END_REF]) :

lim sup t→+∞ U( X, E(t)) ≤ c d U 5 lim sup t→+∞ n-1 i=1 |δ r,i (t)| L(t) i+b + |δ r,i (t)| L(t) i+b 1 r ∞,i +d∞ + 2 |δ r,n (t)| L(t) n+b d U .
(33) In addition, since the function U is positive definite, homogeneous in the bi-limit with degrees d U and d U and its homogeneous approximating functions are positive definite, and since r ∞,i is smaller or equal to 1, Claim A.3 in Appendix A implies the existence of a positive real number c 13 such that :

U(X, E) ≥ c 13 X -E d U = c 13 L -1 x d U , (34) 
which implies that (15) holds with c r = c 5 c d U

13

.

10 Recall that d U -1 ≥ dU -r∞,i r∞,i
for all i in {1, . . . , n -1} and d U -1 ≥ dU -1 1+d∞ . 11 θ : R + → R + defined in (28) is a bijective, homogeneous in the bi-limit function, and satisfies all assumptions of [START_REF] Andrieu | Homogeneous approximation, Recursive observer design and Output feedback[END_REF]Proposition 2.11]. This implies homogeneity in the bi-limit of its inverse map θ -1 : R + → R + with approximating homogeneous functions s and s 

Small-gain arguments.

To establish an inequality like (33) in the presence of Z i (or Y i ), we need a more advanced argument relying on a small gain theorem.

First of all, note that, Assumptions 1 and 3 yield the following result, the proof of which is in Appendix B.3.

Lemma 2 There exist two positive real numbers c 6 and c 7 such that, for all sufficiently small strictly positive real number a 1 and sufficiently large real numbers a 2 and a 3 , we have, along the trajectories of the closed-loop system,

˙ ζ i (Y i ) ≤ -c 6 ζ i (Y i ) + c 7 Ω(z r , x r ) θ U( X, E) , ∀ i {1, . . . , n} . ( 35 
)
Lemma 2 quantifies the ISS gain between ( X, E) and Y i , which, unfortunately, depends on (x r , z r ) (through the function Ω). Nevertheless, due to the special structure of the high-gain update law [START_REF] Isidori | Nonlinear control systems: an introduction[END_REF], an inequality similar to (33) can still be obtained.

Suppose that a 1 is sufficiently small and that a 2 and a 3 are sufficiently large such that Lemmas 1 and 2 apply. Then, inequality (35) yields, for all 0 ≤ s ≤ t,

ζ i (Y i (t)) ≤ exp( c 6 (s -t))ζ i (Y i (s)) + t s exp( c 6 (r -t)) c 7 Ω(r) θ(U(r)) dr ,
where we have used the compact notation :

U(t) = U( X(t), E(t)) , Y i (t) = L(t) ǫ-(i+b) µ i (Z i (z r (t), z(t))) , Ω(t) = Ω(z r (t), x r (t)) .
The inequality above, together with definition (30) and inequality (29) divided by L 1-ǫ , yields :

˙ U(t) L(t) 1-ǫ ≤ -4 c 3 L(t) ǫ θ (U(t)) + L(t) ǫ c 4 n i=1 ζ i δ r,i (t) L(t) i+b + c 4 exp(c 6 (s -t)) n i=1 ζ i L(s) ǫ-(i+b) (µ i (Z i (s)) + n c 4 c 7 t s exp(c 6 (r -t)) Ω(r) θ(U(r)) dr , (36) 
where :

Z i (t) = Z i (z r (t), z(t)) .
This yields :

˙ U(t) L(t) 1-ǫ ≤ -4 c 3 L(t) ǫ θ (U(t)) + L(t) ǫ c 4 n i=1 ζ i δ r,i (t) L(t) i+b (37) + c 4 exp(c 6 (s -t)) n i=1 ζ i L(s) ǫ-(i+b) (µ i (Z i (s)) + n c 4 c 7 sup [s,t] exp c 6 2 (r -t) θ(U(r)) t s exp c 6 2 (r -t) Ω(r)dr ,
Now, assume for the time being that L satisfies12 :

L(t) ǫ ≥ 1 c 3 n c 4 c 7 t s exp c 6 2 (r -t) Ω(r)dr + 1 ∀t ≥ 0 . ( 38 
)
In this case (37) becomes, for all s ≤ t,

˙ U(t) L(t) 1-ǫ ≤ -4 c 3 L(t) ǫ θ (U(t)) + L(t) ǫ c 4 n i=1 ζ i δ r,i (t) L(t) i+b + c 4 exp(c 6 (s -t)) n i=1 ζ i L(s) ǫ-(i+b) (µ i (Z i (s)) + [c 3 L(t) ǫ -1] exp - c 6 2 t sup [s,t] exp c 6 2 r θ(U(r)) , ≤ -[4 c 3 L(t) ǫ + 1] θ (U(t)) + L(t) ǫ c 4 n i=1 ζ i δ r,i (t) L(t) i+b + c 4 exp(c 6 (s -t)) n i=1 ζ i L(s) ǫ-(i+b) (µ i (Z i (s)) + c 3 L(t) ǫ exp - c 6 2 t sup [s,t] exp c 6 2 r θ(U(r)) . (39) 
Since the functions δ and L are upper bounded on R + and L(0) > a

1 ǫ
2 ≥ 1, there exist ∂ m and L m that satisfy :

∂ m ≥ n i=1 ζ i δ r,i (t) L(t) i+b , L m ≥ L(t) ≥ a 1 ǫ 2 ≥ 1 , ∀ t ≥ 0 . (40) 
Then, given the initial conditions L(0) and Z i (0), we can find a sufficiently large positive real number U m , strictly larger than U(0), and satisfying, for all i,

θ(U m ) ≥ c 4 n i=1 ζ i L(0) ǫ-(i+b) (µ i (Z i (0)) + c 4 L ǫ m ∂ m . (41) 
Suppose there exists a time t m in the positive time domain of existence of the solution such that U(t m ) = U m and U(r) < U m for all r in [0, t m ). This implies sup

[0,tm] exp c 6 2 r θ(U(r)) = exp c 6 2 t m θ(U(t m )) .
On the other hand, by (41), setting s = 0 and t = t m in (39) yields

˙ U(t m ) L(t m ) 1-ǫ ≤ -3 c 3 L(t m ) ǫ θ(U(t m )) < 0 .
This contradicts the definition of t m . Consequently, U m upper bounds the function t → U(t) in the positive time domain of existence of the solution. Since t → L(t) is bounded, the same holds for t → (x(t), x(t)) and therefore also for t → γ i (z r (t), x r (t), x(t)). Then, by integration, we obtain from Assumption 1.2 that, for all i, the function t → Z i (z r (t), z(t)) is bounded on the positive time domain of existence of the solution. Hence, by Assumption 1.1, the same holds for t → z(t). This implies that the positive time domain of existence is [0, +∞) and that the closed loop solution is bounded on this interval.

It remains to establish [START_REF] Krishnamurthy | Global output feedback tracking for nonlinear systems in generalized output-feedback canonical form[END_REF]. Let U be any positive real number satisfying

U > c d U 5 lim sup t→+∞ n-1 i=1 |δ r,i (t)| L(t) i+b + |δ r,i (t)| L(t) i+b 1 r ∞,i +d∞ + 2 |δ r,n (t)| L(t) b+n d U , (42) 
with c 5 given in (32). By definition of lim sup, there exists t l such that

U ≥ c d U 5 n-1 i=1 |δ r,i (t)| L(t) i+b + |δ r,i (t)| L(t) i+b 1 r ∞,i +d∞ + 2 |δ r,n (t)| L(t) b+n d U , ∀t ≥ t l . (43) 
Furthermore, using (32), we obtain :

L(t) ǫ c 4 n i=1 ζ i δ r,i (t) L(t) i+b ≤ c 3 L(t) ǫ θ (U ) , ∀t ≥ t l . (44) 
Let Z i,m be a bound for the function t → Z i (t) and :

t k = 1 c 6 ln   c 4 n i=1 ζ i (a 1-i+b ǫ 2 µ i (Z i,m )) c 3 a 2 θ (U )   .
By (40), we have :

c 4 exp(c 6 (s -t)) n i=1 ζ i L(s) ǫ-(i+b) (µ i (Z i (s)) ≤ c 3 L(t) ǫ θ (U ) , ∀t ≥ s + t k . (45) Define now U(s) = sup r≥s U(r) ,
and assume that we have :

U(s) ≥ U ∀s ≥ t l . (46) 
Then, by ( 44) and ( 45), (39) with s ≥ t l , gives :

˙ U(t) L(t) 1-ǫ ≤ -[4 c 3 L(t) ǫ + 1] θ(U(t)) + 3 c 3 L(t) ǫ θ(U(s)) ∀t ≥ s + t k .
So, for each time t ≥ s + t k for which we have θ(U(t)) ≥ 3 4 θ(U(s)), we obtain : ˙ U(t) < -θ(U(t)) .

It follows from the proof of [23, Theorem 1] that we have :

lim sup t→+∞ θ(U(t)) ≤ 3 4 θ(U(s)) .
But the definition (28) of θ gives :

θ(a) ≤ ρ θ(b) ⇒ a ≤ ρ d U d∞+d U b ∀a, b ≥ 0 , ∀ρ ∈ [0, 1] .
This yields :

lim sup t→+∞ U(t) ≤ ( 3 4 ) d U d∞+d U U(s)
and this for all s ≥ t l . By taking the limit for s going to infinity, we get

lim sup t→+∞ U(t) ≤ ( 3 4 ) d U d∞+d U lim sup t→+∞ U(t)
and therefore lim sup t→+∞ U(t) = 0, which contradicts (46). We conclude that, for each U satisfying (42), there exists s satisfying :

U(s) = sup r≥s U(r) < U
from which (15) follows.

To complete the proof it remains to show that the property (38) is satisfied. By letting

M = L ǫ , (11) gives : 
Ṁ = -ǫ a 1 M + ǫ M max 0, a 1 (a 2 + 1 -M) + a 3 Ω(z r , x r ) .
Since M ≥ a 2 ≥ 1, when :

a 1 (a 2 + 1) + a 3 Ω(z r , x r ) ≥ a 1 M , we get : Ṁ ≥ -ǫ a 1 M + ǫ a 1 (a 2 + 1 -M) + a 3 Ω(z r , x r ) , ≥ -2 ǫ a 1 M + ǫ a 1 (a 2 + 1) + a 3 Ω(z r , x r ) .
and, when :

a 1 (a 2 + 1) + a 3 Ω(z r , x r ) < a 1 M ,
we get :

Ṁ = -2 ǫ a 1 M + ǫ a 1 M , ≥ -2 ǫ a 1 M + ǫ a 1 (a 2 + 1) + a 3 Ω(z r , x r ) .
By integration this yields :

M(t) ≥ exp(-2ǫ a 1 t) (M(0) -a 2 +1 2 ) + ε a 3 t 0 exp(2ǫ a 1 (r -t)) Ω(z r (r), x r (r)) dr + a 2 +1 2 .
Picking L(0) ǫ = M(0) ≥ a 2 , the inequality (38) holds provided a 1 is chosen sufficiently small and a 2 and a 3 sufficiently large.

Conclusion

We have solved a tracking problem by output feedback for minimum phase non-linear systems which admit globally a strict normal form. Unlike most existing results, we allow nonlinearities in the model satisfying a polynomial type growth in the unmeasured state components. In particular, the result obtained generalizes the one obtained in [START_REF] Gong | Global practical tracking of a class of nonlinear systems by output feedback[END_REF] since asymptotic tracking may be obtained without knowing an upper-bound on the reference trajectory. This has been achieved by exploiting the tools of domination, homogeneity in the bi-limit, dynamic scaling and a novel time varying small gain argument.

Definition 1 (Homogeneity in the 0-limit)

• A continuous function φ : R n → R is said homogeneous in the 0-limit with associated triple (r 0 , d 0 , φ 0 ), where r 0 in (R + /{0}) n is the weight 13 , d 0 in R + the degree and φ 0 : R n → R the approximating function, respectively, if φ 0 is continuous and not identically zero and, for each compact set C in R n \ {0} and each ε > 0, there exists λ * such that we have :

max x ∈ C φ(λ r 0 ⋄ x) λ d 0 -φ 0 (x) ≤ ε ∀λ ∈ (0, λ * ].
• A vector field f = n i=1 f i ∂ ∂x i is said homogeneous in the 0-limit with associated triple (r 0 , d 0 , f 0 ), where f 0 = n i=1 f 0,i ∂ ∂x i , if, for each i in {1, . . . , n}, the function f i is homogeneous in the 0-limit with associated triple (r 0 , d 0 + r 0,i , f 0,i ) 14 .

Definition 2 (Homogeneity in the ∞-limit)

• A continuous function φ : R n → R is said homogeneous in the ∞-limit with associated triple (r ∞ , d ∞ , φ ∞ ) where r ∞ in (R + /{0}) n is the weight, d ∞ in R + the degree and φ ∞ : R n → R the approximating function, respectively, if φ ∞ is continuous and not identically zero and, for each compact set C in R n \ {0} and each ε > 0, there exists λ * such that we have :

max x ∈ C φ(λ r∞ ⋄ x) λ d∞ -φ ∞ (x) ≤ ε ∀λ ∈ [λ * , +∞) . • A vector field f = n i=1 f i ∂ ∂x i is said homogeneous in the ∞-limit with associated triple (r ∞ , d ∞ , f ∞ ), with f ∞ = n i=1 f ∞,i ∂ ∂x i , if
, for each i in {1, . . . , n}, the function f i is homogeneous in the ∞-limit with associated triple (r ∞ , d ∞ + r ∞,i , f ∞,i ).

Definition 3 (Homogeneity in the bi-limit) A continuous function φ : R n → R (or a vector field f ) is said homogeneous in the bi-limit if it is homogeneous in the 0-limit and homogeneous in the ∞-limit.

We now recall some properties of homogeneous in the bi-limit functions. Let η and γ be two continuous homogeneous in the bi-limit functions with weights r 0 , r ∞ , degrees d η,0 , d η,∞ and d γ,0 , d γ,∞ , and continuous approximating functions η 0 , η ∞ , γ 0 , γ ∞ .

Claim A.1. The function x → η(x)γ(x) is homogeneous in the bi-limit with associated triples (r 0 , d η,0 + d γ,0 , η 0 γ 0 ) and (r

∞ , d η,∞ + d γ,∞ , η ∞ γ ∞ ).
Claim A.2. If the degrees satisfy d η,0 ≥ d γ,0 and d η,∞ ≤ d γ,∞ , and γ(x) ≥ 0, and we have the following implications for all non-zero x in R n :

γ(x) = 0 ⇒ η(x) < 0 , γ 0 (x) = 0 ⇒ η 0 (x) < 0 , γ ∞ (x) = 0 ⇒ η ∞ (x)
< 0 , then there exists a real number k * such that, for all k ≥ k * , and for all non-zero x in R n : η(x) < kγ(x) , η 0 (x) < kγ 0 (x) , η ∞ (x) < kγ ∞ (x) . 13) and ( 14)

For any t 0 ≥ 1, let Lt 0 = a 2 + 1 t 0 + a 3 a 1 sup s≥t 0 Ω(s) 1 ǫ
.

Then from ( 11)

L(t) ≤ -a 1 L(t) + L(t) max{0 , a 1 (1 -1 t 0 + Lǫ t 0 -L(t) ǫ )} ∀t ≥ t 0 . It follows that L(t) ≤ -a 1 t 0 L(t) ∀t ≥ t 0 ≥ 1 : L(t) ≥ Lt 0 .
From the proof of [23, Theorem 1], this yields :

lim sup t→+∞ L(t) ≤ Lt 0 .
As a result inequality (13) follows letting t 0 go to +∞. Similarly, let

L t 0 = a 2 - 1 t 0 + a 3 a 1 inf s≥t 0 Ω(s) 1 ǫ . This gives ˙ L t 0 -L(t) ≤ - a 1 t 0 L(t) ≤ - a 4 t 0 (L t 0 -L(t)) ∀t ≥ t 0 : L t 0 ≥ L(t) (≥ a 1 ǫ 2 ) ,
where :

a 4 = a 1 a 1 ǫ 2 L t 0 -a 1 ǫ 2 .
It follows that lim inf t→+∞ L(t) ≥ L t 0 , from which ( 14) follows letting t 0 go to +∞.

B.2 Proof of Lemma 1

This proof is composed of two steps. We first give a bound on T DS and then on T Dist .

Bound on the term T DS . Equation ( 24), and the expression of L in [START_REF] Isidori | Nonlinear control systems: an introduction[END_REF], give :

T DS ≤ -[a 1 (a 2 -L ǫ ) + a 3 Ω(z r , x r )] ∂U ∂ X ( X, E)D X + ∂U ∂E ( X, E)DE .
From Theorem 2, point 1), for each i in {1, . . . , n} the functions ∂U ∂e i ( X, E) and ∂U ∂ X i ( X, E) are homogeneous in the bi-limit with the same weights (r 0 , r 0 ) and (r ∞ , r ∞ ) and degrees d U -1 and d Ur ∞,i . Hence, by Claim A.1 in Appendix A, the function ( X, E) → ∂U ∂ X( X, E)D X + ∂U ∂E ( X, E)DE is homogeneous in the bi-limit with weights (r 0 , r 0 ) and (r ∞ , r ∞ ) and degrees d U and d U . Hence Claim A.3 yields a positive real number c 11 such that :

∂U ∂ X ( X, E) D X + ∂U ∂E ( X, E) D E ≤ c 11 U( X, E) .
Finally, using (24) once again and since a

1 ǫ 2 ≤ L ǫ ≤ L, we get T DS ≤ -c 2 a 3 Ω(z r , x r ) U( X, E) + c 11 a 1 L U( X, E) . ( 47 
)
Bound on the term T Dist . By Assumption 2, ( 9), ( 26) and ( 20), we have, for all i,

|(∆ f (L)) i | = L 1-i-b |f i (z r + z, x r + x) -f i (z r , x r )| , ≤ Ω(z r , x r ) i j=1 L j-i |X j -e j | + c ∞ L 1-i-b i j=1 |L b+j-1 (X j -e j )| r ∞,i +d∞ r ∞,j + L 1-i-b µ i (Z i ) .
Inequality [START_REF] Khalil | Adaptive stabilization of a class of nonlinear systems using high-gain feedback[END_REF] implies that, for all L ≥ a

1 ǫ 2 ≥ 1, 1 a 2 ≥ L -ǫ ≥ L (b+j-1) r ∞,i +d∞ r ∞,j -i-b .
Consequently, for all ( X, E) in R 2n and L ≥ a

1 ǫ 2 ≥ 1, |(∆ f (L)) i | ≤ Ω(z r , x r ) i j=1 |X j -e j | + c ∞ a 2 L i j=1 |X j -e j | r ∞,i +d∞ r ∞,j + L 1-i-b µ i (Z i ) .
On the other hand, the functions

∂U ∂e i (E) |X j -e j | and ∂U ∂e i (E) |X j -e j | r ∞,i +d∞ r ∞,j
are homogeneous in the bi-limit with weights (r 0 , r 0 ) and (r ∞ , r ∞ ) and degrees d U and d

U + r ∞,j -r ∞,i (≤ d U ) and, respectively, d U -1 + r ∞,i +d∞ r ∞,j (≥ d U ) and d U + d ∞ .
Hence, Claim A.3 yields positive real numbers c 12 and c 13 such that :

|T Dist | ≤ c 12 Ω(z r , x r ) U( X, E) + c ∞ c 13 a 2 L θ U( X, E) (48) 
+ n i=1 ∂U ∂e i ( X, E) L 1-i-b µ i (Z i ) + n i=1 ∂U ∂e i ( X, E) L 1-i-b δ r,i .
Collecting ( 27), ( 47) and (48) with Ω ≥ Ω c∞ , we obtain

˙ U( X, E) ≤ -c 1 -c 11 a 1 -c∞c 13 a 2 Lθ U( X, E) -[c 2 a 3 -c 12 c ∞ ]Ω(z r , x r )U( X, E) + n i=1 ∂U ∂e i ( X, E) L 1-i-b µ i (Z i ) + n i=1 ∂U ∂e i ( X, E) L 1-i-b δ r,i .
Hence setting c 3 = c 1 10 , for all sufficiently small a 1 and large a 2 and a 3 , we have

˙ U( X, E) ≤ -5 c 3 L θ U( X, E) + n i=1 ∂U ∂e i ( X, E) µ i (Z i ) L i+b-1 + n i=1 ∂U ∂e i ( X, E) δ r,i L i+b-1 . (49)
The function ( X, E, δ r,i ) → ∂U ∂e i ( X, E) δ r,i is homogeneous in the bi-limit with degrees d U and d U + d ∞ and the weights 1 and r ∞,i + d ∞ for δ r,i . Hence there exists a positive real number c 4 satisfying for any E, i, Z i and L ≥ 1,

∂U ∂e i ( X, E) δ r,i L i+b ≤ c 3 2n θ U( X, E) + c 4 ζ i δ r,i L i+b , L 1-ǫ ∂U ∂e i ( X, E) µ i (Z i ) L i+b-ǫ ≤ L c 3 2n θ U( X, E) + c 4 L 1-ǫ ζ i µ i (Z i ) L i+b-ǫ ,
where ζ i is the homogeneous in the bi-limit functions defined in (31). Hence, inequality (49) becomes (29) and yields the claim of Lemma 1.

B.3 Proof of Lemma 2

Before entering the proof of Lemma 2, it is useful to list some properties of the functions µ i and ζ i . The functions µ q 1 i are zero at zero and convex, hence by [START_REF] Chen | Global robust servomechanism problem for uncertain lower triangular nonlinear systems by output feedback control[END_REF], we have : 1 q 1 µ i (s) ≤ s µ ′ i (s) ≤ q 2 µ i (s) ∀s > 0 .

Similarly, by definition (31) of the functions ζ i , we have :

ζ i (s) ≤ s ζ ′ i (s) ≤ d U + d ∞ 1 -d ∞ (n -2) ζ i (s) ∀s ≥ 0 . (51) 
By integration, this gives : 

ζ i (rs) ≤ r d U +d∞ 1-d∞(n-
≤ [ǫ -(i + b)] L L ζ ′ i (Y i )Y i + L ǫ-(i+b) ζ ′ i (Y i )µ ′ i (Z i (z r , z)) -Z i (z r , z) + γ i (x, z r , x r ) if Z i = 0 , = 0 if Z i = 0 .
Since L + a 1 L is non-negative and ǫ satisfies (12), we have :

[ǫ -(i + b)] L L ζ ′ i (Y i )Y i ≤ [(i + b) -ǫ]a 1 ζ ′ i (Y i )Y i .
To exhibit an upper bound on L ǫ-(i+b) ζ ′ i (Y i )µ ′ i (Z i (z r , z)) -Z i (z r , z) + γ i (x, z r , x r ) we distinguish two cases : 1) γ i (x, z r , x r ) ≤ Z i (z r , z)) 1 + υ , 2) γ i (x, z r , x r ) > Z i (z r , z)) 1 + υ , with υ given in Assumption 3. Case 1) : (50) yields :

L ǫ-(i+b) ζ ′ i (Y i ) µ ′ i (Z i (z r , z)) -Z i (z r , z) + γ i (x, z r , x r ) ≤ -υ 1+υ L ǫ-(i+b) ζ ′ i (Y i ) µ ′ i (Z i (z r , z))Z i (z r , z)) , ≤ -υ q 1 (1+υ) ζ ′ i (Y i ) L ǫ-(i+b) µ i (Z i (z r , z)) , ≤ -υ q 1 (1+υ) ζ ′ i (Y i ) Y i .
Case 2) : By using successively (54), (50) and (51), we get : i+b) µ i ((1 + υ)γ i (x, z r , x r )) µ ′ i ((1 + υ)γ i (x, z r , x r )) γ i (x, z r , x r ) -1

L ǫ-(i+b) ζ ′ i (Y i ) µ ′ i (Z i (z r , z)) -Z i (z r , z) + γ i (x, z r , x r ) ≤ L ǫ-(i+b) ζ ′ i L ǫ-(
q 1 ζ ′ i (Y i ) Y i , ≤ ζ ′ i L ǫ-(i+b) µ i ((1 + υ)γ i (x, z r , x r )) q 2 1+υ L ǫ-(i+b) µ i ((1 + υ)γ i (x, z r , x r )) -1 q 1 ζ ′ i (Y i ) Y i , ≤ d U +d∞
1-d∞(n-2)

q 2 1+υ ζ i L ǫ-(i+b) µ i ((1 + υ)γ i (x, z r , x r )) -1 q 1 ζ ′ i (Y i ) Y i ,
where by Assumption 3, (26) and L ≥ 1, we have : is homogeneous in the bi-limit with weights r 0 and r ∞ and degrees 1 and r ∞,i + d ∞ , the function ζ i is homogeneous in the bi-limit with weights 1 and r ∞,i + d ∞ and degrees d U and d U + d ∞ , and the function ( X, E) → θ U( X, E) is positive definite, proper and homogeneous in the bi-limit with weights (r 0 , r 0 ) and (r ∞ , r ∞ ) and degrees d U and d U + d ∞ , there exists a positive real number c 7 such that we have :

L ǫ-(i+b) µ i ((1 + υ)γ i (x, z r , x r )) ≤ L ǫ-(i+b) i j=1 Ω(z r , x r )|x j | + c ∞ |x j | r ∞,i +d∞ r ∞,j ≤ max Ω(z r , x r ) c ∞ , 1 
d U + d ∞ 1 -d ∞ (n -2) q 2 1 + υ ζ i c ∞ i j=1 |X j -e j | + |X j -e j |
r ∞,i +d∞ r ∞,j ≤ c 7 θ U( X, E) .

Hence, with (52), we have obtained :

d U +d∞ 1-d∞(n-2) q 2 1+υ ζ i L ǫ-(i+b) µ i ((1 + υ)γ i (x, z r , x r )) ≤ c 7 max Ω(zr,xr) c∞ , 1 d U +d∞ 1-d∞(n-2) θ U( X, E) .
Combining the two cases, we get :

L ǫ-(i+b) ζ ′ i (Y i )µ ′ i (Z i (z r , z)) -Z i (z r , z) + γ i (x, z r , x r ) ≤ -υ q 1 (1+υ) ζ ′ i (Y i ) Y i + c 7 max Ω(zr,xr) c∞ , 1 d U +d∞ 1-d∞(n-2) θ U( X, E)
which implies for (55) :

˙ ζ i (Y i ) ≤ - υ q 1 (1 + υ) -[(i + b) -ǫ]a 1 ζ ′ i (Y i )Y i + c 7 max Ω(z r , x r ) c ∞ , 1 d U +d∞ 1-d∞(n-2) θ U( X, E) , ≤ -c 6 ζ i (Y i ) + c 7 max Ω(z r , x r ) c ∞ , 1 d U +d∞ 1-d∞ (n-2)
θ U( X, E) , where to get the latter inequality we have used (51) and chosen c 6 satisfying :

c 6 < υ q 1 (1 + υ)
and a 1 satisfying

a 1 < υ q 1 (1+υ) -c 6 n + b .
This completes the proof of the Lemma.

1 .

 1 The term (1 + d) |x r,2 | d |x 2 | is a known time function which multiplies a linear function of the tracking error.

  d U d∞+d U . Then [2, Proposition 2.10] implies that the function θ -1 c4 c3 n i=1 ζ i (s i ) is homogeneous in the bi-limit with degrees d U and d U .

Claim A. 3 .

 3 If the degrees satisfy d η,0 ≥ d γ,0 and d η,∞ ≤ d γ,∞ and the functions γ, γ 0 and γ ∞ are positive definite then there exists a positive real number c satisfying η(x) ≤ c γ(x) for all x in R n . B Technical proofs B.1 Proof of inequalities (

  c ∞ i j=1 |X je j | + |X je j | r ∞,i +d∞ r ∞,j.Since the function (s j )→ i j=1 |s j | + |s j | r ∞,i +d∞ r ∞,j

  2) ζ i (s) ∀s ≥ 0 , ∀r ≥ 1 . (52) Also, since d U satisfies d U -1 1+d∞ > q 1 , the functions s → ζ i (µ i (s)) are convex, C 1 and zero at zero. It follows that we have : Proof of Lemma 2 By (53) and Y i defined in (30), Assumption 1.2 gives :

	∂ ∂r ζ ˙ ζ i (rµ i (s)) = ζ ′ i (rµ i (s)) µ i (s) , 0 ≤ ∂ ∂s ζ i (Y i )	∂ ∂s	ζ i (rµ i (s)) = r ζ ′ i (rµ i (s)) µ ′ i (s) if s > 0 , = 0 if s = 0 ,	(53) (55)

i (rµ i (s 1 )) ≤ ∂ ∂s ζ i (rµ i (s 2 )) ∀0 ≤ s 1 ≤ s 2 , ∀r ≥ 0 .

(54)

For any real numbers w = 0 and r, w r denotes sign(w) |w| r .

Depending on the structure of the functions F and f i 's these dynamics are usually referred as "inverse dynamics". For instance, this is the case if F (z, x) = F (z, x 1 ).

See Section 2.3.2 for more details.

x b is not an argument of F and z is not an argument of f 1 , . . . , f na-1 .

Note that r ∞,i increases with i and is in (0, 1].

Note that ˙ L -1 = -L -1 L D L -1 .

This property will be established at the end of the proof.

If x is partitioned as (x a , x b ), we use (r 0a , r 0b ) (respectively (r ∞a , r ∞b )) to denote the weights of x a and x b .

In the case of a vector field the degree d 0 can be negative as long as d 0 + r 0,i ≥ 0, for all 1 ≤ i ≤ n.

A Homogeneity in the bi-limit For details on the notion of homogeneity in the bi-limit the reader is referred to [START_REF] Andrieu | Homogeneous approximation, Recursive observer design and Output feedback[END_REF]. For completeness, we recall the definition and state the main properties used in the paper.

Given a weight r = (r 1 , . . . , r n ) in (R + /{0}) n , we define the dilation of a vector x in R n as λ r ⋄ x = (λ r 1 x 1 , . . . , λ rn x n ) T .