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Force and Stiffness of Passive Magnetic
Bearings Using Permanent Magnets.

Part 2 : Radial Magnetization

R. Ravaud, G. Lemarquarfsenior IEEEand V. Lemarquand

Abstract

This paper deals with the calculation of the force and th#ns8s between two ring permanent
magnets whose polarization is radial. Such a configuratmmesponds to a passive magnetic bearing.
The magnetic force exerted between ring permanent magsetietermined by using the coulombian
model. The expressions obtained are semi-analytical andhe® that it is not possible to find an exact
analytical expression of the force between two ring permameagnets. Then, thanks to these semi-
analytical calculations, the ring dimensions are optimizeorder to have a great force or a great stiffness.
Moreover, we show that the relative position of the rings\idiich the force is the strongest depends on
the air gap dimension. This result is new because the cuevatfiect is taken into account in this paper.
We can say that such semi-analytical expressions are memgsprthan the numerical evaluation of the
magnetic forces obtained with the finite element method. ddeer, semi-analytical expressions have a
low computational cost whereas the finite element methocaldgh one. Thereby, as shown in this paper,

such calculations allow an easy optimization of quadriptéases or devices using permanent magnets.

Index Terms

Magnetic forces, analytical calculation, ring permaneiigmet, magnetic bearing

I. INTRODUCTION

The first studies concerning passive magnetic bearings pétmanent magnets have been done by
Yonnet [1][2]. Such passive magnetic bearings used onljnpaent magnets radially or axially magnetized.
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Permanent magnets are commonly used in many electricatetewdnd engineering applications. Most
engineering applications need several ring permanent etagand the determination of the magnetic
force between them is thus required. It is to be noted thatratway of obtaining the magnetic forces
between rings are possible. Authors generally use eitherenigal means or 2D analytical calculations
for determining magnetic fields or magnetic forces creatvben ring permanent magnets [3]-[5]. One
of the major problem of a numerical approach lies in the faeit it has a high computational cost.
Moreover, numerical algorithms are not so precise as analytalculations. Alternative solutions are
thus required. As it is difficult to obtain fully analyticakpressions of the magnetic field created by
ring permanent magnets [6]-[11], the determination of tbecds between them is still more difficult.
Consequently, authors use semi-analytical expressioicghvaine very important steps in order to evaluate
either the magnetic field created by ring permanent magmeateeanagnetic forces exerted between them.
The determination of the magnetic field created by ring p@enamagnets have been studied a lot with
such approaches [12]-[20].

Another way of calculating the forces between ring permameagnets can be done by using the 2D
analytical expressions of the magnetic field created by itefiparallelepipedic magnets. Assuming that
the magnetic field created by ring permanent magnets canprexamated by the magnetic field created
by infinite parallelepipedic magnets either to the faceshefrhagnets (2D analytical approach) [21]-[24],
the magnetic forces can be calculated more easily with therzddytical approach.

However, these formula are not valid when the ring radiusnials[25]-[28]. In any case, the magnetic
field created by ring permanent magnets can be determineerimstof elliptic integrals [29] for ring
permanent magnets axially magnetized. Such an approagipis@iate because the algorithms used to
calculate elliptic integrals are both very robust and f&insequently, the expressions obtained have a
very low computational cost (less th@r s to determine the magnetic components of the field created

by ring permanent magnets whose polarization is axial).

First, this paper presents useful semi-analytical expras®f the force and the stiffness exerted between
two ring permanent magnets whose polarization is radiatnT this paper explains why we cannot reduce
some numerical integrations of the semi-analytical exgioes of the force between two ring permanent
magnets. Eventually, this paper deals with the optimizatibthe ring dimensions in order to have either
a great force or a great stiffness between the rings. We shaixthe relative position between the rings is

of great importance in the design of devices using ring paanamagnets. All the expressions determined
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Fig. 1. Representation of the two ring permanent magnetshnduie radially centered. The inner radius of the outer ringeinoted
Tin, the outer one i%,.¢, its height ish. The inner radius of the inner ring is denoteg,-, the outer one is,.2, its height is

2b — Za-

in this paper are available online [30].

Il. CALCULATION OF THE AXIAL FORCE BETWEEN TWO RING PERMANENT MAGVETS WHOSE

POLARIZATION IS RADIAL

This section presents a semi-analytical calculation offtree exerted between two ring permanent
magnets whose polarization is radial and which are raddiytered. Such configuration corresponds to
an axial passive magnetic bearing using ring magnets hadregnetized for mutual attraction. We can
say that the devices realized with ring permanent magneialia magnetized were the first to be built.

Moreover, they are usually made of several sections whierstacked together.

A. Notation and geometry

The geometry considered is shown in Fig 1. A two dimensioeptesentation of the passive magnetic
bearing is shown in Fig 2.
The outer radius of the outer ring4s,; and the inner one is;,,. The outer ring height i&4. The outer

radius of the inner ring is,.:2 and the inner one ig;,,». The inner ring height is;, — z,. It is to be noted
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Fig. 2. Radial magnetic bearing using magnets radially reéiged for mutual attraction. The inner radius of the outag ris
denotedr;,,, the outer one s, its height ish. The inner radius of the inner ring is denoteg,2, the outer one i$,y¢2, its

height isz, — zq.

that the coulombian model of a permanent magnet is used.eQaestly, each ring permanent magnet is
represented by both two curved planes which correspondetantirer and outer faces of the rings which
are charged with a surface magnetic pole densityand a magnetic pole volume density. For each
case, the inner face is charged with the surface magnete& geisity+o* and the outer one is charged
with the surface magnetic pole density*. It is noted that all the illustrative calculations are davith

o* = J.it = 1T where J is the magnetic polarization vector amdis the unit normal vector which is
directed toward$). Moreover, it is noted that the magnetic pole volume densiiys for ring permanent

magnets whose polarization is radial in order to to have agehequilibrium of the ring magnet.

B. Semi-analytical expression of the magnetic force

The two ring permanent magnets which form an axial passigifg are supposed to be radially
centered. Consequently, there is only the axial comporfathieamagnetic force which is exerted between
the two rings. We can call it the axial fordg,. This axial force can be determined by integrating the
magnetic field created by the outer ring on the contributiminthe inner one. We must take into account
both the magnetic pole surface density and the magneticyodlene density of each ring. Consequently,
as there are two magnetic pole surface densities and oneetiagmle volume density for each ring
permanent magnet, we have nine terms for determining the fodice between the two ring permanent

magnets. By denotingy/, the axial component of the magnetic field produced by therairtg permanent



magnet,

Thus, this axial forcer, can be written as follows:

F:// Hzagdé—// Hza;d§+/// H.22qv (1)
(Sin) (Sout) (V) r2

wherec’ is the magnetic pole surface density owing to the inner riegranent magnet,S;,,) is the
inner face of the inner ring permanent magnet &fgl,;) is the outer face of the inner ring permanent
magnet andV) is the volume of the inner ring permanent magnet. Theretbeeaxial forceF, can be

expressed as follows:
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whereo; is the magnetic pole surface density owing to the inner riagranent magnet. and
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B
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The next step is to evaluat®). If we determined directlyF, for given values with all the integrals
presented in(2), the computational would be too high because several neoaidritegrals should be
determined at a time. Consequently, we must reduce the nuafibetegrals by integrating analytically
a(a, 8), b(a, B) andc(a, B) according to the integral variables. Unfortunately, it &t possible to find a
fully analytical expression of the magnetic force betwesa ting permanent magnets but we can use a

useful semi-analytical expression which is expressed imnfe:

Mdb,

2p0 Jo,=o

* ok 27 Tout2
g0

+-12 / / Vdbydrs
2M0 01=0Jra=rin2

where S corresponds to the magnetic interaction between the miagmete surface densities of each

(6)

ring permanent magnet. The®/ corresponds to the magnetic interaction between the miagpelke
surface densities of one ring permanent magnet and the riagade volume density of the other one.
At least, V' corresponds to the magnetic interaction between the miagmae volume densities of each
ring permanent magnet.

The first contributionS is given by (7).
S = —f(zay 26, My 01, Tin, Tout2)

+f(2a> 26, Iy 01, Tout, Tout2)

(
(

+f(2as 26, Ry 01, Tim s Tin2)
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with

f(Oél,OéQ,Oég,ol,O%,O[G) = Q504 10g |:063 — Qa1 + \/Oég —|—Oég + (043 —041)2 —20&50&6 cos(@l)}

+asag log [al + \/ag + a2 + af — 2a56 cos(@l)}

—asaglog [ag — g + \/ag + a2 + (a3 — a2)? — 2a506 cos(@l)]
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—as06 log [ag + \/ag + a2 + a3 — 2as06 cos(61)

(8)
The second contributiod/ is given by (9).
M = —t(Tin,Tout, Tout2, Ny Za, 26, 01)
Ft(Fins Touts Tin2, Py Zas 20, 01)
FE(Tins Tout Tins Iy Za, 26, 01)
—t(Tins Touts Touts Ny Zay 2b, 01)
9)
with
t(B1, B2, B3, B, Bs, Bs,01) = @) (Br, B, Ba — Bs. 55 + (Ba — B5), 253 cos(61))
+t®) (81, Ba, Bs, B3 + B3, 2085 cos(61))
—t® (B4, Ba, Ba — B, B2 + (81 — B6)?, 203 cos(61))
—t®) (81, Ba, Bs, B3 + B3, 283 cos(61))
(10)
and
(1, B2,0,d, f) = tP(B2,0,d, ) =t (B1, 4., f) (11)
and

t3) (s, q,d, f)

—s+

V=g s ;
farctan m —Zlog [d—q2_f8+32]
+slog {q—i— \/d—fs—i-sﬂ + qlog {—f+2(s+ d—fs—i—s?)}
(4d — f* — 4¢° + [n) log [u1]
4n
(—4d + [+ 4¢* + fn) log [us)]
4n

12)
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C2(f 441" = f2(n+2s) +4d(—f + 1+ 25))
¢*(—4d + 2 + 4% — fn)(=f + 1+ 2s)

8q(—2qs + ny/d — fs+ s?)

T 2(—4d+ f2+4¢2 — f)(—f + 1+ 2s)

ul =

(13)

C2(fP 41 — f2(n — 25) — 4d(f +n — 25))
*(—4d + f2+4¢> + fn)(f +n — 2s)

—8¢(2qs + n/d — fs+ s?)

S @(—4d+ f2+ 42 + f)(f +n - 29)

Uy =

(14)
with
n= \/m (15)
The third contributionV is given by (16).
V = th™ (rout, 72, 2as 26, by 01) — th™) (1in, 72, Za, 24, h, 01) (16)
with
thM — 3 (ri,h — za,rg + (h— Za)2, 25 cos(61))
‘H(B)(Tl, Zas T% + 22, 2r9 cos(61))
—t®(r1, b — 24,73 + (h — 2)%, 2ra cos(61))
—t®)(ry, 2,73 + 27, 27 cos(61))

17)

C. Expression of the axial stiffness between two rings whosarization is radial

The stiffnessK exerted between two ring permanent magnets can be detafrhinealculating the
derivative of the axial force with respect tg. We setz, = z, + b whereb is the height of the inner ring
permanent magnet. Thus, the axial stiffnéSsan be calculated with (18).

9]
K= _8—zan (18)

where F, is given by (2). We obtain :

K=Ks+ Ky + Ky (29)
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where Kg corresponds to the stiffness determined with only the miggpele surface densities of each

ring permanent magnet. TheR;; corresponds to the stiffness determined with the magnetiicaction

between the magnetic pole surface densities of one ringaqeent magnet and the magnetic pole volume

density of the other one. At leadt]y, corresponds to the stiffness determined with the magnatcaction

between the magnetic pole volume densities of each ring @eent magnet. Thus, the first contribution

Kg is expressed as follows:

1 * 47’37’1:| 1 * |: 47’37"1 :| 1 * |: 47"37"1 :| 1 % |: 47"37"1 :| >
Kg = K* - - K* [— + K* |- — K* |-
5 st (s/a31 [ as31 VP31 B31 V031 031 V31 Y31
1 [ Aryr; ] 1 [ Argr; ] 1 [ Argr; ] 1 [ Argr; ] )
m (\/ a4 | Qa1 | Ba | Ba | o4 dar | Va1 |
1 [ 4T3T‘2 | 1 [ 47‘37‘2 | 1 [ 47‘37‘2 T 1 47‘37‘2 T )
12 ( Q32 | a3 | B32 | B32 | 032 d32 | 32 Y32 |
1 [ 4T4T‘2 ] 1 [ 47‘47‘2 i 1 [ 47‘47‘2 T 1 47‘47‘2 T )
2 ( Q42 | a2 | Va2 | Baz | Va2 da2 | Va2 Va2 |
(20)
with
2rir;o
Nij = - (21)
Ho
ai; = (ri —15)% + 22 (22)
Bij = (ri — 7‘])2 + (20 + h)2 (23)
%ij = (ri = 15)% + (20 — ) (24)
Sij = (ri =)+ (b — h)® + 24(2b — 2h + 2,) (25)
B 1
K" [m] = / —df (26)
0o +/1—msin(h)?
The second contributioi’,; is expressed as follows:
* % 2
Ky = 2172 / wdf 27)
0

210 Jo=o
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with
u = f(Tin, Touts Tin2, R, 2a, b, 0)

—f (Tins Touts Tout2s M, Za, b, 6)

+f (Pin2s Tout2, Tin, Ny Za, b, 0)

—f (Pin2, Tout2, Touts Iy 2a, b, 0)

(28)

and
fla,B,7,h,24,0,0) = —vlog [ - ycos(f) + /a2 +72 + 22 — 2ay cos(@)]

+vlog [0 — ycos(0) + /a2 + 2 + (24 + b)2 — 20y cos(@)]

+vlog [ — ycos(0) + /a2 + 92 + (24 — h)2 — 2ay cos(@)]

)
)
)
—ylog o = ycos(8) + /T £ 12 + (b — R + 2z4(b — 1) + 22 — 27 cos(6) |
)
)
)
)

+ VB2 4 22— 2oy cos()|

—~log _ﬁ ycos(8) + /B2 +92 + (24 + b)? — 20y cos(@)]

+vlog _6 ycos(0) + /B2 + 2+ (24 — h)2 — 20y cos(@)}
—~log 5 v cos(8) + /B2 + A2+ (b—h)2 + 224(b— h) + 22 — 2a7 cos(@)}
(29)

(
(
(
(
+ylog |8 — ~cos(B
(
(
(

The third contributionKy, is expressed as follows:

_ 0'10'2 / /Tout (30)
2'LLO 0= T1="Tin

—+ Zg — 2T1Tin2 COS(@):|

with
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d = —log|rina —ricos(f) + /72 +r?

in2

+10g |ring — 71 c0os(8) + /12 + 12 5 + (24 + b)% — 271702 cos(@)]

—log [Ting —r1cos(0) + /72 + 712 5 + (b — h)2 + 2bzy — 2hzq + 22 — 271 7ip2 cos(6)

+1og |Tin2 — 1 cos(0) + /12 + 725 + (20 — h)? — 2r17in2 cos(@)}

+10g |routa — r1€08(0) + /73 4+ 12,40 + 22 — 2717 out2 cos(@)]
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—log |routz — 71 cos(8) + \/rf + 7120+ (2o + )2 — 2r17oui2 cos(@)]

—log | Tout2 — 71 cos(0) + \/Tf + 120+ (2a — h)2 = 2r17oue cos(@)]

+10g |routa — r1c08(0) + /77 + 12,0 + (b — h)2 4 2bzq — 2hzq + 22 — 2717 py12 cos(0)
(31)

We can say that the expression of the axial stiffness can tezrdimed analytically if we only take into

account the magnetic pole surface densities of each ring.

IIl. DISCUSSION ABOUT THE POSSIBILITY OF REDUCING THE NUMBER OF NMERICAL

INTEGRATIONS FOR THE AXIAL FORCE EXPRESSION

The aim of this section is to explain why we cannot reduce tivalrer of numerical integrations of the
semi-analytical expression of the force exerted betweenrimg permanent magnets radially magnetized.
They correspond physically to three kinds of interactioesMeen two ring permanent magnets whose

polarization is radial.

A. Interaction between the contributions of the surfacesd&rs

The first kind of physical interaction is due to the surfacatdbutions of each ring permanent magnet.
This physical interaction corresponds to the case whenutface densities of the outer ring are integrated
with the surface densities of the inner one. In Eq. (2), thesdace contributions correspond to the
integrand denoted(«, 3) wherea and 3 can ber;,, rout, Tin2 @ndr,,u:2. Let us consider the integrand
a(a, 8). As we can see in Eq. (2), the integration variables depeng} pé, z; andz,. The integration
accordingd, does not change the form of the integrar(d, 5) because:i(a, ) does not depend of.
Consequently, we can say that the form of the faFgebetween the surface density contributions of each

ring permanent magnet is given as follows :

F, = / / / a(z = 21) —dfydzydzy (32)
01 J21 J 22 (ag —as COS(91) + (2’2 - 21)2)2

whereay, a; andaz are constant. For example, we can have= 2r(h — 2,), as = 27(r2, + 12, +

(h —2,)?) andaz = 27(—2r;,7ous2) for our illustration here. In short, these parameters avergby (2)

and correspond to the case when four integrals must be detm
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After having integrated according; and z;, we obtain a semi-analytical expression with only one

numerical integration whose variable dependg/gn

F, = / log (a4 +\/as + ag cos(91)) db, (33)
01

These parameters are given by (8) and they are not a functidreanglef. It is to be noted that (33)

cannot be integrated analytically.

B. Interaction between the contributions of the surface aoldme densities

The second kind of physical interaction is due to both thdaser and the volume contributions of
each ring permanent magnet. This physical interactioresponds to the case when the surface densities
of each ring permanent magnet are integrated with the voldemsities of the other ones. In Eq. (2),
these surface contributions correspond to the integrandtddb(«, 5) wherea and g can ber;,,, 7out,

Tin2, Tout2, *1 @ndre. Let us consider the integraride, §). As we can see in Eq. (2), the integration
variables depend oy, 05, z1, z2, r1 andry. The integration according, does not change the form of
the integrand(«, 5) becausé(a, 3) does not depend of,. Consequently, we can say that the form of
the forceF, s between the surface density contributions and the volumsityecontributions of each ring

permanent magnet is given as follows :

vs / / / / bl 22 — Zl) 3 deldzldzgdm (34)
61 za (bg — bz cos(f1) + (22 — 21)2)2

whereb, b, andbs are constant. These parameters are given by (2) and congspdohe case when five

integrals must be determined.

After having integrated according, z; andr;, we obtain a semi-analytical expression with only one
numerical integration whose variable dependsfgnthis semi-analytical expression is in fact given by
(33) wheres depends or,. We see that (34) owns a term which has the same form as theresenped

in Eq.(33). Consequently, it cannot be integrated anaiftias well.

C. Interaction between the contributions of the volume ilieiss

The third kind of physical interaction is due to the volumeatributions of each ring permanent magnet.
This physical interaction corresponds to the case whendhene densities of each ring permanent magnet

are integrated together. In Eqg. (2), this volume contriinuttorrespond to the integrand denotéd, 3)
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wherea and 8 can ber; or ro. Let us consider the integranda, 3). As we can see in Eq. (2), the
integration variables depend @h, 0, 21, 22, ¥1 andre. The integration according, does not change
the form of the integrand(a, 5) because:(«, 3) does not depend of,. Consequenlty, we can say that

the form of the forcel’, between the volume density contributions is given as falow

Fu = / / / / / (22 — Zl) 3 d@ldzleQdTldTQ (35)
01 Jr1 Jra Jz1 Jzo (Cl — C2 COS(Gl) + (ZQ - 21)2)5

wherec; andc, are constant. These parameters are given by (2) and conet$pdhe case when six

integrals must be determined.

After having integrated according, z; andr;, we obtain the same integrand as the one obtained pre-
viously in the case of the study of the force exerted betwherstirface and volume charge contributions.
Consequently, we deduct that we cannot integrate anadlytiéa according taf,. Moreover, the analytical
integration according t@, does not seem possible. As a conclusion, we can say that thaiolg of a
fully analytical expression of the force between two ringmanent magnets whose polarization is radial

does not seem possible but a semi-analytical expressiobearsed to determine this axial force.

IV. OPTIMIZATION OF THE INNER RING PERMANENT MAGNET DIMENSIONS

This section discusses the optimal dimensions of the ringsrder to have either a great force or a

great stiffness.

A. Influence of the air gap dimension on the force and thenst

First, we study the influence of the air gap dimension on thegf@nd the stiffness between the two
ring permanent magnets. For this purpose, we represenkihi€@ce versus the axial displacement of the
inner ring for different air gaps in Fig. 3. It is noted that,dur configuration, the air gap corresponds to
the difference between,, andr,,;2. Furthermore, the width and the height of each ring permamegnet
are constant. We take,, = 0.025m, 7, = 0.028M, 7oui2 — Tint2 = 0.003m, J = 1T, h = 0.003m,
zb — z, = 0.003m.

Fig. 3 shows three important points.

First, we see that the smaller the air gap between the ringngreent magnets is, the greater the axial
force is. Consequently, it is necessary to have the smallegap between ring permanent magnets if a
great force is searched. This result is well-known. It waanwshwith the two dimensional approach.

Second, we see that the exact position of the maximal foregexk between two ring permanent magnets
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Fig. 3. Representation of the axial component of the magiiieice exerted between two ring permanent magnets versuaxil
displacement of the inner ring permanent magnet for diffeeér gaps;r;, = 0.025m, oyt = 0.028M,7oyt2 — Tint2 = 0.003mM,
J = 1T, h = 0.003m, zb — z, = 0.003m.

depends slightly on the air gap dimension. This result is hesause our study uses a three-dimensional
approach of the magnetic force whereas the previous onésausgo-dimensional approach. The magnet
curvature must be taken into account in order to obtain pedcihe position of the maximal force exerted
between two ring magnets. The exact position of the maximaef is represented in Fig 4. Such result
is very useful because it clearly shows that if a great axietd is searched, the relative height between
the two rings inner ring depends on the air gap dimension.

Eventually, Fig 3 shows that the stiffness depends greatlthe air gap dimension. Fig 3 shows that the
smaller the air gap dimension is, the greater the stiffne¢m®cause the gradient of the curve is the more
important for small air gaps. This result is consistent with representation of the axial stiffness versus
the axial displacement of the inner ring permanent magrigtg}- Indeed, we see that the smaller the air
gap dimension is, the greater the axial stiffness is. Mozeanve see that when the axial force is maximal

in Fig 3, the axial stiffness equals zero in Fig 5, which il stnsistent.

B. Determination of the optimal height of the inner ring pament magnet

Another parameter which can be optimized is the height ofitiner ring permanent magnet. To do

so, the axial component of the magnetic force is plottedusethe axial displacement of the inner ring
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permanent magnet for several inner ring heights in Fig. & Vdlues taken for the parameters are still the
same as the previous ones. Fig. 6 shows that the axial compohthe magnetic force is the greatest if
its height equals the outer ring height. Indeed, if the rimgerr height is smaller than the ring outer one,
the smaller the inner ring width is, the smaller the axial poment of the magnetic force is. If the ring
inner height is greater than the ring outer one, the gre&tiirtner ring width is, the smaller the axial
component of the magnetic force is. Consequently, if a di@ae is searched, the two ring permanent

magnets must have the same height.
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Furthermore, we see that the gradient of the curves is the ingoortant when the inner ring height is
the same as the outer one. This result is consistent with Righére the axial stiffness is represented

versus the axial displacement of the inner ring permanemgeta

C. Determination of the optimal width of the inner ring pemeat magnet

The third parameter which can be optimized in our configarsis the width of the inner ring permanent
magnet. To do so, the axial component of the magnetic forptsed versus the axial displacement of the
inner ring permanent magnet for several inner ring widthBig 8. The values taken for the parameters
are the same as the previous ones. Fig. 8 shows that the gileatmner ring width is, the greater the
axial component of the magnetic force is. However, it is ddteat a compromise in the ring dimensions
must be found because the cost of the magnet must be takeadotmnt. A good compromise can be
found as follows : if the inner ring width equals two timesliisight, the axial component of the magnetic
force is72N whenz = 0.0015m. If the inner ring width equals three times its height, thkimbcomponent
of the magnetic force i83N. Consequenlty, we deduct that it is not necessary to haweren ring width
which is greater than two times its height.

The optimal stiffness depends also on the inner ring widthsde that, we have represented in Fig 9 the

axial stiffness versus the inner ring width when= 0. Fig 9 shows that the larger the inner ring width
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is, the greater the axial stiffness is.

V. OBTAINING THE BEST CONFIGURATION

The previous section shows that the ring dimensions musphimized in order to create a very good
passive magnetic bearing. The air gap must be the smaltestjrtg heights must be the same and we
have shown that the inner ring width must equal two times é@gglit. All these parameters have been
determined with a outer ring whose cross-section is a sqitfoeever, we can also optimize the outer
ring in order to improve the passive bearing. By taking intzaunt the optimal dimensions found in
the previous section, we can compare three configuratioms.fifst one, shown in Fig 10-A, consists
of two rings whose cross-section is a square. The secondsbowin in Fig 10-B, consists of two rings
whose cross-section is a rectangle whose width equals mestits height . The third one, shown in Fig
10-C, consists of two rings whose cross-section is a ret@angose height equals two times its width.
For each structure presented in Fig 10, the axial force aadafal stiffness are determined versus the
axial displacement of the inner ring permanent magnet. K #orce is shown in Fig 11 and the axial
stiffness is shown in Fig 12.

Figs 11 and 12 show that the best configration is the configur& presented in Fig 10. However,
the relative height between the two ring permanent magregerts on the air gap dimension (Fig 4).
Consequently, this last parameter must be taken into at@ouhe design of passive bearings using ring

permanent magnets.
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Fig. 10. Representation of three passive magnetic beariugs r;, = 0.025m, royt = 0.028M, 7out2 = 0.0249M, ripe =
0.0219m, A = 0.003m, zb — z, = 0.003m. B =r;, = 0.025M, rout = 0.031M, 7oyut2 = 0.0249M, rin2 = 0.0189m,
h = 0.003m, zb — z5 = 0.003m. C=r;, = 0.025m, royut = 0.028M, roue2 = 0.0249M, r;p2 = 0.0219m, A = 0.006m,
zb — 2z = 0.006m.

VI. CONCLUSION

This paper has presented new three-dimensional semita@édlgxpressions allowing us to determine
both the axial force and the axial stiffness between two pegmanent magnets whose polarization is
radial. This paper also discusses the reason why we canwoa finlly analytical expression of the axial
component of the magnetic force. Eventually, we have dismlighe optimal dimensions of the ring
permanent magnets which allow us to have either a great totied or a great axial stiffness. We have
shown that a good compromise can be found when the crossss&dta ring is a rectangle. However,
the relative position of the two rings is not constant butetefs on the air gap dimension. Such results

can be very useful for people involved in the design of magretarings.
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