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Force and Stiffness of Passive Magnetic

Bearings Using Permanent Magnets.

Part 2 : Radial Magnetization
R. Ravaud, G. LemarquandSenior IEEEand V. Lemarquand

Abstract

This paper deals with the calculation of the force and the stiffness between two ring permanent

magnets whose polarization is radial. Such a configuration corresponds to a passive magnetic bearing.

The magnetic force exerted between ring permanent magnets is determined by using the coulombian

model. The expressions obtained are semi-analytical and weshow that it is not possible to find an exact

analytical expression of the force between two ring permanent magnets. Then, thanks to these semi-

analytical calculations, the ring dimensions are optimized in order to have a great force or a great stiffness.

Moreover, we show that the relative position of the rings forwhich the force is the strongest depends on

the air gap dimension. This result is new because the curvature effect is taken into account in this paper.

We can say that such semi-analytical expressions are more precise than the numerical evaluation of the

magnetic forces obtained with the finite element method. Moreover, semi-analytical expressions have a

low computational cost whereas the finite element method hasa high one. Thereby, as shown in this paper,

such calculations allow an easy optimization of quadripolar lenses or devices using permanent magnets.

Index Terms

Magnetic forces, analytical calculation, ring permanent magnet, magnetic bearing

I. I NTRODUCTION

The first studies concerning passive magnetic bearings withpermanent magnets have been done by

Yonnet [1][2]. Such passive magnetic bearings used only permanent magnets radially or axially magnetized.
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Permanent magnets are commonly used in many electrical devices and engineering applications. Most

engineering applications need several ring permanent magnets and the determination of the magnetic

force between them is thus required. It is to be noted that several way of obtaining the magnetic forces

between rings are possible. Authors generally use either numerical means or 2D analytical calculations

for determining magnetic fields or magnetic forces created between ring permanent magnets [3]-[5]. One

of the major problem of a numerical approach lies in the fact that it has a high computational cost.

Moreover, numerical algorithms are not so precise as analytical calculations. Alternative solutions are

thus required. As it is difficult to obtain fully analytical expressions of the magnetic field created by

ring permanent magnets [6]-[11], the determination of the forces between them is still more difficult.

Consequently, authors use semi-analytical expressions which are very important steps in order to evaluate

either the magnetic field created by ring permanent magnets or the magnetic forces exerted between them.

The determination of the magnetic field created by ring permanent magnets have been studied a lot with

such approaches [12]-[20].

Another way of calculating the forces between ring permanent magnets can be done by using the 2D

analytical expressions of the magnetic field created by infinite parallelepipedic magnets. Assuming that

the magnetic field created by ring permanent magnets can be approximated by the magnetic field created

by infinite parallelepipedic magnets either to the faces of the magnets (2D analytical approach) [21]-[24],

the magnetic forces can be calculated more easily with the 2Danalytical approach.

However, these formula are not valid when the ring radius is small [25]-[28]. In any case, the magnetic

field created by ring permanent magnets can be determined in terms of elliptic integrals [29] for ring

permanent magnets axially magnetized. Such an approach is appropriate because the algorithms used to

calculate elliptic integrals are both very robust and fast.Consequently, the expressions obtained have a

very low computational cost (less than0.2 s to determine the magnetic components of the field created

by ring permanent magnets whose polarization is axial).

First, this paper presents useful semi-analytical expressions of the force and the stiffness exerted between

two ring permanent magnets whose polarization is radial. Then, this paper explains why we cannot reduce

some numerical integrations of the semi-analytical expressions of the force between two ring permanent

magnets. Eventually, this paper deals with the optimization of the ring dimensions in order to have either

a great force or a great stiffness between the rings. We show that the relative position between the rings is

of great importance in the design of devices using ring permanent magnets. All the expressions determined
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Fig. 1. Representation of the two ring permanent magnets which are radially centered. The inner radius of the outer ring is denoted

rin, the outer one isrout, its height ish. The inner radius of the inner ring is denotedrin2, the outer one isrout2, its height is

zb − za.

in this paper are available online [30].

II. CALCULATION OF THE AXIAL FORCE BETWEEN TWO RING PERMANENT MAGNETS WHOSE

POLARIZATION IS RADIAL

This section presents a semi-analytical calculation of theforce exerted between two ring permanent

magnets whose polarization is radial and which are radiallycentered. Such configuration corresponds to

an axial passive magnetic bearing using ring magnets radially magnetized for mutual attraction. We can

say that the devices realized with ring permanent magnets radially magnetized were the first to be built.

Moreover, they are usually made of several sections which are stacked together.

A. Notation and geometry

The geometry considered is shown in Fig 1. A two dimensional representation of the passive magnetic

bearing is shown in Fig 2.

The outer radius of the outer ring isrout and the inner one isrin. The outer ring height ish. The outer

radius of the inner ring isrout2 and the inner one isrin2. The inner ring height iszb−za. It is to be noted
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Fig. 2. Radial magnetic bearing using magnets radially magnetized for mutual attraction. The inner radius of the outer ring is

denotedrin, the outer one isrout, its height ish. The inner radius of the inner ring is denotedrin2, the outer one isrout2, its

height iszb − za.

that the coulombian model of a permanent magnet is used. Consequently, each ring permanent magnet is

represented by both two curved planes which correspond to the inner and outer faces of the rings which

are charged with a surface magnetic pole densityσ∗ and a magnetic pole volume densityσ∗

v . For each

case, the inner face is charged with the surface magnetic pole density+σ∗ and the outer one is charged

with the surface magnetic pole density−σ∗. It is noted that all the illustrative calculations are donewith

σ∗ = ~J.~n = 1T where ~J is the magnetic polarization vector and~n is the unit normal vector which is

directed towards0. Moreover, it is noted that the magnetic pole volume densityexits for ring permanent

magnets whose polarization is radial in order to to have a charge equilibrium of the ring magnet.

B. Semi-analytical expression of the magnetic force

The two ring permanent magnets which form an axial passive bearing are supposed to be radially

centered. Consequently, there is only the axial component of the magnetic force which is exerted between

the two rings. We can call it the axial forceFz . This axial force can be determined by integrating the

magnetic field created by the outer ring on the contributionsof the inner one. We must take into account

both the magnetic pole surface density and the magnetic polevolume density of each ring. Consequently,

as there are two magnetic pole surface densities and one magnetic pole volume density for each ring

permanent magnet, we have nine terms for determining the axial force between the two ring permanent

magnets. By denotingHz the axial component of the magnetic field produced by the outer ring permanent
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magnet,

Thus, this axial forceFz can be written as follows:

Fz =

∫ ∫

(Sin)

Hzσ
∗

2dS̃ −

∫ ∫

(Sout)

Hzσ
∗

2dS̃ +

∫ ∫ ∫

(V )

Hz

σ∗

2

r2
dṼ (1)

whereσ∗

2 is the magnetic pole surface density owing to the inner ring permanent magnet,(Sin) is the

inner face of the inner ring permanent magnet and(Sout) is the outer face of the inner ring permanent

magnet and(V ) is the volume of the inner ring permanent magnet. Therefore,the axial forceFz can be

expressed as follows:

Fz = −

∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

a(rin, rout2)dz1dθ1dz2dθ2

+

∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

a(rout, rout2)dz1dθ1dz2dθ2

+

∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

a(rin, rin2)dz1dθ1dz2dθ2

−

∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

a(rout, rin2)dz1dθ1dz2dθ2

−

∫ rout

r1=rin

∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

b(rout2, r1)dr1dz1dθ1dz2dθ2

+

∫ rout

r1=rin

∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

b(rin2, r1)dr1dz1dθ1dz2dθ2

+

∫ rout2

r2=rin2

∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

b(rin, r2)dz1dθ1dr2dz2dθ2

−

∫ rout2

r2=rin2

∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

b(rout, r2)dz1dθ1dr2dz2dθ2

+

∫ rout

r1=rin

∫ rout2

r2=rin2

∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

c(r1, r2)dr1dz1dθ1dr2dz2dθ2

(2)

with

a(α, β) =
σ∗

1σ∗

2

4πµ0

(z2 − z1)αβ

(α2 + β2
− 2αβ + (z2 − z1)2)

3

2

(3)

whereσ∗

1 is the magnetic pole surface density owing to the inner ring permanent magnet. and

b(α, β) =
a(α, β)

β
(4)

c(α, β) =
a(α, β)

αβ
(5)
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The next step is to evaluate(2). If we determined directlyFz for given values with all the integrals

presented in(2), the computational would be too high because several numerical integrals should be

determined at a time. Consequently, we must reduce the number of integrals by integrating analytically

a(α, β), b(α, β) andc(α, β) according to the integral variables. Unfortunately, it is not possible to find a

fully analytical expression of the magnetic force between two ring permanent magnets but we can use a

useful semi-analytical expression which is expressed as follows:

Fz =
σ∗

1σ∗

2

2µ0

∫ 2π

θ1=0

Sdθ1

+
σ∗

1σ∗

2

2µ0

∫ 2π

θ1=0

Mdθ1

+
σ∗

1σ∗

2

2µ0

∫ 2π

θ1=0

∫ rout2

r2=rin2

V dθ1dr2

(6)

whereS corresponds to the magnetic interaction between the magnetic pole surface densities of each

ring permanent magnet. Then,M corresponds to the magnetic interaction between the magnetic pole

surface densities of one ring permanent magnet and the magnetic pole volume density of the other one.

At least,V corresponds to the magnetic interaction between the magnetic pole volume densities of each

ring permanent magnet.

The first contributionS is given by (7).

S = −f(za, zb, h, θ1, rin, rout2)

+f(za, zb, h, θ1, rout, rout2)

+f(za, zb, h, θ1, rin, rin2)

−f(za, zb, h, θ1, rout, rin2)

(7)

with

f(α1, α2, α3, θ1, α5, α6) = α5α6 log

[

α3 − α1 +
√

α2
5 + α2

6 + (α3 − α1)2 − 2α5α6 cos(θ1)

]

+α5α6 log

[

α1 +
√

α2
5 + α2

6 + α2
1 − 2α5α6 cos(θ1)

]

−α5α6 log

[

α3 − α2 +
√

α2
5 + α2

6 + (α3 − α2)2 − 2α5α6 cos(θ1)

]
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7

−α5α6 log

[

α2 +
√

α2
5 + α2

6 + α2
2 − 2α5α6 cos(θ1)

]

(8)

The second contributionM is given by (9).

M = −t(rin, rout, rout2, h, za, zb, θ1)

+t(rin, rout, rin2, h, za, zb, θ1)

+t(rin, rout, rin, h, za, zb, θ1)

−t(rin, rout, rout, h, za, zb, θ1)

(9)

with

t(β1, β2, β3, β4, β5, β6, θ1) = t(2)
(

β1, β2, β4 − β5, β
2
3 + (β4 − β5)

2, 2β3 cos(θ1)
)

+t(2)
(

β1, β2, β5, β
2
3 + β2

5 , 2β3 cos(θ1)
)

−t(2)
(

β1, β2, β4 − β6, β
2
3 + (β4 − β6)

2, 2β3 cos(θ1)
)

−t(2)
(

β1, β2, β6, β
2
3 + β2

6 , 2β3 cos(θ1)
)

(10)

and

t(2)(β1, β2, q, d, f) = t(3)(β2, q, d, f) − t(3)(β1, q, d, f) (11)

and

t(3)(s, q, d, f) = −s +

√

4d − f2
− 4q2

2
arctan

[

−f + 2s
√

4d − f2
− 4q2

]

−
f

4
log

[

d − q2
− fs + s2

]

+s log
[

q +
√

d − fs + s2
]

+ q log
[

−f + 2(s +
√

d − fs + s2)
]

−

(

4d − f2
− 4q2 + fη

)

log [u1]

4η

−

(

−4d + f2 + 4q2 + fη
)

log [u2]

4η

(12)
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u1 = −

2
(

f2 + 4fq2
− f2(η + 2s) + 4d(−f + η + 2s)

)

q2(−4d + f2 + 4q2
− fη)(−f + η + 2s)

−
8q(−2qs + η

√

d − fs + s2)

q2(−4d + f2 + 4q2
− fη)(−f + η + 2s)

(13)

u2 = −

2
(

f2 + 4fq2
− f2(η − 2s) − 4d(f + η − 2s)

)

q2(−4d + f2 + 4q2 + fη)(f + η − 2s)

−
−8q(2qs + η

√

d − fs + s2)

q2(−4d + f2 + 4q2 + fη)(f + η − 2s)

(14)

with

η =
√

−4d + f2 + 4q2 (15)

The third contributionV is given by (16).

V = th(1)(rout, r2, za, zb, h, θ1) − th(1)(rin, r2, za, zb, h, θ1) (16)

with

th(1) = t(3)(r1, h − za, r2
2 + (h − za)

2, 2r2 cos(θ1))

+t(3)(r1, za, r2
2 + z2

a, 2r2 cos(θ1))

−t(3)(r1, h − zb, r
2
2 + (h − zb)

2, 2r2 cos(θ1))

−t(3)(r1, zb, r
2
2 + z2

b , 2r2 cos(θ1))

(17)

C. Expression of the axial stiffness between two rings whosepolarization is radial

The stiffnessK exerted between two ring permanent magnets can be determined by calculating the

derivative of the axial force with respect toza. We setzb = za + b whereb is the height of the inner ring

permanent magnet. Thus, the axial stiffnessK can be calculated with (18).

K = −
∂

∂za

Fz (18)

whereFz is given by (2). We obtain :

K = KS + KM + KV (19)
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9

whereKS corresponds to the stiffness determined with only the magnetic pole surface densities of each

ring permanent magnet. Then,KM corresponds to the stiffness determined with the magnetic interaction

between the magnetic pole surface densities of one ring permanent magnet and the magnetic pole volume

density of the other one. At least,KV corresponds to the stiffness determined with the magnetic interaction

between the magnetic pole volume densities of each ring permanent magnet. Thus, the first contribution

KS is expressed as follows:

KS = η31

(

1
√

α31
K

∗

[

−
4r3r1

α31

]

−
1

√

β31

K
∗

[

−
4r3r1

β31

]

+
1

√

δ31

K
∗

[

−
4r3r1

δ31

]

−
1

√
γ31

K
∗

[

−
4r3r1

γ31

])

+η41

(

1
√

α41
K

∗

[

−

4r4r1

α41

]

−

1
√

β41
K

∗

[

−

4r4r1

β41

]

+
1

√

δ41

K
∗

[

−

4r4r1

δ41

]

−

1
√

γ41
K

∗

[

−

4r4r1

γ41

])

+η32

(

1
√

α32
K

∗

[

−
4r3r2

α32

]

−
1

√

β32
K

∗

[

−
4r3r2

β32

]

+
1

√

δ32

K
∗

[

−
4r3r2

δ32

]

−
1

√
γ32

K
∗

[

−
4r3r2

γ32

])

+η42

(

1
√

α42
K

∗

[

−
4r4r2

α42

]

−
1

√

β42
K

∗

[

−
4r4r2

β42

]

+
1

√

δ42

K
∗

[

−
4r4r2

δ42

]

−
1

√
γ42

K
∗

[

−
4r4r2

γ42

])

(20)

with

ηij =
2rirjσ

∗

µ0
(21)

αij = (ri − rj)
2 + z2

a (22)

βij = (ri − rj)
2 + (za + h)2 (23)

γij = (ri − rj)
2 + (za − h) (24)

δij = (ri − rj)
2 + (b − h)2 + za(2b − 2h + za) (25)

K
∗ [m] =

∫ π

2

0

1
√

1 − m sin(θ)2
dθ (26)

The second contributionKM is expressed as follows:

KM =
σ∗

1σ∗

2

2µ0

∫ 2π

θ=0

udθ (27)
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with

u = f (rin, rout, rin2, h, za, b, θ)

−f (rin, rout, rout2, h, za, b, θ)

+f (rin2, rout2, rin, h, za, b, θ)

−f (rin2, rout2, rout, h, za, b, θ)

(28)

and

f (α, β, γ, h, za, b, θ) = −γ log
[

α − γ cos(θ) +
√

α2 + γ2 + z2
a − 2αγ cos(θ)

]

+γ log
[

α − γ cos(θ) +
√

α2 + γ2 + (za + b)2 − 2αγ cos(θ)
]

+γ log
[

α − γ cos(θ) +
√

α2 + γ2 + (za − h)2 − 2αγ cos(θ)
]

−γ log
[

α − γ cos(θ) +
√

α2 + γ2 + (b − h)2 + 2za(b − h) + z2
a − 2αγ cos(θ)

]

+γ log
[

β − γ cos(θ) +
√

β2 + γ2 + z2
a − 2αγ cos(θ)

]

−γ log
[

β − γ cos(θ) +
√

β2 + γ2 + (za + b)2 − 2αγ cos(θ)
]

+γ log
[

β − γ cos(θ) +
√

β2 + γ2 + (za − h)2 − 2αγ cos(θ)
]

−γ log
[

β − γ cos(θ) +
√

β2 + γ2 + (b − h)2 + 2za(b − h) + z2
a − 2αγ cos(θ)

]

(29)

The third contributionKV is expressed as follows:

KV =
σ∗

1σ∗

2

2µ0

∫ 2π

θ=0

∫ rout

r1=rin

δdθ (30)

with

δ = − log

[

rin2 − r1 cos(θ) +
√

r2
1 + r2

in2 + z2
a − 2r1rin2 cos(θ)

]

+ log

[

rin2 − r1 cos(θ) +
√

r2
1 + r2

in2 + (za + b)2 − 2r1rin2 cos(θ)

]

− log

[

rin2 − r1 cos(θ) +
√

r2
1 + r2

in2 + (b − h)2 + 2bza − 2hza + z2
a − 2r1rin2 cos(θ)

]

+ log

[

rin2 − r1 cos(θ) +
√

r2
1 + r2

in2 + (za − h)2 − 2r1rin2 cos(θ)

]

+ log

[

rout2 − r1 cos(θ) +
√

r2
1 + r2

out2 + z2
a − 2r1rout2 cos(θ)

]
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− log

[

rout2 − r1 cos(θ) +
√

r2
1 + r2

out2 + (za + b)2 − 2r1rout2 cos(θ)

]

− log

[

rout2 − r1 cos(θ) +
√

r2
1 + r2

out2 + (za − h)2 − 2r1rout2 cos(θ)

]

+ log

[

rout2 − r1 cos(θ) +
√

r2
1 + r2

out2 + (b − h)2 + 2bza − 2hza + z2
a − 2r1rout2 cos(θ)

]

(31)

We can say that the expression of the axial stiffness can be determined analytically if we only take into

account the magnetic pole surface densities of each ring.

III. D ISCUSSION ABOUT THE POSSIBILITY OF REDUCING THE NUMBER OF NUMERICAL

INTEGRATIONS FOR THE AXIAL FORCE EXPRESSION

The aim of this section is to explain why we cannot reduce the number of numerical integrations of the

semi-analytical expression of the force exerted between two ring permanent magnets radially magnetized.

They correspond physically to three kinds of interactions between two ring permanent magnets whose

polarization is radial.

A. Interaction between the contributions of the surface densities

The first kind of physical interaction is due to the surface contributions of each ring permanent magnet.

This physical interaction corresponds to the case when the surface densities of the outer ring are integrated

with the surface densities of the inner one. In Eq. (2), thesesurface contributions correspond to the

integrand denoteda(α, β) whereα andβ can berin, rout, rin2 androut2. Let us consider the integrand

a(α, β). As we can see in Eq. (2), the integration variables depend onθ1, θ2, z1 andz2. The integration

accordingθ2 does not change the form of the integranda(α, β) becausea(α, β) does not depend onθ2.

Consequently, we can say that the form of the forceFs between the surface density contributions of each

ring permanent magnet is given as follows :

Fs =

∫

θ1

∫

z1

∫

z2

a1(z2 − z1)

(a2 − a3 cos(θ1) + (z2 − z1)2)
3

2

dθ1dz1dz2 (32)

wherea1, a2 and a3 are constant. For example, we can havea1 = 2π(h − za), a2 = 2π(r2
in + r2

out +

(h− za)2) anda3 = 2π(−2rinrout2) for our illustration here. In short, these parameters are given by (2)

and correspond to the case when four integrals must be determined.
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After having integrated accordingz1 and z2, we obtain a semi-analytical expression with only one

numerical integration whose variable depends onθ1:

Fs =

∫

θ1

log
(

a4 +
√

a5 + a6 cos(θ1)
)

dθ1 (33)

These parameters are given by (8) and they are not a function of the angleθ. It is to be noted that (33)

cannot be integrated analytically.

B. Interaction between the contributions of the surface andvolume densities

The second kind of physical interaction is due to both the surface and the volume contributions of

each ring permanent magnet. This physical interaction corresponds to the case when the surface densities

of each ring permanent magnet are integrated with the volumedensities of the other ones. In Eq. (2),

these surface contributions correspond to the integrand denotedb(α, β) whereα andβ can berin, rout,

rin2, rout2, r1 and r2. Let us consider the integrandb(α, β). As we can see in Eq. (2), the integration

variables depend onθ1, θ2, z1, z2, r1 andr2. The integration accordingθ2 does not change the form of

the integrandb(α, β) becauseb(α, β) does not depend onθ2. Consequently, we can say that the form of

the forceFvs between the surface density contributions and the volume density contributions of each ring

permanent magnet is given as follows :

Fvs =

∫

θ1

∫

ri

∫

z1

∫

z2

b1(z2 − z1)

(b2 − b3 cos(θ1) + (z2 − z1)2)
3

2

dθ1dz1dz2dri (34)

whereb1, b2 andb3 are constant. These parameters are given by (2) and correspond to the case when five

integrals must be determined.

After having integrated accordingz1, z2 andr1, we obtain a semi-analytical expression with only one

numerical integration whose variable depends onθ1: this semi-analytical expression is in fact given by

(33) wheres depends onθ1. We see that (34) owns a term which has the same form as the one presented

in Eq.(33). Consequently, it cannot be integrated analytically as well.

C. Interaction between the contributions of the volume densities

The third kind of physical interaction is due to the volume contributions of each ring permanent magnet.

This physical interaction corresponds to the case when the volume densities of each ring permanent magnet

are integrated together. In Eq. (2), this volume contribution correspond to the integrand denotedc(α, β)
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whereα and β can ber1 or r2. Let us consider the integrandc(α, β). As we can see in Eq. (2), the

integration variables depend onθ1, θ2, z1, z2, r1 and r2. The integration accordingθ2 does not change

the form of the integrandc(α, β) becausec(α, β) does not depend onθ2. Consequenlty, we can say that

the form of the forceFv between the volume density contributions is given as follows :

Fv =

∫

θ1

∫

r1

∫

r2

∫

z1

∫

z2

(z2 − z1)

(c1 − c2 cos(θ1) + (z2 − z1)2)
3

2

dθ1dz1dz2dr1dr2 (35)

wherec1 and c2 are constant. These parameters are given by (2) and correspond to the case when six

integrals must be determined.

After having integrated accordingz1, z2 andr1, we obtain the same integrand as the one obtained pre-

viously in the case of the study of the force exerted between the surface and volume charge contributions.

Consequently, we deduct that we cannot integrate analytically Fv according toθ1. Moreover, the analytical

integration according tor2 does not seem possible. As a conclusion, we can say that the obtaining of a

fully analytical expression of the force between two ring permanent magnets whose polarization is radial

does not seem possible but a semi-analytical expression canbe used to determine this axial force.

IV. OPTIMIZATION OF THE INNER RING PERMANENT MAGNET DIMENSIONS

This section discusses the optimal dimensions of the rings in order to have either a great force or a

great stiffness.

A. Influence of the air gap dimension on the force and the stiffness

First, we study the influence of the air gap dimension on the force and the stiffness between the two

ring permanent magnets. For this purpose, we represent the axial force versus the axial displacement of the

inner ring for different air gaps in Fig. 3. It is noted that, in our configuration, the air gap corresponds to

the difference betweenrin androut2. Furthermore, the width and the height of each ring permanent magnet

are constant. We takerin = 0.025m, rout = 0.028m, rout2 − rint2 = 0.003m, J = 1T, h = 0.003m,

zb − za = 0.003m.

Fig. 3 shows three important points.

First, we see that the smaller the air gap between the ring permanent magnets is, the greater the axial

force is. Consequently, it is necessary to have the smaller air gap between ring permanent magnets if a

great force is searched. This result is well-known. It was shown with the two dimensional approach.

Second, we see that the exact position of the maximal force exerted between two ring permanent magnets
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Fig. 3. Representation of the axial component of the magnetic force exerted between two ring permanent magnets versus the axial

displacement of the inner ring permanent magnet for different air gaps;rin = 0.025m, rout = 0.028m,rout2 − rint2 = 0.003m,

J = 1T, h = 0.003m, zb − za = 0.003m.

depends slightly on the air gap dimension. This result is newbecause our study uses a three-dimensional

approach of the magnetic force whereas the previous ones used a two-dimensional approach. The magnet

curvature must be taken into account in order to obtain precisely the position of the maximal force exerted

between two ring magnets. The exact position of the maximal force is represented in Fig 4. Such result

is very useful because it clearly shows that if a great axial force is searched, the relative height between

the two rings inner ring depends on the air gap dimension.

Eventually, Fig 3 shows that the stiffness depends greatly on the air gap dimension. Fig 3 shows that the

smaller the air gap dimension is, the greater the stiffness is because the gradient of the curve is the more

important for small air gaps. This result is consistent withthe representation of the axial stiffness versus

the axial displacement of the inner ring permanent magnet (Fig 5). Indeed, we see that the smaller the air

gap dimension is, the greater the axial stiffness is. Moreover, we see that when the axial force is maximal

in Fig 3, the axial stiffness equals zero in Fig 5, which is still consistent.

B. Determination of the optimal height of the inner ring permanent magnet

Another parameter which can be optimized is the height of theinner ring permanent magnet. To do

so, the axial component of the magnetic force is plotted versus the axial displacement of the inner ring
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Fig. 4. Representation of the position of the maximal value of the axial force versus the air gap dimension;rin = 0.025m,

rout = 0.028m,rout2 − rint2 = 0.003m, J = 1T, h = 0.003m, zb − za = 0.003m.
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Fig. 5. Representation of the axial stiffness of the magnetic force exerted between two ring permanent magnets versus the axial

displacement of the inner ring permanent magnet for different air gaps;rin = 0.025m, rout = 0.028m,rout2 − rint2 = 0.003m,

J = 1T, h = 0.003m, zb − za = 0.003m.

permanent magnet for several inner ring heights in Fig. 6. The values taken for the parameters are still the

same as the previous ones. Fig. 6 shows that the axial component of the magnetic force is the greatest if

its height equals the outer ring height. Indeed, if the ring inner height is smaller than the ring outer one,

the smaller the inner ring width is, the smaller the axial component of the magnetic force is. If the ring

inner height is greater than the ring outer one, the greater the inner ring width is, the smaller the axial

component of the magnetic force is. Consequently, if a greatforce is searched, the two ring permanent

magnets must have the same height.
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Fig. 6. Representation of the axial component of the magnetic force exerted between two ring permanent magnets versus the axial

displacement of the inner ring permanent magnet for different heights;rin = 0.025m, rout = 0.028m,rout2 = 0.0249m, J = 1T,

h = 0.003m, za = 0m.

Furthermore, we see that the gradient of the curves is the more important when the inner ring height is

the same as the outer one. This result is consistent with Fig 7where the axial stiffness is represented

versus the axial displacement of the inner ring permanent magnet.

C. Determination of the optimal width of the inner ring permanent magnet

The third parameter which can be optimized in our configuration is the width of the inner ring permanent

magnet. To do so, the axial component of the magnetic force isplotted versus the axial displacement of the

inner ring permanent magnet for several inner ring widths inFig. 8. The values taken for the parameters

are the same as the previous ones. Fig. 8 shows that the greater the inner ring width is, the greater the

axial component of the magnetic force is. However, it is noted that a compromise in the ring dimensions

must be found because the cost of the magnet must be taken intoaccount. A good compromise can be

found as follows : if the inner ring width equals two times itsheight, the axial component of the magnetic

force is72N whenz = 0.0015m. If the inner ring width equals three times its height, the axial component

of the magnetic force is73N. Consequenlty, we deduct that it is not necessary to have aninner ring width

which is greater than two times its height.

The optimal stiffness depends also on the inner ring width. To see that, we have represented in Fig 9 the

axial stiffness versus the inner ring width whenza = 0. Fig 9 shows that the larger the inner ring width
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Fig. 7. Representation of the axial component of the magnetic force exerted between two ring permanent magnets versus the axial

displacement of the inner ring permanent magnet for different heights;rin = 0.025m, rout = 0.028m,rout2 = 0.0249m, J = 1T,

h = 0.003m, za = 0m.
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Fig. 8. Representation of the axial component of the magnetic force exerted between two ring permanent magnets versus the axial

displacement of the inner ring permanent magnet for different widths;rin = 0.025m, rout = 0.028m,rout2 = 0.0249m, J = 1T,

h = 0.003m, zb − za = 0.003m.
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Fig. 9. Representation of the axial stiffness exerted between two ring permanent magnets versus inner ring widthrin = 0.025m,

rout = 0.028m,rout2 = 0.0249m, J = 1T, h = 0.003m, zb − za = 0.003m.

is, the greater the axial stiffness is.

V. OBTAINING THE BEST CONFIGURATION

The previous section shows that the ring dimensions must be optimized in order to create a very good

passive magnetic bearing. The air gap must be the smallest, the ring heights must be the same and we

have shown that the inner ring width must equal two times its height. All these parameters have been

determined with a outer ring whose cross-section is a square. However, we can also optimize the outer

ring in order to improve the passive bearing. By taking into account the optimal dimensions found in

the previous section, we can compare three configurations. The first one, shown in Fig 10-A, consists

of two rings whose cross-section is a square. The second one,shown in Fig 10-B, consists of two rings

whose cross-section is a rectangle whose width equals two times its height . The third one, shown in Fig

10-C, consists of two rings whose cross-section is a rectangle whose height equals two times its width.

For each structure presented in Fig 10, the axial force and the axial stiffness are determined versus the

axial displacement of the inner ring permanent magnet. The axial force is shown in Fig 11 and the axial

stiffness is shown in Fig 12.

Figs 11 and 12 show that the best configration is the configuration B presented in Fig 10. However,

the relative height between the two ring permanent magnets depends on the air gap dimension (Fig 4).

Consequently, this last parameter must be taken into account in the design of passive bearings using ring

permanent magnets.
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C

A

B

Fig. 10. Representation of three passive magnetic bearings. A = rin = 0.025m, rout = 0.028m, rout2 = 0.0249m, rin2 =

0.0219m, h = 0.003m, zb − za = 0.003m. B =rin = 0.025m, rout = 0.031m, rout2 = 0.0249m, rin2 = 0.0189m,

h = 0.003m, zb − za = 0.003m. C= rin = 0.025m, rout = 0.028m, rout2 = 0.0249m, rin2 = 0.0219m, h = 0.006m,

zb − za = 0.006m.

VI. CONCLUSION

This paper has presented new three-dimensional semi-analytical expressions allowing us to determine

both the axial force and the axial stiffness between two ringpermanent magnets whose polarization is

radial. This paper also discusses the reason why we cannot find a fully analytical expression of the axial

component of the magnetic force. Eventually, we have discussed the optimal dimensions of the ring

permanent magnets which allow us to have either a great axialforce or a great axial stiffness. We have

shown that a good compromise can be found when the cross-section of a ring is a rectangle. However,

the relative position of the two rings is not constant but depends on the air gap dimension. Such results

can be very useful for people involved in the design of magnetic bearings.
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