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Introduction

Let U C be a complex-reductive Lie group with compact real form U and let Z be a Kähler manifold on which U C acts holomorphically such that U acts by Kähler isometries. Assume furthermore that the U -action on Z is Hamiltonian, i. e. that there exists a U -equivariant moment map µ : Z → u * where u denotes the Lie algebra of U .

In the special case that Z is compact it is shown in [START_REF] Brion | Sur l'image de l'application moment[END_REF] (see also [START_REF] Huckleberry | Multiplicity-free complex manifolds[END_REF]) that µ separates the U -orbits if and only if Z is a spherical U C -manifold, which means that a Borel subgroup of U C has an open orbit in Z. Note that µ separates the U -orbits if and only if it induces an injective map Z/U ֒→ u/U . Moreover, this is equivalent to the property that the U -action on Z is coisotropic.

In this paper we generalize Brion's result to actions of real-reductive groups on real-analytic manifolds which moreover are not assumed to be compact. More precisely, we consider a closed subgroup G of U C which is compatible with the Cartan decomposition U C = U exp(iu). This means that G = K exp(p) where K := G ∩ U and p is an Ad(K)-invariant subspace of iu. Let X be a G-invariant real-analytic submanifold of Z. By restriction, the moment map µ induces a K-equivariant gradient map µ p : X → (ip) * .

There are two main differences between the complex and the real situation: Even if X is connected an open G-orbit in X does not have to be dense and in general the fibers of µ p are not connected. Therefore one cannot expect µ p to separate the K-orbits globally in X. We say that µ p locally almost separates the K-orbits if there exists a K-invariant open subset Ω of X such that K • x is open in µ -1 p K • µ p (x) for all x ∈ Ω. Geometrically this means that the induced map Ω/K → p/K has discrete fibers. If Ω = X, we say that µ p almost separates the K-orbits in X.

We suppose throughout this article that X/G is connected. Now we can state our main result.

Theorem 1. -The following are equivalent.

1. The gradient map µ p locally almost separates the K-orbits.

2. The gradient map µ p almost separates the K-orbits in X.

3. The minimal parabolic subgroup Q 0 of G has an open orbit in X.

Hence, Theorem 1 gives a sufficient condition on the G-action for µ p to induce a map X/K → p/K whose fibers are discrete, while on the other hand the gradient map yields a criterion for X to be spherical. Moreover we see that sphericity is independent of the particular choice of µ p , i. e. if one gradient map for the G-action on X generically separates the K-orbits in X, then this is true for every gradient map.

Let us outline the main ideas of the proof. First we observe that X contains an open Q 0 -orbit if and only if (G/Q 0 ) × X contains an open G-orbit with respect to the diagonal action of G. The gradient map µ p on X induces a gradient map µ p on (G/Q 0 ) × X. Now we are in a situation where we can apply the methods introduced in [START_REF] Heinzner | Cartan decomposition of the moment map[END_REF]. These allow us to show that open G-orbits correspond to isolated minimal K-orbits of the norm squared of µ p . In order to relate the property that µ p locally almost separates the K-orbits to the existence of an isolated minimal K-orbit, we need the following result. We consider the restriction µ p | K•x : K • x → K • µ p (x) which is a smooth fiber bundle with fiber K µp (x) /K x . In the special case G = K C it is proven in [START_REF] Guillemin | Symplectic techniques in physics[END_REF] that for generic x the fiber K µp (x) /K x is a torus. As a generalization we prove the following proposition, which also allows us to extend the notion of "K-spherical" defined in [START_REF] Huckleberry | Multiplicity-free complex manifolds[END_REF] to actions of real-reductive groups.

Proposition 2. -Let x ∈ X be generic and choose a maximal Abelian subspace a of p containing µ p (x). Then the orbits of the centralizer

Z K (a) of a in K are open in K µp (x) /K x .
These arguments yield the existence of an open Q 0 -orbit under the assumption that µ p locally almost separates the K-orbits. For the other direction we apply the shifting technique for gradient maps.

Notice that our proof of Brion's theorem is different from the ones in [START_REF] Brion | Sur l'image de l'application moment[END_REF] and [START_REF] Huckleberry | Multiplicity-free complex manifolds[END_REF]. In particular, for every generic element x ∈ X we construct a minimal parabolic subgroup

Q 0 of G such that Q 0 • x is open in X.
At present we do not know whether a spherical G-gradient manifold does only contain a finite number of G-and Q 0 -orbits (which is true in the complex-algebraic situation). These and other natural open questions will be addressed in future works.

Gradient manifolds

In this section we review the necessary background on G-gradient manifolds and gradient maps. We then define what it means that a gradient map locally almost separates the orbits of a maximal compact subgroup of G and discuss several examples where this can be shown to be true.

2.1. The gradient map. -Here we recall the definition of the gradient map. For a detailed discussion we refer the reader to [START_REF] Heinzner | Cartan decomposition of the moment map[END_REF].

Let U be a compact Lie group and U C its universal complexification (see [START_REF]Hochschild -The structure of Lie groups[END_REF]). We assume that Z is a Kähler manifold with a holomorphic action of U C such that the Kähler form is invariant under the action of the compact real form U of U C . We assume furthermore that the action of U is Hamiltonian, i. e. that there exists a moment map µ : Z → u * , where u * is the dual of the Lie algebra of U . We require µ to be real-analytic and U -equivariant, where the action of U on u * is the coadjoint action.

The complex reductive group U C admits a Cartan involution θ : U C → U C with fixed point set U . The -1-eigenspace of the induced Lie algebra involution equals iu. We have an induced Cartan decomposition, i. e. the map U × iu → U C , (u, ξ) → u exp(ξ) is a diffeomorphism. Let G be a θ-stable closed real subgroup of U C with only finitely many connected components. Equivalently, we assume that G is a closed subgroup of U C , such that the Cartan decomposition restricts to a diffeomorphism K × p → G, where K := G ∩ U and p := g ∩ iu. In this paper such a group

G = K exp(p) is called real-reductive. Note that U C itself is an example for such a subgroup G of U C .
Let X be a G-invariant real-analytic submanifold of Z such that X/G is connected. We identify u with u * by a U -invariant inner product •, • on u. Moreover we identify u and iu by multiplication with i. Then the moment map µ : Z → u * restricts to a real-analytic map µ p : X → p which is defined by µ p (x), ξ = µ(x)(-iξ) for ξ ∈ p. We call µ p a G-gradient map on X and we say that X is a G-gradient manifold. Note that µ p is K-equivariant with respect to the adjoint action of K on p. In the special case G = U C , the gradient map coincides with the moment map up to the identification of u * with iu.

In this paper, we consider real-analytic gradient maps which locally almost separate the K-orbits. By this, we mean that there exists a K-invariant open subset Ω of X such that the following equivalent conditions are satisfied.

1. K • x is open in µ -1 p K • µ p (x) for all x ∈ Ω. 2. K µp (x) • x is open in µ -1
p µ p (x) for all x ∈ Ω. 3. The induced map µ p : Ω/K → p/K has discrete fibers.

If Ω = X, we say that µ p almost separates the K-orbits. We will show later that the set Ω on which µ p almost separates the K-orbits can always be chosen to be X, i. e. µ p separates locally almost the K-orbits if and only if µ p almost separates them. If µ -1 p K • µ p (x) = K • x for all x ∈ X, then we say that µ p globally separates the K-orbits. Proof. -By assumption there exists a K-invariant open subset Ω ⊂ X such that µ -1 p µ p (x) 0 ⊂ K • x holds for all x ∈ Ω. Since µ p is real-analytic, we find a point x ∈ Ω such that µ p has maximal rank in x. We conclude from Lemma 5.1 in [START_REF] Heinzner | Cartan decomposition of the moment map[END_REF] that

(p•x) ⊥ = T x µ -1 p µ p (x) ⊂ k • x and thus obtain T x X = (p • x) ⊕ (p • x) ⊥ ⊂ (p • x) + (k • x) = g • x, which means that G • x is open in X.

2.2.

Examples. -In general, it is very difficult to verify directly that a G-gradient map separates (locally almost) the K-orbits. In this subsection we give some examples of situations where this can be done.

Example. -The connected group G = K exp(p) acts on itself by left multiplication. The standard gradient map for this action is given by µ p : G → p, µ p k exp(ξ) = Ad(k)ξ. Let x 0 = k 0 exp(ξ 0 ) ∈ G be given. One checks directly that µ -1 p µ p (x 0 ) = x 0 K. Hence, µ p locally almost separates the K-orbits if and only if there exists a K-invariant open subset Ω ⊂ G such that xK = Kx for all x ∈ Ω. We claim that this is the case if and only if p K = p.

Suppose that xK = Kx holds for all x in a K-invariant open subset Ω ⊂ G. This means that the fixed point set (G/K) K has non-empty interior. Since G/K is K-equivariantly diffeomorphic to p with the adjoint K-action, we see that p K has non-empty interior and thus p K = p.

Conversely, if p K = p, then we have for every

x = k exp(ξ) ∈ G that Kx = K exp(ξ) = exp(ξ)K = xK holds.
Example. -We describe a class of totally real G-gradient manifolds where µ p locally almost separates the K-orbits.

Let (Z, ω) be a Kähler manifold endowed with a holomorphic U C -action such that the U -action is Hamiltonian with moment map µ : Z → u * . Suppose that the action is defined over R in the following sense. There exists an antiholomorphic involutive automorphism σ : U C → U C with σθ = θσ and there is an antiholomorphic involution τ : Z → Z with τ * ω = -ω and τ (g • z) = σ(g) • τ (z) for all g ∈ U C and all z ∈ Z. Consequently, the fixed point set X := Z τ is a Lagrangian submanifold of Z and the compatible real form G = K exp(p) = (U C ) σ acts on X. Let µ p : X → p be the K-equivariant gradient map induced by µ.

We claim that if µ locally almost separates the U -orbits in Z, then µ p locally almost separates the K-orbits in X. This claim is a consequence of the following three observations:

1. If µ locally almost separates the U -orbits, then µ separates all the U -orbits in Z

(see [START_REF] Huckleberry | Multiplicity-free complex manifolds[END_REF]). 2. Since X is Lagrangian, we see that µ k | X ≡ 0, where µ k denotes the moment map for the K-action on Z. Note that under our identification we have

µ = µ k + µ p . 3. For every x ∈ X the orbit K • x is open in (U • x) ∩ X.
Locally injective gradient maps separate locally almost the K-orbits. A class of G-gradient manifolds for which µ p is locally injective is described in the following example.

Example. -Let Z = U/K be a Hermitian symmetric space of the compact type, and let G = K exp(p) be a Hermitian real form of U C . Then Z is a G-gradient manifold and every gradient map µ p : Z → p is locally injective. Consequently, µ p separates locally almost the K-orbits in Z.

We will elaborate a little bit on further properties of µ p : Z → p. Let τ : Z → Z be the holomorphic symmetry which fixes the base point z 0 = eK. Then we have Z τ = µ -1 p (0). Moreover, one can show that Z τ is a K-invariant closed complex submanifold of Z and that every K-orbit in Z τ is open in Z τ . Furthermore, K C acts on Z τ and we have K C • z = K • z if and only if z ∈ Z τ holds. Finally, note that µ k separates all K-orbits in Z.

Spherical gradient manifolds and coadjoint orbits

As we have remarked above it is very hard to verify directly if a given gradient map defined on X separates the K-orbits. The main result of this paper states that this is true if and only if X is a spherical gradient manifold. Hence, this is independent of the particular choice of a gradient map µ p .

In this section we give the definition of spherical gradient manifolds. For this we first review the definition of minimal parabolic subgroups. After that, we discuss the orbits of the adjoint K-action on p which are the right analogues of complex flag varieties.

We continue the notation of the previous section: Let G = K exp(p) be a closed compatible subgroup of U C and let X be a real-analytic G-gradient manifold with K-equivariant realanalytic gradient map µ p : X → p.

3.1. Minimal parabolic subgroups. -For more details and complete proofs of the material presented here we refer the reader to Chapter VII in [START_REF] Knapp | Lie groups beyond an introduction[END_REF].

Since G = K exp(p) is invariant under the Cartan involution θ of U C , the same holds for its Lie algebra g = k ⊕ p. Consequently g is reductive, i. e. g is the direct sum of its center and of the semi-simple subalgebra [g, g].

Let a be a maximal Abelian subalgebra of p and let g = g 0 ⊕ λ∈Λ g λ be the associated restricted root space decomposition. The centralizer g 0 of a in g is θ-stable with decomposition g 0 = m ⊕ a where m = Z k (a). On the group level we define M := Z K (a).

Let us fix a choice Λ + of positive restricted roots. Then we obtain the nilpotent subalgebra n := λ∈Λ + g λ . Let A and N be the analytic subgroups of G with Lie algebras a and n, respectively. Then AN ⊂ G is a simply-connected solvable closed subgroup of G, isomorphic to the semi-direct product A ⋉ N . One checks directly that M stabilizes each restricted root space g λ ; together with the compactness of M this implies that

Q 0 := M AN is a closed subgroup of G. Every subgroup of G which is conjugate to Q 0 = M AN is called a minimal parabolic subgroup. A subgroup Q ⊂ G is called parabolic if it contains a minimal parabolic subgroup.
Remark. -The notion of parabolic subgroups of G is independent of the choices made during the construction of Q 0 .

Example. -For ξ ∈ p the group Q := g ∈ G; lim t→-∞ exp(tξ)g exp(-tξ) exists in G is a parabolic subgroup of G. It is a minimal parabolic subgroup if and only if ξ is regular, i. e. if and only if K ξ = M . If the group G is complex-reductive and connected, then minimal parabolic subgroups of G are the same as Borel subgroups. This motivates the following

Definition 3.1. -We call the G-gradient manifold X spherical if a minimal parabolic subgroup of G has an open orbit in X. Note that X is spherical if and only if Q 0 = M AN has an open orbit in X. Example. -Let G be a real form of U C and let X ⊂ Z be a totally real G-stable subma- nifold with dim R X = dim C Z. If Z is U C -spherical, then X is G-spherical in the above sense. This can be seen as follows. Since Q C 0 is a parabolic subgroup of U C = G C and since Z is spherical, Q C 0 has an open orbit in Z. Since X is maximally totally real, X cannot be contained in the complement of the open Q C 0 -orbit in Z, hence we find a point x ∈ X such that Q C 0 • x is open in Z. Moreover, Q 0 • x is open in (Q C 0 • x) ∩ X, which implies that X is spherical.
Example. -As a special case of the above example we note that weakly symmetric spaces are spherical gradient manifolds. More precisely, let G C be connected complex-reductive and let L C be a complex-reductive compatible subgroup of G C . Let G be a connected compatible real form of G C such that L := L C ∩ G is a compact real form of L C . According to Theorem 3.11 in [START_REF] Stötzel | Quotients of real reductive group actions related to orbit type strata[END_REF] the homogeneous manifold X = G/L is a G-gradient manifold. By a result of Akhiezer and Vinberg ([AV99], compare also Chapter 12.6 in [START_REF]Wolf -Harmonic analysis on commutative spaces[END_REF]) X = G/L is weakly symmetric if and only if the affine variety G C /L C is spherical. This implies that if X = G/L is weakly symmetric, then it is a spherical G-gradient manifold. The converse is false as the next example shows.

Example. -Let U be connected. A special case of Example 2.2 is the case that Z = U C and τ = σ = θ. Then we have G = X = U . Note that µ p ≡ 0 separates the K-orbits in X since X is K-homogeneous while in general µ does not separate the U -orbits in Z. Note also that Q 0 = G is the only minimal parabolic subgroup of G and that G itself is the only subgroup of G having an open orbit in X. This explains the necessity to consider minimal parabolic subgroups instead of maximal connected solvable subgroups (which are maximal tori in G in this example).

Coadjoint orbits.

-A class of examples of gradient manifolds is given by coadjoint orbits (see [START_REF] Heinzner | Semistable points with respect to real forms[END_REF]). Let α ∈ u * and let Z = U • α be the coadjoint orbit of α. Identifying u * with iu as before, α corresponds to an element ξ ∈ iu and Z corresponds to the orbit of ξ of the adjoint action of U on iu. Let P := g ∈ U C ; lim t→-∞ exp(tξ)g exp(-tξ) exists in U C denote the parabolic subgroup of U C associated to ξ. Then the map Z → U C /P , u • ξ → uP , is a real analytic isomorphism. In particular it defines a complex structure and a holomorphic U C -action on Z. The reader should be warned that this U C -action is not the adjoint action. The form

ω η Z (α), ζ Z (α) = -α [η, ζ] defines a U -invariant Kähler form on Z = U • α such that the map µ : Z → u * , µ(u • α) = -Ad(u)α
, is a moment map on Z. Identifying Z with U/U ξ where U ξ denotes the centralizer of ξ in U , the gradient map with respect to the action of U C on Z is given by µ

iu : U/U ξ → iu, uU ξ → -Ad(u)ξ. The U C -action on U • ξ ∼ = U C /P induces a G-action on U • ξ. Proposition 3.2 ([HS07c]). -If ξ ∈ p, then X := K•ξ = G•ξ is a Lagrangian submanifold of Z ∼ = U • ξ.
The G-isotropy at ξ is given by the parabolic subgroup Q :

= P ∩G of G, so G•ξ is isomorphic to G/Q and to K/K ξ if ξ ∈ p. Note also that G/Q is a compact G-invariant submanifold of U C /P and in particular a G-gradient manifold with gradient map µ p : K/K ξ → p, µ p (kK ξ ) = -Ad(k)ξ.
Example. -Consider the action of G = SL(2, R) on projective space Z = P 1 (C) induced by the standard representation of G on C 2 . Note that G is a compatible subgroup of U C = SL(2, C) where U = SU(2). Moreover, Z can be realized as the coadjoint orbit U C /B where B is the Borel subgroup B = z w 0 z -1 ; z ∈ C * , w ∈ C . Then Z can be viewed as a 2-sphere in the 3-dimensional space iu. The gradient map µ p is the projection onto the 2-dimensional subspace p of iu. The action of K on iu is given by rotation around the axes perpendicular to p. We observe that µ p almost separates the K-orbits, but that it does not separate all K-orbits. This corresponds to the fact that there exist two open orbits with respect to the action of a minimal parabolic subgroup of G.

If G = U C is complex reductive and acts algebraically on a connected algebraic variety Z, then the fibers of the moment map µ are connected ( [START_REF] Heinzner | Kählerian potentials and convexity properties of the moment map[END_REF]). Also, if Z is spherical, then µ globally separates the U -orbits. The example above shows that one cannot expect µ p to separate the K-orbits globally for actions of real-reductive groups due to the nonconnectedness of the µ p -fibers. Moreover, in the complex case an open orbit of a Borel subgroup is unique and dense in Z while this is no longer true for real-reductive groups.

The generic fibers of the restricted gradient map

By equivariance, the moment map µ :

Z → u * maps each orbit U •z onto the orbit U •µ(z) ⊂ u * . Moreover, the restriction µ| U •z : U • z → U • µ(z)
is a smooth fiber bundle with fiber U µ(z) /U z . Theorem 26.5 in [START_REF] Guillemin | Symplectic techniques in physics[END_REF] states that generically these fibers are tori; in [START_REF] Huckleberry | Multiplicity-free complex manifolds[END_REF] this theorem is applied to characterize coisotropic U -actions.

In this section we generalize these results in our context. Let x ∈ X and let a be a maximal Abelian subspace of p with µ p (x) ∈ a. Our goal is to prove that generically the group M = Z K (a) has an open orbit in the fiber

K µp (x) /K x of µ p : K • x → K • µ p (x)
. For this we first have to discuss the notion of generic elements in X.

Generic elements.

-There are several natural definitions of generic elements x ∈ X. We could require that the K-orbit through x has maximal dimension, or that the K-orbit through µ p (x) has maximal dimension in µ p (X), or that the rank of µ p in x is maximal. It will turn out that we need all three properties.

Definition 4.1. -The element x ∈ X is called generic if 1. the dimension of K • x is maximal, 2.
the rank of µ p in x is maximal, and 3. the dimension of K • µ p (x) is maximal in µ p (X).

We write X gen for the set of generic elements in X.

Remark. -In the complex case we have rk z µ = dim U • z; hence, condition (2) in Definition 4.1 is superfluous in this case.

For the following lemma we need the analyticity of µ p and of the K-action on X. Lemma 4.2. -The set X gen is K-invariant, open and dense in X.

Proof. -Since X/G is connected, the same is true for X/K. It is then a well-known consequence of the Slice Theorem that the set of points x ∈ X such that K • x has maximal dimension is open and dense in X (see Theorem 3.1, Chapter IV in [START_REF]Bredon -Introduction to compact transformation groups[END_REF]). Since µ p : X → p is real-analytic, its maximal rank set is also open and dense. Hence, X ′ := {x ∈ X; dim K • x, rk x µ p maximal} is open and dense in X.

We prove the lemma by showing that X ′ \ X gen is analytic in X ′ . Let x 0 ∈ X ′ \ X gen . Since µ p has constant rank on X ′ , there are local analytic coordinates (x, U ) around x 0 in X and (y, V ) around µ p (x 0 ) in µ p (X) in which µ p takes the form µ p (x 1 , . . . , x n ) = (x 1 , . . . , x k ). Since µ p is K-equivariant, U and V may be chosen K-invariant.

Since A := {y ∈ V ; dim K • y is not maximal in V } is analytic in V , we see that (X ′ \ X gen ) ∩ U = µ -1
p (A) is analytic in U . Thus X ′ \ X gen is locally analytic in X and since it is closed, it is analytic.

The M -action on µ -1

p µ p (x) . -In this subsection we discuss the restricted gradient map

µ p | K•x : K • x → K • µ p (x).
Recall that this map is a smooth fiber bundle with fiber K µp (x) /K x .

Remark. -Let a be a maximal Abelian subspace of p. Then we have M ⊂ K µp (x) for every x ∈ X with µ p (x) ∈ a. Note that every K-orbit in X intersects µ -1 p (a). We will need the following lemma which extends the corresponding result in [START_REF] Guillemin | Symplectic techniques in physics[END_REF].

Lemma 4.3. -For every x ∈ X gen we have [k µp (x) , p µp (x) ] ⊂ p x .

Proof. -By definition of X gen the set

E := (x, ξ, η) ∈ X gen × k × p; ξ ∈ k µp (x) , η ∈ p µp (x)
is a linear subbundle of the trivial bundle X gen × k × p → X gen .

Let ξ ∈ k µp (x) and η ∈ p µp (x) , and let x t be a smooth curve in X gen with x 0 = x. Since E → X gen is locally trivial, we find a smooth curve (x t , ξ t , η t ) in E with ξ 0 = ξ and η 0 = η. Since [ξ t , η t ] ∈ p µp (xt) for all t and since the inner product •, • on p is induced by a U -invariant inner product on u, we conclude µ p (x t ), [ξ t , η t ] =ξ t , µ p (x t ) , η t = 0 for all t. Differentiating and evaluating at t = 0 yields

0 = (µ p ) * ,x ẋ0 , [ξ, η] + µ p (x), [ ξ0 , η] + µ p (x), [ξ, η0 ] = (µ p ) * ,x ẋ0 , [ξ, η] -η, µ p (x) , ξ0 -ξ, µ p (x) , η0 = (µ p ) * ,x ẋ0 , [ξ, η] = g x [ξ, η] X (x), ẋ0 .
Since X gen is open, every tangent vector v ∈ T x X is of the form v = ẋ0 for some curve x t which implies [ξ, η] X (x) = 0, i. e. [ξ, η] ∈ p x . Now we are in the position to prove Proposition 4.4. -Suppose x ∈ X gen ∩µ -1 p (a). Then the orbit

M •x is open in µ -1 p µ p (x) ∩ (K • x). Let x ∈ X gen ∩ µ -1
p (a) be given. In order to prove Proposition 4.4 it suffices to show that the map m → k µp (x) /k x is surjective. For this we need some information about k µp (x) and k x ; the idea is of course to apply Lemma 4.3 which gives

[k µp (x) , p µp (x) ], [k µp (x) , p µp (x) ] ⊂ [p x , p x ] ⊂ k x .
Consequently we must determine k µp (x) , p µp (x) as well as their Lie brackets. This is most conveniently done via the restricted root space decomposition g = g 0 ⊕ λ∈Λ g λ with respect to the maximal Abelian subspace a ⊂ p. The centralizer g 0 of a in g is stable under the Cartan involution θ and decomposes as g 0 = m ⊕ a where m = Lie(M ). For later use we note the following proposition which is proven in Chapter VI.5 of [START_REF] Knapp | Lie groups beyond an introduction[END_REF].

Proposition 4.5. -For each λ ∈ Λ we write a λ ⊂ a for the subspace generated by the elements ξ λ , θ(ξ λ ) where ξ λ ∈ g λ . Then dim a λ = 1 and λ ξ λ , θ(ξ λ ) = 0 for every 0 = ξ λ ∈ g λ .

In order to prove Proposition 4.4 we will first describe the centralizers of µ p (x) in k and in p. For this we introduce the subset Λ(x) := λ ∈ Λ; λ µ p (x) = 0 ⊂ Λ. We also write

Λ + (x) := Λ(x) ∩ Λ + . Remark. -If λ ∈ Λ(x), then -λ ∈ Λ(x). If λ 1 , λ 2 ∈ Λ(x) and λ 1 + λ 2 ∈ Λ, then λ 1 + λ 2 ∈ Λ(x).
Lemma 4.6. -1. The centralizer of µ p (x) in g is given by g 0 ⊕ λ∈Λ(x) g λ .

We have k µp

(x) = m ⊕ λ∈Λ + (x) ξ λ + θ(ξ λ ) ; ξ λ ∈ g λ . 3. We have p µp (x) = a ⊕ λ∈Λ + (x) ξ λ -θ(ξ λ ) ; ξ λ ∈ g λ .
Proof. -In order to prove the first claim let ξ = ξ 0 + λ∈Λ ξ λ ∈ g and calculate

µ p (x), ξ = λ∈Λ λ µ p (x) ξ λ .
Hence, ξ centralizes µ p (x) if and only if ξ λ = 0 for all λ / ∈ Λ(x). The other two claims follow from (1) together with the fact that θ(g λ ) = g -λ for all λ ∈ Λ.

It remains to show that

λ∈Λ + (x) ξ λ + θ(ξ λ ) ; ξ λ ∈ g λ is contained in k x because then Lemma 4.6 implies that m → k µp (x) /k x is surjective which in turn proves Proposition 4.4. Lemma 4.7. -We have λ∈Λ + (x) ξ λ + θ(ξ λ ) ; ξ λ ∈ g λ ⊂ k x .
Proof. -We will prove this lemma in three steps.

In the first step we prove

p x := λ∈Λ(x) a λ ⊕    λ∈Λ + (x) ξ λ -θ(ξ λ ) ; ξ λ ∈ g λ    ⊂ [k µp (x) , p µp (x) ].
Let λ ∈ Λ + (x) and ξ λ ∈ g λ . Then we have ξ λ + θ(ξ λ ) ∈ k µp (x) , and we may choose an element η ∈ a with λ(η) = 0. Because of

ξ λ -θ(ξ λ ) = - 1 λ(η) ξ λ + θ(ξ λ ), η ∈ [k µp (x) , p µp (x) ] we obtain λ∈Λ + (x) ξ λ -θ(ξ λ ) ; ξ λ ∈ g λ ⊂ [k µp (x) , p µp (x) ]. Moreover, ξ λ , θ(ξ λ ) = - 1 2 ξ λ + θ(ξ λ ), ξ λ -θ(ξ λ ) ∈ [k µp (x) , p µp (x) ] implies a λ ⊂ [k µp (x) , p µp (x) ]. The second step consists in showing    λ∈Λ + (x) ξ λ + θ(ξ λ ) ; ξ λ ∈ g λ    ⊂ [p x , p x ].
To see this, let λ ∈ Λ + (x) and 0 = ξ λ ∈ g λ be arbitrary. Then we have ξ λθ(ξ λ ) ∈ p x and ξ λ , θ(ξ λ ) ∈ a λ . Moreover, Proposition 4.5 implies λ ξ λ , θ(ξ λ ) = 0, which gives

ξ λ + θ(ξ λ ) = 1 λ ξ λ , θ(ξ λ ) ξ λ , θ(ξ λ ) , ξ λ -θ(ξ λ ) ∈ [p x , p x ].
In the last step we combine the results obtained so far with Lemma 4.3 and arrive at Proof. -Recall that the twisted product G× Q X is by definition the quotient space of G×X by the Q-action q • (g, x) := (gq -1 , q • x). We denote the element Q

   λ∈Λ + (x) ξ λ + θ(ξ λ ) ; ξ λ ∈ g λ    ⊂ [p x , p x ] ⊂ [k µp (x) , p µp (x) ], [k µp (x) , p µp (x) ] ⊂ k x , Lemma 
• (g, x) ∈ G × Q X by [g, x]. Then G acts on G × Q X by g • [h, x] := [gh, x], and every G-orbit in G × Q X intersects X ∼ = [e, x]; x ∈ X in a Q-orbit. Thus, the inclusion X ֒→ G × Q X, x → [e, x], induces a homeomorphism X/Q ∼ = (G × Q X)/G. In particular, Q has an open orbit in X if and only if G has an open orbit in G × Q X.
The claim follows now from the fact that the map

G× Q X → X ×(G/Q), [g, x] → (g•x, gQ), is a G-equivariant diffeomorphism with respect to the diagonal G-action on X × (G/Q).
To see this, it is sufficient to note that its inverse map is given by (

x, gQ) → [g, g -1 • x].
The gradient map µ p on X induces in a natural way a gradient map on the product X := X × (G/Q) as follows. First recall from Section 3.2 that G/Q is a G-invariant closed submanifold of an adjoint U -orbit of an element γ ∈ p. In particular G/Q is isomorphic to K/K γ and is equipped with a gradient map kK γ → -Ad(k)ξ. The gradient maps on X and on K/K γ induce a gradient map µ p on X, is given by the sum of those two gradient maps. Explicitly, we have

µ p (x, kK γ ) = µ p (x) -Ad(k)γ.
Note that the choice of γ ∈ p depends only on the isotropy K γ . In particular, if Q is a minimal parabolic subgroup of G, or equivalently if K γ equals the centralizer M of a in K, then for every regular γ ∈ p, the assignment (x, kM ) → µ p (x) -Ad(k)γ defines a gradient map on X. 5.2. The shifted gradient map. -Our goal is to construct a gradient map on X = X × (K/M ) which enables us to control the minima of the associated function µ p 2 . Let a + denote the closed Weyl chamber in a associated to our choice of positive restricted roots. We generalize an inequality in [START_REF] Heinzner | Convexity properties of gradient maps[END_REF] which is a consequence of Kostant's Convexity Theorem [START_REF] Kostant | On convexity, the Weyl group and the Iwasawa decomposition[END_REF]).

Lemma 5.2. -Let γ, ξ ∈ a + and assume that ξ is regular. Then

Ad(k)γ -ξ ≥ γ -ξ for all k ∈ K. The inequality is strict for all k / ∈ K γ .
Proof. -The K-invariance of the inner product implies

Ad(k)γ -ξ 2 -γ -ξ 2 = -2 • Ad(k)γ -γ, ξ .
Let π a denote the orthogonal projection of p onto a. Then Ad(k)γ, ξ = π a (Ad(k)γ), ξ and π a Ad(k)γ is contained in the convex hull of the orbit of the Weyl group

W := N K (a)/Z K (a) through ξ ([Kos73]
). Since K acts by unitary operators, we have π a Ad(k)γ = γ if and only if k ∈ K γ . Therefore it suffices to show that Ad(w)γγ, ξ < 0 for all w ∈ W , w / ∈ W γ . Let λ be a simple restricted root and σ λ the corresponding reflection. Then either σ λ (γ) = γ or σ λ (γ)γ = c • λ for some c < 0. Here we have identified λ ∈ a * with its dual in a. Since ξ is regular, this implies

σ λ (γ) -γ, ξ < 0 if σ λ / ∈ W γ . An arbitrary element w ∈ W is of the form w = σ λ 1 • • • • • σ λ k for simple restricted roots λ 1 , . . . , λ k . Then Ad(w)γ -γ = σ λ 1 • • • • • σ λ k (γ) -σ λ 2 • • • • • σ λ k (γ) + σ λ 2 • • • • • σ λ k (γ) -σ λ 3 • • • • • σ λ k (γ) + • • • + σ λ k (γ) -γ
is a linear combination of simple restricted roots with negative coefficients and it equals 0 if and only if σ λ j ∈ W γ for all j. Again, since ξ is regular, this implies Ad(w)γγ, ξ < 0 for all w ∈ W , w / ∈ W γ .

Since each K-orbit in p intersects a in an orbit of the Weyl group, each K-orbit K • x in X contains an x 0 with µ p (x 0 ) ∈ a + . Recall that each ξ ∈ a + defines a gradient map µ p : X → p, µ p (x, kM ) = µ p (x) -Ad(k)ξ.

Proposition 5.3. -Let x 0 ∈ X gen with µ p (x 0 ) ∈ a + . Then there exists a regular ξ ∈ a + , such that

1. (x 0 , eM ) is a global minimum of the function µ p 2 . 2. If (x, kM ) ∈ X is another global minimum of µ p 2 , then µ p (x) = Ad(k)µ p (x 0 ).
Proof. -If µ p (x 0 ) is regular, define ξ := µ p (x 0 ). Then µ p (x 0 , eM ) 2 = 0 and (x 0 , eM ) is a global minimum of µ p 2 . If (x, kM ) is another global minimum, we have µ p (x) -Ad(k)ξ = 0 and the second claim follows. Now assume that γ := µ p (x 0 ) is singular. Let λ 1 , . . . , λ k be those simple restricted roots vanishing at γ. Let b := η ∈ a; λ 1 (ζ) = . . . = λ k (η) = 0 be the subspace of a where these roots vanish. Let b ⊥ be the orthogonal complement of b in a. Since x 0 is regular, the orbit K • γ has maximal dimension in µ p (X). Therefore µ p (X) ∩ a is contained in the union of the finitely many subspaces of a where at least k simples restricted roots vanish. Choosing a regular element ξ ∈ γ + b ⊥ which is sufficiently near γ, we can assure that γ is the unique point in µ p (X) ∩ a + with minimal distance to ξ.

Let (x, kM ) ∈ X and let l ∈ K with γ ′ := Ad(l)µ p (k -1 • x) ∈ a + . With Lemma 5.2 and the definition of ξ we obtain

µ p (x, kM ) 2 = µ p (x) -Ad(k)ξ 2 = µ p (k -1 • x) -ξ 2 ≥ γ ′ -ξ 2 ≥ γ -ξ 2 = µ p (x 0 , eM ) 2 ,
so in particular (x 0 , eM ) is a global minimum of µ p 2 . Equality holds if and only if γ ′ = γ and l ∈ K γ ′ = K γ . The latter condition gives Ad(k)γ = µ p (x).

In Lemma 5.1, we reformulated the property that a parabolic subgroup Q has an open orbit in X as a property on the G-action on the product X × (G/Q). Now, we translate the condition, that µ p locally almost separates the K-orbits to a suitable condition on the shifted gradient map µ p on the product X × (G/Q).

Lemma 5.4. -Let ξ ∈ a and let µ p : X → p be the associated gradient map. Let x 0 ∈ X with µ p (x 0 ) ∈ a + and set β := µ p (x 0 )ξ = µ p (x 0 , eM ). Then the inclusion µ -1 p µ p (x 0 ) ֒→ µ -1 p (β), x → (x, eM ), induces an injective continuous map Φ : µ -1 p µ p (x 0 ) /M → µ -1 p (β)/K β . If ξ is chosen such that the conclusions of Proposition 5.3 are satisfied, then Φ is a homeomorphism.

is constant in a neighborhood of x 0 . Consequently, the rank of µ p must be maximal in x 0 . Together with the fact that

K β • x 0 is open in µ -1 p (β) this yields (p • x 0 ) ⊥ = T e x 0 µ -1 p (β) = k β • x 0 ⊂ k • x 0 . Therefore we obtain T e x 0 X = p • x 0 ⊕ (p • x 0 ) ⊥ ⊂ p • x 0 + k • x 0 which shows that G • x 0 is open in X.
This proves the implication (1) =⇒ (3) of our our main theorem and gives in addition a precise description of the set of open Q 0 -orbits in X.

Theorem 5.6. -Suppose that µ p locally almost separates the K-orbits. Let x 0 ∈ X gen ∩ µ -1 p (a + ) be given, let ξ be the element from Proposition 5.3, and let Q 0 be the minimal parabolic subgroup of G associated to ξ.

Then Q 0 • x 0 is open in X.
The same method of proof gives the following Proposition 5.7. -Suppose that µ p : X → p locally almost separates the K-orbits. Let x ∈ X gen ∩ µ -1 p (a) and let Q be the parabolic subgroup of G associated to

β := µ p (x). Then Q • x is open in X. Proof. -In order to show that Q • x is open in X, it suffices to show that G • (x, eQ) is open in X × (G/Q).
For this we note that G/Q ∼ = K/K β as a K-manifold and that for the shifted gradient map µ p : X × (K/K β → p, (x, kK β ) → µ p (x) -Ad(k)β the element (x, eK β ) lies in M p . Then the same arguments as above apply to show that G • (x, eK β ) is open. Proof. -Let x 0 ∈ X be given. We must show that K µp (x 0 ) • x 0 is open in µ -1 p µ p (x 0 ) . Let γ := µ p (x 0 ) and let Q be the parabolic subgroup of G associated to γ. Recall that G/Q ∼ = K/K γ is a G-gradient space with gradient map kK γ → -Ad(k)γ. Consider the shifted gradient map µ p : X × (K • γ) → p, (x, kK γ ) → x -Ad(k)γ. Since the minimal parabolic subgroup Q 0 has an open orbit in X, the same is true for Q. Hence G has an open orbit in X × (K/K γ ) by Lemma 5.1.

By definition of γ, we have µ p (x 0 , γ) = 0. Consider the set of semistable points S ]) and contains (x 0 , γ). By analyticity of the action, the union V of the open G-orbits in S G ( µ -1 p (0)) is dense in S G ( µ -1 p (0)). We note also that the union of the open G-orbits is locally finite in S G ( µ -1 p (0)) which can be seen as follows. For every p ∈ µ -1 p (0) there exists a slice neighborhood G • S ∼ = G× Gx S where G x is a compatible subgroup of G and S can be viewed as an open neighborhood of 0 in a G x -representation space. Since G x has at most finitely many open orbits in this representation space, we conclude that only finitely many open G-orbits intersect the open set G • S which shows that the union of the open G-orbits in S G ( µ -1 p (0)) is locally finite. Let W be the union of open G-orbits which contain (x 0 , γ) in their closure and let W be the closure of W in S G ( µ -1 p (0)). Then W consists of only finitely many open G-orbits and consequently W contains an open neighborhood of (x 0 , γ). By Corollary 11.18 in [START_REF] Heinzner | Cartan decomposition of the moment map[END_REF],

G ( µ -1 p (0)) = { x ∈ X; G • x ∩ µ -1 p (0) = ∅}. It is open in X ([ HS07c 
W intersects µ -1 p (0) in K • (x 0 , γ). Therefore K • (x 0 , γ) is isolated in µ -1 p ( 
0) which shows that the quotient µ p -1 (0)/K is discrete. Then µ -1 p (γ)/M is discrete by Lemma 5.4 which means that the M -orbits in µ -1 p (γ) are open. But M < K γ so the K γ -orbits are open in µ -1 p (γ) as well.

This completes the proof of Theorem 1.

Corollary 5.9. -Let X be a spherical G-gradient manifold. Then every G-stable realanalytic submanifold Y of X is also spherical.

Proof. -The claim follows from the facts that Y is a G-gradient manifold with respect to µ p | Y and that µ p | Y almost separates the K-orbits in Y since this is true for µ p .

Corollary 5.10. -If one G-gradient map locally almost separates the K-orbits in X, then every G-gradient map on X almost separates the K-orbits.

6. Applications 6.1. Homogeneous semi-stable spherical gradient manifolds. -Let G = K exp(p) be connected real-reductive and let X be a spherical G-gradient manifold with gradient map µ p : X → p. We have seen in Lemma 2.1 that G has an open orbit in X. In this subsection we consider the case that X = G/H is homogeneous. In addition, we suppose that X is semi-stable, i. e. that X = S G (M p ) holds. Consequently, we may assume that H is of the form

H = K H exp(p H ) with K H = K ∩ H and p H = p ∩ h.
Remark. -The class of homogeneous semi-stable spherical gradient manifolds generalizes the class of homogeneous affine spherical varieties in the complex setting. Let p = p H ⊕p ⊥ H be a K H -invariant decomposition; then we have the Mostow decomposition G/H ∼ = K × K H p ⊥ H (see Theorem 9.3 in [START_REF] Heinzner | Cartan decomposition of the moment map[END_REF] for a proof which uses gradient maps). Since X is spherical, we conclude from Theorem 1 that the Mostow gradient map µ p : G/H ∼ = K × K H p ⊥ H → p, [k, ξ] → Ad(k)ξ, almost separates the K-orbits. In other words, the inclusion p ⊥ H ֒→ p induces a map p ⊥ H /K H → p/K which has discrete fibers. This discussion proves the following Proposition 6.1. -Let X = G/H be a semi-stable homogeneous G-gradient manifold and suppose that H = K H exp(p H ) is compatible in G = K exp(p). Then X is spherical if and only if the map p ⊥ H /K H → p/K induced by the inclusion p ⊥ H ֒→ p has discrete fibers. Example. -For H = {e} we have K H = {e} and p ⊥ H = p. Consequently, X = G is spherical if and only if the quotient map p → p/K has discrete fibers, i. e. if and only if K acts trivially on p.

Finally, we show that reductive symmetric spaces are spherical. Recall that G/H is a reductive symmetric space if there is an involutive automorphism τ on G such that (G τ ) 0 ⊂ H ⊂ G τ holds. In this situation we may assume without loss of generality that τ commutes with the Cartan involution θ. Hence, H = K τ exp(p τ ) is compatible. In order to show that X = G/H is spherical, we must prove that p -τ /K τ → p/K has discrete fibers. From [p -τ , p -τ ] ⊂ k τ we conclude that every K τ -orbit in p -τ intersects a maximal Abelian subspace a 0 ⊂ p -τ in an orbit of the finite group W 0 := N K τ (a 0 )/Z K τ (a 0 ). Extending a 0 to a maximal Abelian subspace a of p we see that p -τ /K τ ∼ = a 0 /W 0 → a/W ∼ = p/K has indeed finite fibers. Therefore we have proven the following Proposition 6.2. -Let X = G/H be a semi-stable homogeneous gradient manifold. If H is a symmetric subgroup of G, then the Mostow gradient map µ p : X → p has finite fibers. Proof. -Let z ∈ Z be a generic element and let Q ⊂ G be the parabolic subgroup associated to µ(z). Consequently, the zero fiber of the shifted moment map on the Kähler manifold Z ×(G/Q) is non-empty. We may assume without loss of generality that the element (z, eQ) ∈ Z × (G/Q) is contained in this zero fiber. By Proposition 5.7 the orbit G • (z, eQ) is open in Z × (G/Q) which in turn implies that Q • z is open in Z. Moreover, since (z, eQ) lies in the zero fiber of a moment map, the isotropy G (z,eQ) = G z ∩ Q = Q z is complex-reductive which proves that Q • z ∼ = Q/Q z is Stein (see Theorem 5 in [START_REF] Matsushima | Sur certains espaces fibrés holomorphes sur une variété de Stein[END_REF]). The open B-orbit in Z must be contained in Q • z and is therefore holomorphically separable. Applying a result of Huckleberry and Oeljeklaus ([HO86]) we finally see that the open B-orbit is Stein.
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 2 1. -Suppose that µ p : X → p locally almost separates the K-orbits. Then G has an open orbit in X.

  5.1. -Let Q be a parabolic subgroup of G. Then Q has an open orbit in X if and only if G has an open orbit in X × (G/Q) with respect to the diagonal action.

5. 4 .

 4 Proof of (3) =⇒[START_REF]reductive group U C , we observe that G embeds as a closed subgroup into its complexification G C . Moreover, if G contains no non-compact Abelian factors, then G C is complex-reductive[END_REF]. -In this subsection we complete the proof of our main theorem by showing the remaining non-trivial implication.Proposition 5.8. -Suppose that Q 0 has an open orbit in X. Then µ p almost separates the K-orbits.

6. 3 .

 3 Open Borel-orbits are Stein. -In this subsection we consider the holomorphic situation, i. e. G = U C is complex-reductive and acts holomorphically on the Kähler manifold Z such that the U -action is Hamiltonian with moment map µ : Z → u * . In Section 5 we have given a new proof of the following result of Brion. Theorem 6.5. -The moment map µ : Z → u * separates the U -orbits in Z if and only if Z is spherical, i. e. if a Borel subgroup B ⊂ G has an open orbit in Z. In this subsection we will show that our proof further implies that the open B-orbit in Z is Stein. Proposition 6.6. -If the moment map µ : Z → u * separates the U -orbits in Z, then the open B-orbit in Z is Stein.

which was to be shown.

Hence, the proof of Proposition 4.4 is finished.

4.

3. An equivalent condition of the separation property. -Proposition 4.4 allows us to formulate an equivalent condition for µ p to separate locally almost the K-orbits which generalizes the notion of K-spherical symplectic manifolds defined in [START_REF] Huckleberry | Multiplicity-free complex manifolds[END_REF].

Proposition 4.8. -The gradient map µ p locally almost separates the K-orbits if and only if dim(p • x) ⊥ = dim Mdim M x for one (and then every) x ∈ X gen ∩ µ -1 p (a).

Proof. -Let us suppose first that µ p locally almost separates the K-orbits. By definition, this means that there is an open K-invariant subset Ω ⊂ X such that µ -1 p µ p (x)

Since X gen is dense, we find an element x ∈ Ω ∩ X gen ∩ µ -1 p (a). It follows from maximality of rk x µ p that µ -1 p µ p (x) ∩ X gen is a closed submanifold of X gen . By Lemma 5.1 in [START_REF] Heinzner | Cartan decomposition of the moment map[END_REF], we obtain dim ker(µ p ) * ,x = dim(p • x) ⊥ . Hence, we conclude dim

which was to be shown.

In order to prove the converse let x ∈ X gen ∩ µ -1 p (a) be given. Our assumption implies that µ -1

x, which means that µ p separates the K-orbits in X gen . Let us note explicitly the following corollary of the proof of Proposition 4.8.

Corollary 4.9. -If µ p locally almost separates the K-orbits in X, then it almost separates the K-orbits in the dense open set X gen .

Consequently, if µ p locally almost separates the K-orbits in X, then µ p induces a map X gen /K → p/K ∼ = a/W whose fibers are discrete.

Proof of the main theorem

In the first subsection we review the shifting technique for gradient maps which translates the problem of finding an open Q 0 -orbit in X into the problem of finding an open G-orbit in the bigger gradient manifold X × (K/M ). Since G is real-reductive, we may apply the techniques developed in [START_REF] Heinzner | Cartan decomposition of the moment map[END_REF] to solve the second problem.

Afterwards, it remains to find an open G-orbit in X × (K/M ) under the assumption that µ p locally almost separates the K-orbits. This is done in two steps: First we construct a special gradient map µ p on X × (K/M ) for which the set of global minima of µ p 2 can be controlled. This will then be essentially used in the proof of existence of an open Q 0 -orbit.

In the final subsection we prove the remaining implication (3) =⇒ (2) in our main theorem: If the minimal parabolic subgroup Q 0 has an open orbit in X, then µ p almost separates the K-orbits.

The shifting technique.

-Since the minimal parabolic subgroup Q 0 = M AN is not compatible, we cannot apply the theory developed in [START_REF] Heinzner | Cartan decomposition of the moment map[END_REF] in order to link the action of Q 0 on X with the theory of gradient maps. Therefore, we reformulate the problem of finding an open Q 0 -orbit in X as the problem of finding an open G-orbit in a larger manifold.

Proof. -First note that the map Φ : µ -1 p µ p (x 0 ) /M → µ -1 p (β)/K β is well-defined since M is contained in K β and K µp (x 0 ) and since µ p and µ p are K-equivariant.

For injectivity, let x, y ∈ µ -1 p µ p (x 0 ) with

Assume that x 0 ∈ µ -1 p µ p (x 0 ) satisfies the conclusions of Proposition 5.3 and let (x, kM ) ∈ µ -1 p (β). Then (x, kM ) is a global minimum of µ p 2 which implies µ p (x) = Ad(k)µ p (x 0 ). We conclude

p µ p (x 0 ) × {eM } and surjectivity follows. Finally, the inclusion µ -1 p µ p (x 0 ) ֒→ µ -1 p (β) is continuous and proper, so Φ is continuous and proper which implies that it is a homeomorphism.

Existence of an open

-Finally we are in the position to prove that Q 0 has an open orbit in X given that µ p locally almost separates the K-orbits.

Let us fix a point x 0 ∈ X gen such that µ p (x 0 ) lies in the closed Weyl chamber a + . By virtue of Proposition 5.3 we find a regular element ξ ∈ a + such that µ p : X × (K/M ) → p, (x, kM ) → µ p (x) -Ad(k)ξ, is a G-gradient map and such that x 0 := (x 0 , eM ) is a global minimum of µ p 2 . Let Q 0 = M AN be the minimal parabolic subgroup of G associated to ξ. Then we may identify K/M with G/Q 0 as gradient manifolds. Let β := µ p (x 0 )ξ. By Lemma 5.4 the quotients µ -1 p µ p (x 0 ) /M and µ -1 p (β)/K β are homeomorphic. This implies that K β • x 0 is open in µ -1 p (β). As we have already seen in the proof of Lemma 2.1, it suffices to prove (p

For this we will show that µ p has maximal rank in x 0 as follows. The image of T x 0 X ⊕ T eM K/M under ( µ p ) * ,e x 0 coincides with (µ p ) * ,x 0 (T

We use the decomposition T x X = (k • x) ⊕ (k • x) ⊥ and note that (µ p ) * ,x maps k • x into a ⊥ for all x in a neighborhood of x 0 . Since moreover µ p locally almost separates the K-orbits, one would expect that (µ p ) * ,x 0 maps a subspace of T x 0 X which is transversal to k • x 0 onto a subspace of p which is transversal to a ⊥ . This is the content of the following Lemma 5.5. -Assume that µ p locally almost separates the K-orbits. For every x ∈ X gen ∩ µ -1 p (a) we have

Proof. -Since x is generic, there exists an open neighborhood V ⊂ X of x such that the rank of µ p is constant on V . We conclude that V ∩ µ -1 p (a) is a submanifold of V and that the image

Since µ p separates the K-orbits and since x is generic, we have ker

We conclude from Lemma 5.5 that the image of ( µ p ) * ,e x 0 is given by (µ p ) * ,x 0 (k • x 0 ) ⊥ ⊕ a ⊥ . Since x 0 is generic, the dimension of (µ p ) * ,x (k • x) ⊥ is the same for all x in a neighborhood of x 0 . Furthermore, every in X × (K/M ) intersects X × {eM }, thus the rank of µ p Proof. -As is proven in [START_REF] Heinzner | Equivariant holomorphic extensions of real analytic manifolds[END_REF], there exists a Stein G C -manifold X C such that X admits a G-equivariant embedding as a closed maximally totally real submanifold into X C . According to the example discussed in Section 2.2 it suffices to show that X C is G C -spherical.

In order to see this, note that the restriction mapping O(X C ) → C ω (X) is injective and G-equivariant. This implies that the G-(and hence also the G C -)representation on O(X C ) is multiplicity-free. Therefore, Theorem 2 in [START_REF] Akhiezer | Spherical Stein spaces[END_REF] applies to show that X C is spherical which finishes the proof.

Remark. -In Proposition 6.3 properness of the G-action on X is needed to guarantee the existence of the complexification X C . If X = G/H is homogeneous, then we may take X C := G C /H C and the same argument as above shows: If the G-representation on C ω (G/H) is multiplicity-free, then G/H is spherical.

Even if we assume that G acts properly on X, the converse of Proposition 6.3 does not hold as the following example shows.

Example. -Let G = K be a compact Lie group acting by left multiplication on X = K. Then µ p ≡ 0 separates the K-orbits in X but the K-representation on C ω (K) is not multiplicity-free which can be deduced from the Peter-Weyl Theorem.

However, there is a special class of real-reductive Lie groups for which the proof of the complex multiplicity-freeness result generalizes to the real situation. A real-reductive Lie group G belongs to this class if the minimal parabolic subalgebras q 0 = m ⊕ a ⊕ n are solvable, i. e. if m is Abelian.

Example. -Among the classical semi-simple Lie groups this is the case e. g. for SL(n, R), Sp(n, R), SU(p, p), SO(p, p) and SO(p, p + 1) (see Appendix C.3 in [START_REF] Knapp | Lie groups beyond an introduction[END_REF]). Lemma 6.4. -Let X be a spherical G-gradient manifold. If the minimal parabolic subalgebras of g are solvable, then the G-representation on C ω (X) is multiplicity-free.

Proof. -We must show that dim Hom G V, C ω (X) ≤ 1 holds for every complex finitedimensional irreducible G-module V . Let Q 0 = M AN be a minimal parabolic subgroup of G and let V be a complex finite-dimensional irreducible G-module. By Engel's Theorem the space V N of N -invariant vectors has positive dimension. The restriction map induces a linear map Hom G V, C ω (X) → Hom M A V N , C ω (X) N , which is injective since V N generates V as a G-module. Hence, it is enough to show dim Hom M A V N , C ω (X) N ≤ 1. Let us assume the contrary. Then there are linearly independent functions f 1 , f 2 ∈ C ω (X) N which transform under the same character of the Abelian group M 0 A. Consequently, the quotient f 1 /f 2 is a real-analytic function defined on the dense open set {f 2 = 0} and invariant under Q 0 0 = M 0 AN . Since this contradicts the assumption that Q 0 has an open orbit in X, the proof is finished.