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SPHERICAL GRADIENT MANIFOLDS

by

Christian Miebach & Henrik Stotzel

Abstract. — We study the action of a real-reductive group G = K exp(p) on real-analytic
submanifold X of a Kéhler manifold Z. We suppose that the action of G extends holomorphically
to an action of the complexified group G® such that the action of a maximal Hamiltonian
subgroup is Hamiltonian. The moment map g induces a gradient map pp: X — p. We show
that p, almost separates the K—orbits if and only if a minimal parabolic subgroup of G has an
open orbit. This generalizes Brion’s characterization of spherical Kéhler manifolds with moment
maps.

Résumé. — Nous étudions l'action d’un groupe réel-réductif G = K exp(p) sur une sous-
variété réel-analytique X d’une variété kahlérienne Z. Nous supposons que ’action de G peut
étre prolongée & une action holomorphe du groupe complexifié G€ telle que ’action d’un sous-
groupe maximal compact de G® soit hamiltonienne. L’application moment  induit une ap-
plication gradient pp: X — p. Nous montrons que pp, separe les orbites de K si et seulement
si un sous-groupe minimal parabolique de G posséde une orbite ouverte dans X. Ce résultat
généralise la charactérisation de Brion des variétés kahlériennes sphériques qui admettent une
application moment.

1. Introduction

Let UC be a complex-reductive Lie group with compact real form U and let Z be a Kéahler
manifold on which U® acts holomorphically such that U acts by Kéhler isometries. Assume
furthermore that the U-action on Z is Hamiltonian, i.e. that there exists a U—equivariant
moment map u: Z — u* where u denotes the Lie algebra of U.

In the special case that Z is compact it is shown in [Bri87] (see also [HW90]) that p
separates the U-orbits if and only if Z is a spherical U®-manifold, which means that a Borel
subgroup of UC has an open orbit in Z. Note that u separates the U-orbits if and only if it
induces an injective map Z/U — u/U. Moreover, this is equivalent to the property that the
U-action on Z is coisotropic.

In this paper we generalize Brion’s result to actions of real-reductive groups on real-analytic
manifolds which moreover are not assumed to be compact. More precisely, we consider a
closed subgroup G of U® which is compatible with the Cartan decomposition U® = U exp(iu).
This means that G = K exp(p) where K := GNU and p is an Ad(K)—invariant subspace of

2000 Mathematics Subject Classification. — 32MO05 (22E46, 53D20).

The authors would like to thank Peter Heinzner for many useful discussions. The first author thanks the
Fakultat fiir Mathematik of the Ruhr-Universitdt Bochum for its hospitality.



2 CHRISTIAN MIEBACH & HENRIK STOTZEL

iu. Let X be a G—invariant real-analytic submanifold of Z. By restriction, the moment map
p induces a K—equivariant gradient map pp: X — (ip)*.

There are two main differences between the complex and the real situation: Even if X is
connected an open G-orbit in X does not have to be dense and in general the fibers of i, are
not connected. Therefore one cannot expect pp to separate the K—orbits globally in X. We
say that pp locally almost separates the K—orbits if there exists a K-invariant open subset 2
of X such that K -z is open in p, ! (K - pp(z)) for all z € Q. Geometrically this means that
the induced map Q/K — p/K has discrete fibers. If Q = X, we say that p, almost separates
the K—orbits in X.

We suppose throughout this article that X/G is connected. Now we can state our main
result.

Theorem 1. — The following are equivalent.

1. The gradient map py locally almost separates the K —orbits.
2. The gradient map pp almost separates the K—orbits in X.
3. The minimal parabolic subgroup Qo of G has an open orbit in X.

Hence, Theorem 1 gives a sufficient condition on the G-action for p, to induce a map
X/K — p/K whose fibers are discrete, while on the other hand the gradient map yields
a criterion for X to be spherical. Moreover we see that sphericity is independent of the
particular choice of pyp, i.e. if one gradient map for the G—action on X generically separates
the K—orbits in X, then this is true for every gradient map.

Let us outline the main ideas of the proof. First we observe that X contains an open
Qo—orbit if and only if (G/Qo) x X contains an open G—orbit with respect to the diagonal
action of G. The gradient map p, on X induces a gradient map fi, on (G/Qo) x X. Now we
are in a situation where we can apply the methods introduced in [HS07b]. These allow us to
show that open G—orbits correspond to isolated minimal K—orbits of the norm squared of fiy,.
In order to relate the property that py locally almost separates the K-orbits to the existence
of an isolated minimal K—orbit, we need the following result. We consider the restriction
|zt K -2 — K- pp(x) which is a smooth fiber bundle with fiber K, (,)/ K. In the special
case G = KC it is proven in [GS84] that for generic z the fiber K, )/ Kz is a torus. As a
generalization we prove the following proposition, which also allows us to extend the notion
of “K-spherical” defined in [HW90] to actions of real-reductive groups.

Proposition 2. — Let x € X be generic and choose a maximal Abelian subspace a of p
containing jip(x). Then the orbits of the centralizer Zx (a) of a in K are open in K, (z)/Ky.

These arguments yield the existence of an open (Qp—orbit under the assumption that p,
locally almost separates the K—orbits. For the other direction we apply the shifting technique
for gradient maps.

Notice that our proof of Brion’s theorem is different from the ones in [Bri87] and [HW90].
In particular, for every generic element x € X we construct a minimal parabolic subgroup
Qo of G such that Qg - x is open in X.

At present we do not know whether a spherical G—gradient manifold does only contain a
finite number of G— and Qp—orbits (which is true in the complex-algebraic situation). These
and other natural open questions will be addressed in future works.

2. Gradient manifolds

In this section we review the necessary background on G—gradient manifolds and gradient
maps. We then define what it means that a gradient map locally almost separates the orbits
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of a maximal compact subgroup of G and discuss several examples where this can be shown
to be true.

2.1. The gradient map. — Here we recall the definition of the gradient map. For a
detailed discussion we refer the reader to [HS07b].

Let U be a compact Lie group and UC its universal complexification (see [Ho65]). We
assume that Z is a Kihler manifold with a holomorphic action of U such that the Kéhler
form is invariant under the action of the compact real form U of UC. We assume furthermore
that the action of U is Hamiltonian, i.e. that there exists a moment map p: Z — u*, where
u* is the dual of the Lie algebra of U. We require u to be real-analytic and U—equivariant,
where the action of U on u* is the coadjoint action.

The complex reductive group UC admits a Cartan involution §: U® — UC with fixed point
set U. The —1-eigenspace of the induced Lie algebra involution equals iu. We have an induced
Cartan decomposition, i.e. the map U x iu — U®, (u, €) — uexp(€) is a diffeomorphism. Let
G be a f-stable closed real subgroup of UC with only finitely many connected components.
Equivalently, we assume that G is a closed subgroup of UC, such that the Cartan decompo-
sition restricts to a diffeomorphism K x p — G, where K := GNU and p := gNiu. In this
paper such a group G = K exp(p) is called real-reductive. Note that U C jtself is an example
for such a subgroup G of UC.

Let X be a G-invariant real-analytic submanifold of Z such that X/G is connected. We
identify u with u* by a U—-invariant inner product (-,-) on u. Moreover we identify u and iu
by multiplication with i. Then the moment map p: Z — u* restricts to a real-analytic map
fp: X — p which is defined by (pp(z),&) = p(z)(—i€) for £ € p. We call p, a G-gradient
map on X and we say that X is a G-gradient manifold. Note that p, is K—equivariant with
respect to the adjoint action of K on p. In the special case G = UC, the gradient map
coincides with the moment map up to the identification of u* with iu.

In this paper, we consider real-analytic gradient maps which locally almost separate the
K—orbits. By this, we mean that there exists a K—invariant open subset €2 of X such that
the following equivalent conditions are satisfied.

1. K -z is open in ugl (K - pp(z)) for all z € Q.
2. K, (z) @ is open in ugl(,up(x)) for all z € Q.
3. The induced map fi,: Q/K — p/K has discrete fibers.

If 2 = X, we say that u, almost separates the K—orbits. We will show later that the set €
on which pp almost separates the K—orbits can always be chosen to be X, i.e. u, separates
locally almost the K—orbits if and only if ;1 almost separates them. If ,u,;l (K-up(x)) =K-x
for all € X, then we say that u, globally separates the K —orbits.

Lemma 2.1. — Suppose that jip,: X — p locally almost separates the K —orbits. Then G has
an open orbit in X.

Proof. — By assumption there exists a K-invariant open subset 2 C X such that y, ! (,up(x))o
C K -z holds for all z € €. Since p,, is real-analytic, we find a point = € {2 such that p, has
maximal rank in z. We conclude from Lemma 5.1 in [HS07b] that (p-z)* = Txugl (1p(z)) C
t - 2 and thus obtain

TX=@(p-z)o@p o) c@p-2)+E 2) =gz,

which means that G - x is open in X. 0
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2.2. Examples. — In general, it is very difficult to verify directly that a G—gradient map
separates (locally almost) the K—orbits. In this subsection we give some examples of situa-
tions where this can be done.

Example. — The connected group G = K exp(p) acts on itself by left multiplication. The
standard gradient map for this action is given by pp: G — p, 1y (k exp(f)) = Ad(k)§. Let
xg = koexp(§) € G be given. One checks directly that u;l(up(:co)) = z9K. Hence, p,
locally almost separates the K—orbits if and only if there exists a K—invariant open subset
Q) C G such that K = Kz for all z € Q. We claim that this is the case if and only if p® = p.

Suppose that x K = Kz holds for all z in a K—invariant open subset {2 C G. This means
that the fixed point set (G/K)X has non-empty interior. Since G/K is K-equivariantly
diffeomorphic to p with the adjoint K-action, we see that p has non-empty interior and
thus p = p.

Conversely, if p = p, then we have for every z = kexp(¢) € G that Kz = Kexp(§) =
exp(§)K = xK holds.

Example. — We describe a class of totally real G—gradient manifolds where 1, locally almost
separates the K—orbits.

Let (Z,w) be a Kihler manifold endowed with a holomorphic U%-action such that the
U-action is Hamiltonian with moment map u: Z — u*. Suppose that the action is defined
over R in the following sense. There exists an antiholomorphic involutive automorphism
o: U® — U® with ¢ = 6o and there is an antiholomorphic involution 7: Z — Z with
T™w = —w and 7(g - 2) = o(g) - 7(2) for all g € U and all 2 € Z. Consequently, the
fixed point set X := Z7 is a Lagrangian submanifold of Z and the compatible real form
G = Kexp(p) = (U%)7 acts on X. Let pp: X — p be the K—equivariant gradient map
induced by u.

We claim that if u locally almost separates the U-orbits in Z, then p, locally almost
separates the K—orbits in X. This claim is a consequence of the following three observations:

1. If p locally almost separates the U-orbits, then p separates all the U-orbits in Z
(see [HW90)).

2. Since X is Lagrangian, we see that pg|x = 0, where pe denotes the moment map for the
K-action on Z. Note that under our identification we have p = g + .

3. For every x € X the orbit K -z is open in (U -z) N X.

Locally injective gradient maps separate locally almost the K—orbits. A class of G—gradient
manifolds for which gy, is locally injective is described in the following example.

Exzample. — Let Z = U/K be a Hermitian symmetric space of the compact type, and let
G = K exp(p) be a Hermitian real form of UC. Then Z is a G-gradient manifold and every
gradient map pp: Z — p is locally injective. Consequently, u, separates locally almost the
K-orbits in Z.

We will elaborate a little bit on further properties of py: Z — p. Let 7: Z — Z be the
holomorphic symmetry which fixes the base point 29 = eK. Then we have Z7 = pu, 1(0).
Moreover, one can show that Z7 is a K—invariant closed complex submanifold of Z and that
every K—orbit in Z7 is open in Z7. Furthermore, K€ acts on Z™ and we have K€ -2 = K - 2
if and only if z € Z7 holds. Finally, note that u¢ separates all K—orbits in Z.
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3. Spherical gradient manifolds and coadjoint orbits

As we have remarked above it is very hard to verify directly if a given gradient map defined
on X separates the K—orbits. The main result of this paper states that this is true if and
only if X is a spherical gradient manifold. Hence, this is independent of the particular choice
of a gradient map uy.

In this section we give the definition of spherical gradient manifolds. For this we first
review the definition of minimal parabolic subgroups. After that, we discuss the orbits of the
adjoint K—action on p which are the right analogues of complex flag varieties.

We continue the notation of the previous section: Let G = K exp(p) be a closed compatible
subgroup of U® and let X be a real-analytic G—gradient manifold with K-equivariant real-
analytic gradient map pp: X — p.

3.1. Minimal parabolic subgroups. — For more details and complete proofs of the
material presented here we refer the reader to Chapter VII in [Kna02].

Since G = K exp(p) is invariant under the Cartan involution @ of UC, the same holds for
its Lie algebra g = € & p. Consequently g is reductive, i.e. g is the direct sum of its center
and of the semi-simple subalgebra g, g].

Let a be a maximal Abelian subalgebra of p and let g = go ® €D, g be the associated re-
stricted root space decomposition. The centralizer gg of a in g is f—stable with decomposition
go = m @ a where m = Z¢(a). On the group level we define M := Zx (a).

Let us fix a choice A of positive restricted roots. Then we obtain the nilpotent subalgebra
n:= @yca+ 91. Let A and N be the analytic subgroups of G with Lie algebras a and n,
respectively. Then AN C G is a simply-connected solvable closed subgroup of GG, isomorphic
to the semi-direct product A x N. One checks directly that M stabilizes each restricted root
space gy; together with the compactness of M this implies that Qg := M AN is a closed
subgroup of G.

Every subgroup of G which is conjugate to Q9 = MAN is called a minimal parabolic
subgroup. A subgroup @ C G is called parabolic if it contains a minimal parabolic subgroup.

Remark. — The notion of parabolic subgroups of G is independent of the choices made
during the construction of Q.

Example. — For £ € p the group Q) := {g € G limy_,_ o exp(t§)g exp(—t&) exists in G} is
a parabolic subgroup of G. It is a minimal parabolic subgroup if and only if ¢ is regular, i.e.
if and only if K¢ = M.

If the group G is complex-reductive and connected, then minimal parabolic subgroups of
G are the same as Borel subgroups. This motivates the following

Definition 3.1. — We call the G—gradient manifold X spherical if a minimal parabolic
subgroup of GG has an open orbit in X.

Note that X is spherical if and only if Qg = M AN has an open orbit in X.

Exzample. — Let G be a real form of U® and let X C Z be a totally real G-stable subma-
nifold with dimg X = dimc Z. If Z is U spherical, then X is G-spherical in the above
sense. This can be seen as follows. Since Qg is a parabolic subgroup of U® = G€ and since
Z is spherical, Qg has an open orbit in Z. Since X is maximally totally real, X cannot be
contained in the complement of the open Qg—orbit in Z, hence we find a point z € X such
that QF - « is open in Z. Moreover, Qo - = is open in (Q§ - #) N X, which implies that X is
spherical.
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Example. — As a special case of the above example we note that weakly symmetric spaces
are spherical gradient manifolds. More precisely, let G€ be connected complex-reductive and
let LE be a complex-reductive compatible subgroup of G€. Let G be a connected compatible
real form of GC such that L := L€ N G is a compact real form of LE. According to The-
orem 3.11 in [St08] the homogeneous manifold X = G//L is a G-gradient manifold. By a
result of Akhiezer and Vinberg ([AV99], compare also Chapter 12.6 in [Wo07]|) X = G/L
is weakly symmetric if and only if the affine variety G/LC is spherical. This implies that if
X = G/L is weakly symmetric, then it is a spherical G-gradient manifold. The converse is
false as the next example shows.

Example. — Let U be connected. A special case of Example 2.2 is the case that Z = UC
and 7 = 0 = . Then we have G = X = U. Note that u, = 0 separates the K-orbits in
X since X is K—homogeneous while in general p does not separate the U—orbits in Z. Note
also that Q9 = G is the only minimal parabolic subgroup of G and that G itself is the only
subgroup of G having an open orbit in X. This explains the necessity to consider minimal
parabolic subgroups instead of maximal connected solvable subgroups (which are maximal
tori in G in this example).

3.2. Coadjoint orbits. — A class of examples of gradient manifolds is given by coadjoint
orbits (see [HS07c|). Let a € u* and let Z = U - a be the coadjoint orbit of a. Identifying u*
with iu as before, a corresponds to an element ¢ € iu and Z corresponds to the orbit of £ of
the adjoint action of U on iu. Let P := {g € UC; limy_, oo exp(t€)gexp(—t€) exists in UC}
denote the parabolic subgroup of UC associated to &. Then the map Z — U(C/P7 u-&— uP,
is a real analytic isomorphism. In particular it defines a complex structure and a holomorphic
UC-action on Z. The reader should be warned that this UCaction is not the adjoint action.
The form w(nz(a),{z(a)) = —a([n,¢]) defines a U-invariant Kéhler form on Z = U - « such
that the map p: Z — u*, pu(u- ) = — Ad(u)a, is a moment map on Z. Identifying Z with
U/U¢ where Ue denotes the centralizer of £ in U, the gradient map with respect to the action
of U on Z is given by piy: U/Us — iu, ulUg — — Ad(u)¢. The US~action on U - £ 2 UC/P
induces a G—-action on U - €.

Proposition 3.2 ([HS07c]). — If¢ € p, then X := K-§ = G-£ is a Lagrangian submanifold
of Z=2U -¢&.

The G-isotropy at £ is given by the parabolic subgroup @ := PNG of G, so G-¢ is isomorphic
to G/Q and to K/K¢ if £ € p. Note also that G/Q is a compact G—-invariant submanifold of
UC/P and in particular a G-gradient manifold with gradient map pp: K/ Ke — p, pp(kKe) =
— Ad(k)E.

Example. — Consider the action of G = SL(2,R) on projective space Z = P;(C) induced
by the standard representation of G on C2. Note that G is a compatible subgroup of U® =
SL(2,C) where U = SU(2). Moreover, Z can be realized as the coadjoint orbit U®/B where
B is the Borel subgroup B = {< 8 ;51 ;2 € Crw e (C}. Then Z can be viewed as
a 2-sphere in the 3-dimensional space iu. The gradient map gy, is the projection onto the
2-dimensional subspace p of iu. The action of K on iu is given by rotation around the axes
perpendicular to p. We observe that pu, almost separates the K—orbits, but that it does not
separate all K—orbits. This corresponds to the fact that there exist two open orbits with
respect to the action of a minimal parabolic subgroup of G.
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If G = UC is complex reductive and acts algebraically on a connected algebraic variety
Z, then the fibers of the moment map p are connected ([HH96]). Also, if Z is spherical,
then p globally separates the U-orbits. The example above shows that one cannot expect
Hp to separate the K-orbits globally for actions of real-reductive groups due to the non-
connectedness of the pp—fibers. Moreover, in the complex case an open orbit of a Borel
subgroup is unique and dense in Z while this is no longer true for real-reductive groups.

4. The generic fibers of the restricted gradient map

By equivariance, the moment map p: Z — u* maps each orbit U -z onto the orbit U-u(z) C
u*. Moreover, the restriction ply.,: U -z — U - u(z) is a smooth fiber bundle with fiber
Uy(z)/Uz. Theorem 26.5 in [GS84] states that generically these fibers are tori; in [HW90]
this theorem is applied to characterize coisotropic U—actions.

In this section we generalize these results in our context. Let z € X and let a be a
maximal Abelian subspace of p with pp(z) € a. Our goal is to prove that generically the
group M = Zg(a) has an open orbit in the fiber K, (,)/Ky of pp: K -2 — K - py(z). For
this we first have to discuss the notion of generic elements in X.

4.1. Generic elements. — There are several natural definitions of generic elements x € X.
We could require that the K—orbit through x has maximal dimension, or that the K—orbit
through pp(z) has maximal dimension in (X)), or that the rank of pyp in « is maximal. It
will turn out that we need all three properties.

Definition 4.1. — The element x € X is called generic if

1. the dimension of K -z is maximal,
2. the rank of yy in x is maximal, and
3. the dimension of K - pip(z) is maximal in p,(X).

We write Xgen for the set of generic elements in X.

Remark. — In the complex case we have rk, y = dim U - z; hence, condition (2) in Defini-
tion 4.1 is superfluous in this case.

For the following lemma we need the analyticity of j, and of the K—action on X.
Lemma 4.2. — The set Xgen is K—invariant, open and dense in X.

Proof. — Since X/G is connected, the same is true for X/K. It is then a well-known con-
sequence of the Slice Theorem that the set of points x € X such that K - x has maxi-
mal dimension is open and dense in X (see Theorem 3.1, Chapter IV in [Bre72]). Since
pp: X — p is real-analytic, its maximal rank set is also open and dense. Hence, X' := {z €
X; dim K - x,rk, 1, maximal} is open and dense in X.

We prove the lemma by showing that X'\ Xgen is analytic in X’. Let 29 € X'\ Xgen.
Since 1 has constant rank on X', there are local analytic coordinates (z,U) around zp in X
and (y, V') around pp(x0) in pp(X) in which py takes the form pp(z1, ..., 2,) = (21,..., 2%).
Since pyp is K—equivariant, U and V' may be chosen K-invariant. Since A := {y € V; dim K -
y is not maximal in V'} is analytic in V, we see that (X' \ Xgen) NU = ugl(A) is analytic in
U. Thus X'\ Xgen is locally analytic in X and since it is closed, it is analytic. O
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4.2. The M—action on ,ugl (up(x)) . — In this subsection we discuss the restricted gradient
map

pplkz: K- — K- pp(z).
Recall that this map is a smooth fiber bundle with fiber K, (,)/ K.
Remark. — Let a be a maximal Abelian subspace of p. Then we have M C K 1 (z) for every
x € X with pp(z) € a. Note that every K—orbit in X intersects ,ugl(a).

We will need the following lemma which extends the corresponding result in [GS84].
Lemma 4.3. — For every x € Xgen we have [£, (1), Py, (2)] C Pa-
Proof. — By definition of Xge, the set

E = {(‘Taéan) € Xgen X € x p; f € Eup(m)vn € p,u,p(m)}
is a linear subbundle of the trivial bundle Xgen X € X p — Xgen.

Let £ € £, () and n € p,, (z), and let z; be a smooth curve in Xgen with z9 = 2. Since
E — Xgen is locally trivial, we find a smooth curve (x¢,&,n:) in E with {§o = £ and ng = 7.
Since [&¢, mt] € P, () for all t and since the inner product (-, -) on p is induced by a U-invariant
inner product on u, we conclude

(po(e), [Ee,me)) = —([&ts pp(e) ], me) = 0
for all ¢t. Differentiating and evaluating at t = 0 yields

0= <(MP)*,:{:-%.'07 [6’77]> + <NP(1")7 [50’77]> + <NP($)7 [57770]>
= <(/L}J)*,xik0> [577]]> - <[na/‘p($)]a50> - <[£,,up(l‘)},7.70>
= ((Hp)s.atio, [&,1]) = ga (€, 1]x (2), d0).

Since Xgen is open, every tangent vector v € T, X is of the form v = %y for some curve x;
which implies [€,n]x(z) =0, i.e. [£,7] € pg. O

Now we are in the position to prove

Proposition 4.4. — Suppose x € Xgenﬂugl(a). Then the orbit M-z is open in ,ugl (up(z))ﬂ

Let x € Xgen Nty 1(a) be given. In order to prove Proposition 4.4 it suffices to show that
the map m — Eup(x)/ £, is surjective. For this we need some information about ¢, () and £;;
the idea is of course to apply Lemma 4.3 which gives

(84 () By (@] €y (@) Prap (@] C [P ] C Ea

Consequently we must determine €, (), P, (z) as well as their Lie brackets.

This is most conveniently done via the restricted root space decomposition g = go &
P, ca 9 With respect to the maximal Abelian subspace a C p. The centralizer go of a in g is
stable under the Cartan involution 6 and decomposes as go = m & a where m = Lie(M). For
later use we note the following proposition which is proven in Chapter VL5 of [Kna02].

Proposition 4.5. — For each A € A we write ay C a for the subspace generated by the
elements [@\,9(5)\)] where £y € gx. Then dimay = 1 and /\[@\,0(5)\)] %0 for every 0 # &), €
g

In order to prove Proposition 4.4 we will first describe the centralizers of pp(z) in € and

in p. For this we introduce the subset A(z) := {A € A; A(pp(z)) = 0} C A. We also write
At(z) := A(z)NAT.
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Remark. — If A € A(x), then —\ € A(x). If A1, Ao € A(z) and A1 + Ao € A, then \j + A2 €
A(x).

Lemma 4.6. — 1. The centralizer of py(x) in g is given by go ® Drep(x) 92-
2. We have Eup(x) =mo {Z)\e/w(x) (f/\ -+ 9(5)\)); &x € 9/\}-
3. We have p,, () =a® {Z)\@ﬁ(w) (fA - 9(@\)); &x € BA}-

Proof. — In order to prove the first claim let £ = & + > yc §) € g and calculate
(o), €] = > Alpn(@)) .
AEA
Hence, { centralizes pp(x) if and only if £, = 0 for all A ¢ A(x).
The other two claims follow from (1) together with the fact that 6(gy) = g_, for all
AeA. O
It remains to show that {ZA€A+(I) (5)\ + H(E,\)); &\ € gA} is contained in £, because then

Lemma 4.6 implies that m — ¢, (,)/: is surjective which in turn proves Proposition 4.4.

Lemma 4.7. — We have {Z/\eAﬂm) (Q —|—9(§,\)); &€ g,\} C b,

Proof. — We will prove this lemma in three steps.
In the first step we prove

=P me { D (G -0EN); & e QA} C €, ()5 Prip ()]

AeA(x) AEAT (x)
Let A € AT(x) and &, € g). Then we have &, + 0(£)) € €., (x)> and we may choose an
element 7 € a with \(n) # 0. Because of
1
& —0(6) = B0 [Ex+0(60), ] € By, (@) Py ()]

we obtain {Z)\GA+(I) (Ex—0(&0); &x € EIA} C [y (2) Pup ()]
Moreover,

(60, 0(60)] = —% [Ex+0(60), 60 — 0(E0)] € [E, () Py ()]

implies ax C [€,, (2), Puy ()]
The second step consists in showing

{ Z (Ex+0(60); & € gx} C [p®, p*).

AEA ()

To see this, let A € AT (x) and 0 # &) € gy be arbitrary. Then we have &, —6(£)) € p” and
[Q,H(ﬁ’)\)] € ay. Moreover, Proposition 4.5 implies /\[@\,9(5)\)] # 0, which gives

Ex+0(6n) = m [[§A79(§A)L€A - 9(&)} € [p*,p"].

In the last step we combine the results obtained so far with Lemma 4.3 and arrive at

{ > (G +0(8)); &€ ED\} C ", 0" C (8 (2) Prap ()]s (B (@)5 Py (2)]] C s

AEAT (z)
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which was to be shown. O

Hence, the proof of Proposition 4.4 is finished.

4.3. An equivalent condition of the separation property. — Proposition 4.4 allows
us to formulate an equivalent condition for p, to separate locally almost the K—orbits which
generalizes the notion of K—spherical symplectic manifolds defined in [HW90].

Proposition 4.8. — The gradient map py locally almost separates the K —orbits if and only
if dim(p - x)*+ = dim M — dim M,, for one (and then every) x € Xgen N ugl(a).

Proof. — Let us suppose first that py locally almost separates the K-orbits. By definition,
this means that there is an open K—-invariant subset (2 C X such that p, ! (,up(:r))o = Kgp (@)
for all z € Q.

Since Xgey, is dense, we find an element x € QN Xgen N gy, (a). It follows from maximality
of rk; pp that iy (11p(2)) N Xgen is a closed submanifold of Xyen. By Lemma 5.1 in [HS07b],

we obtain dimker(p)., = dim(p - #)*. Hence, we conclude dim Ky ()/ Ko = dim(p - r)*.

Since by Proposition 4.4 the orbit M -z is open in K, (;) - ¥, we finally obtain dim(p - z)*
dim M /M, = dim M — dim M, which was to be shown.

In order to prove the converse let x € Xgen My 1(a) be given. Our assumption implies
that u, ' (pp(z)) is a closed submanifold of X of dimension dim(p - z)* = dim M — dim M,

We conclude that M -z and hence K, (,) - * are open in ugl (,up(m)) Therefore we have

,u;l (up(aj))o = KBP @) T which means that py, separates the K—orbits in Xgep. O
Let us note explicitly the following corollary of the proof of Proposition 4.8.

Corollary 4.9. — If py locally almost separates the K—orbits in X, then it almost separates
the K —orbits in the dense open set Xgen.

Consequently, if up locally almost separates the K-orbits in X, then p, induces a map
Xgen/K — p/K = a/W whose fibers are discrete.

5. Proof of the main theorem

In the first subsection we review the shifting technique for gradient maps which translates
the problem of finding an open Qp—orbit in X into the problem of finding an open G—orbit
in the bigger gradient manifold X x (K/M). Since G is real-reductive, we may apply the
techniques developed in [HS07b] to solve the second problem.

Afterwards, it remains to find an open G-orbit in X x (K /M) under the assumption that
tp locally almost separates the K-—orbits. This is done in two steps: First we construct a
special gradient map fi, on X x (K/M) for which the set of global minima of ||fiy||? can be
controlled. This will then be essentially used in the proof of existence of an open (Qg—orbit.

In the final subsection we prove the remaining implication (3) = (2) in our main theorem:
If the minimal parabolic subgroup Qo has an open orbit in X, then p, almost separates the
K—orbits.

5.1. The shifting technique. — Since the minimal parabolic subgroup Qo = M AN is not
compatible, we cannot apply the theory developed in [HSO7b] in order to link the action of
(o on X with the theory of gradient maps. Therefore, we reformulate the problem of finding
an open Qp—orbit in X as the problem of finding an open G-orbit in a larger manifold.
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Lemma 5.1. — Let Q) be a parabolic subgroup of G. Then Q) has an open orbit in X if and
only if G has an open orbit in X x (G/Q) with respect to the diagonal action.

Proof. — Recall that the twisted product G x g X is by definition the quotient space of G x X
by the Q-action ¢ - (g,z) := (9¢71,q - ). We denote the element Q - (g,z) € G xg X by
[g,z]. Then G acts on G xg X by g-[h, z] := [gh, ], and every G-orbit in G xg X intersects
X {[e,x]; T € X} in a Q-orbit. Thus, the inclusion X — G x¢g X,  — [e, z], induces a
homeomorphism X/Q = (G xg X)/G. In particular, Q has an open orbit in X if and only
if G has an open orbit in G' xg X.

The claim follows now from the fact that the map GxgX — X x(G/Q), [g9,z] — (g-z, 9Q),
is a G—equivariant diffeomorphism with respect to the diagonal G—-action on X x (G/Q). To
see this, it is sufficient to note that its inverse map is given by (x, Q) — [g,97! - 2]. O

The gradient map pup on X induces in a natural way a gradient map on the product
X := X x (G/Q) as follows. First recall from Section 3.2 that G/Q is a G-invariant closed
submanifold of an adjoint U—orbit of an element v € p. In particular G/Q is isomorphic to
K/K, and is equipped with a gradient map kK, — — Ad(k){. The gradient maps on X and
on K/K, induce a gradient map fi, on X , which is given by the sum of those two gradient
maps. Explicitly, we have

Fip( ) = prpl) — Ad(k).

Note that the choice of v € p depends only on the isotropy K,. In particular, if @ is a
minimal parabolic subgroup of GG, or equivalently if K, equals the centralizer M of a in K,
then for every regular v € p, the assignment (x,kM) — pp(x) — Ad(k)y defines a gradient

map on X.

5.2. The shifted gradient map. — Our goal is to construct a gradient map on X =
X x (K/M) which enables us to control the minima of the associated function ||zy||>.

Let a4 denote the closed Weyl chamber in a associated to our choice of positive restricted
roots. We generalize an inequality in [HS07a] which is a consequence of Kostant’s Convexity
Theorem ([Kos73)).

Lemma 5.2. — Let v,£ € ay and assume that & s regular. Then

[Ad(k)y — &Il = [lv =&l
for all k € K. The inequality is strict for all k ¢ K.

Proof. — The K-invariance of the inner product implies
[Ad(k)y = €I° = [l = €]17 = =2 (Ad(k)y — 7, €).

Let 74 denote the orthogonal projection of p onto a. Then (Ad(k)y, &) = (ma(Ad(k)7), &) and
Ta(Ad(k)y) is contained in the convex hull of the orbit of the Weyl group W := N (a)/Zx (a)
through ¢ ([Kos73]). Since K acts by unitary operators, we have Wa(Ad(k:)’y) = v if and
only if k € K. Therefore it suffices to show that (Ad(w)y—~,&) < 0forallw € W, w ¢ W,.

Let A be a simple restricted root and o) the corresponding reflection. Then either oy (y) =
or ox(y) —v = c- A for some ¢ < 0. Here we have identified A € a* with its dual in a. Since
¢ is regular, this implies <0'>\(’)/) — ’y,f) <0if oy ¢ W,.
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An arbitrary element w € W is of the form w = oy, o --- o0y, for simple restricted roots
A1, .-, Ag. Then

Ad(w)y — vy =(ox, 0 00r, () —0or, 0+ 00x. (7))
+ (ox, 0 000, (7) —ors 0 00x (7))
+oo (o (1) =)

is a linear combination of simple restricted roots with negative coefficients and it equals 0 if
and only if o), € W, for all j. Again, since { is regular, this implies <Ad(w)’y -, €> < 0 for
allwe W, w¢W,. O

Since each K—orbit in p intersects a in an orbit of the Weyl group, each K—orbit K -z in X
contains an xg with pp(zo) € ay. Recall that each £ € ay defines a gradient map fip,: X — p,

fip(z, kM) = pp(x) — Ad(K)E.

Proposition 5.3. — Let xg € Xgen with pp(xo) € ay. Then there exists a reqular § € ay,
such that

1. (wg,eM) is a global minimum of the function ||fy|*.
2. If (z,kM) € X is another global minimum of ||fip||?, then py(z) = Ad(k)pp(x0)-

Proof. — 1If up(wo) is regular, define & := (o). Then ||fip(zo, eM)|> = 0 and (zo,eM) is a
global minimum of ||| If (z, kM) is another global minimum, we have p,(z) — Ad(k)¢ =0
and the second claim follows.

Now assume that v := pp(x0) is singular. Let Aq,..., A\; be those simple restricted roots
vanishing at . Let b := {7] ca; M(Q)=...=X(n) = O} be the subspace of a where these
roots vanish. Let b’ be the orthogonal complement of b in a. Since x( is regular, the orbit
K -~ has maximal dimension in p,(X). Therefore pp(X) N a is contained in the union of
the finitely many subspaces of a where at least k simples restricted roots vanish. Choosing
a regular element & € v + b+ which is sufficiently near v, we can assure that ~ is the unique
point in pp(X) N ay with minimal distance to &.

Let (z,kM) € X and let [ € K with 4/ := Ad(l)pp(k™t - x) € ay. With Lemma 5.2 and
the definition of £ we obtain

1Fip(, EM)|? = ||pp(z) — Ad(R)EN* = [lpp(k™" - 2) = €]
> |1y = €* = Iy — €lI* = llp(zo, M),

so in particular (zg,eM) is a global minimum of ||fiy|>. Equality holds if and only if 7/ = v
and | € Ky = K. The latter condition gives Ad(k)y = pp(x). O

In Lemma 5.1, we reformulated the property that a parabolic subgroup @ has an open
orbit in X as a property on the G-action on the product X x (G/Q). Now, we translate the
condition, that j, locally almost separates the K-orbits to a suitable condition on the shifted
gradient map i, on the product X x (G/Q).

Lemma 5.4. — Let £ € a and let jip: X — p be the associated gradient map. Let xg € X
with pp(xo) € ay and set §:= pp(zo) — & = fip(xo,eM). Then the inclusion u;l(up(xo)) —
ﬁ;l(ﬂ), x +— (x,eM), induces an injective continuous map ®: ,u,;l(up(xo))/M — ﬁ;l(ﬁ)/Kg
If € is chosen such that the conclusions of Proposition 5.3 are satisfied, then ® is a homeo-
morphism.
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Proof. — First note that the map ®: ugl (pp(w0)) /M — ﬂgl(ﬁ)/Kﬁ is well-defined since M
is contained in K and K, (,) and since pp and fip, are K-equivariant.

For injectivity, let z,y € ugl(,up(azo)) with Kg-(z,eM) = Kg-(y,eM). The latter condition
implies M - o = M -y since Kg N M = M. This shows injectivity.

Assume that zg € p,, ! (1p(o)) satisfies the conclusions of Proposition 5.3 and let (z, kM) €
ﬁgl(ﬂ). Then (z,kM) is a global minimum of ||fiy||?> which implies pp(z) = Ad(k)up(zo)-
We conclude 8 = fip(x, kM) = pp(x) — Ad(k)€ = Ad(k)(pp(zo) — ) = Ad(k)B. This proves
k € K. Consequently Kg - (z, kM) intersects i, ' (1p(w0)) x {eM} and surjectivity follows.
Finally, the inclusion ,ugl(,up(:ro)) — ﬂgl(ﬁ) is continuous and proper, so ® is continuous
and proper which implies that it is a homeomorphism. O

5.3. Existence of an open (Qg—orbit. — Finally we are in the position to prove that Qg
has an open orbit in X given that u, locally almost separates the K-orbits.

Let us fix a point g € Xgen such that pp(zg) lies in the closed Weyl chamber ay. By
virtue of Proposition 5.3 we find a regular element £ € a; such that f,: X x (K/M) — p,
(x, kM) — pp(z) — Ad(k)E, is a G-gradient map and such that Zy := (xg,eM) is a global
minimum of ||fiy||?. Let Qo = M AN be the minimal parabolic subgroup of G associated to
¢. Then we may identify K/M with G/Qo as gradient manifolds. Let 8 := pp(zo9) — &. By
Lemma 5.4 the quotients j, ! (up(xo)) /M and ﬁ;l(ﬂ) /K3 are homeomorphic. This implies
that Kz - g is open in ﬁgl(ﬁ).

As we have already seen in the proof of Lemma 2.1, it suffices to prove (p-Zg)* C &-Z, for
then the orbit G-z is open in X x (G/Qq) which in turn implies that Q- x¢ is open in X. For
this we will show that g, has maximal rank in zo as follows. The image of T, X ® Tear K/ M
under (fip). 7, coincides with (pp)s 2o (T X) + [£,&]. Since £ is regular, we obtain

=19 D (&-0(&)); &xcarp =at.

AEAT

We use the decomposition 7, X = (¢-z) @ (¢ 2)* and note that (up)«, maps £- z into a*
for all z in a neighborhood of xy. Since moreover py locally almost separates the K—orbits,
one would expect that (fp)« 2, maps a subspace of T,,; X which is transversal to £- z¢ onto a
subspace of p which is transversal to a. This is the content of the following

Lemma 5.5. — Assume that py locally almost separates the K-orbits. For every x € XgenN
,ugl(a) we have (pip)s((€- 2)1) Nat = {0}.

Proof. — Since z is generic, there exists an open neighborhood V' C X of x such that the
rank of py is constant on V. We conclude that V N ,u;l(a) is a submanifold of V' and that

the image p1,(V N ,ugl(a)) is an open subset of the linear subspace b := (¢, ker(A) C a.
Moreover, we have (V') is an open subset of K - b = K XKy () 0 = (K/ K, (2)) x b.

Since 1, separates the K—orbits and since z is generic, we have ker(pp)«, = (p-2)* C -z
which implies that (up)«. is injective on (€ - 2)+. Consequently, 1, induces an injective
immersion V/K — b, therefore (i), maps (€)% bijectively onto b. Since b N at = {0},
the claim follows. O

We conclude from Lemma 5.5 that the image of (fip). 7, is given by (kp)s.zo ((€-20)") @ at.
Since x¢ is generic, the dimension of (,up)*,x((f : x)L) is the same for all = in a neighborhood
of xg. Furthermore, every K—orbit in X x (K/M) intersects X x {eM}, thus the rank of f,
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is constant in a neighborhood of zy. Consequently, the rank of 7, must be maximal in Zo.
Together with the fact that K- 2y is open in ﬁgl(ﬂ) this yields

(p - To)" =Ty fi, (B) = b5 - To C - Zp.

Therefore we obtain TgO)N( =p-To® (p-To)" C p-To+E-Zp which shows that G - Zy is open
in X.

This proves the implication (1) = (3) of our our main theorem and gives in addition a
precise description of the set of open Qg-orbits in X.

Theorem 5.6. — Suppose that py locally almost separates the K-orbits. Let xg € Xgen N
u;l(a+) be given, let & be the element from Proposition 5.3, and let Qo be the minimal
parabolic subgroup of G associated to £. Then Qq - x¢ is open in X.

The same method of proof gives the following

Proposition 5.7. — Suppose that pp: X — p locally almost separates the K-orbits. Let
x € Xgen N u;l(a) and let Q be the parabolic subgroup of G associated to B := pp(x). Then
Q- x is open in X.

Proof. — In order to show that @ -z is open in X, it suffices to show that G - (z, eQ) is open
in X x (G/Q). For this we note that G/Q = K/K3 as a K—manifold and that for the shifted
gradient map fip: X X (K/Kg —p, (x,kK3) — pp(z) — Ad(k)S the element (z,eKp) lies in
Mvp. Then the same arguments as above apply to show that G - (x,eKg) is open. ]

5.4. Proof of (3) = (2). — In this subsection we complete the proof of our main theorem
by showing the remaining non-trivial implication.

Proposition 5.8. — Suppose that Qo has an open orbit in X. Then puy almost separates
the K—-orbits.

Proof. — Let 29 € X be given. We must show that K, (4, - Zo is open in ,ugl(up(xo)).
Let v := pp(zo) and let @ be the parabolic subgroup of G associated to . Recall that
G/Q = K/K, is a G-gradient space with gradient map kK, — — Ad(k)y. Consider the
shifted gradient map pp: X x (K -v) — p, (z,kKy) — x — Ad(k)y. Since the minimal
parabolic subgroup Q)¢ has an open orbit in X, the same is true for ). Hence G has an open
orbit in X x (K/K,) by Lemma 5.1.

By definition of v, we have fip(z9,v) = 0. Consider the set of semistable points Sg(ﬁlj1 (0)) =
{(feX; G-2n fi, 1(0) # 0}. It is open in X ([HS07c]) and contains (g, ).

By analyticity of the action, the union V' of the open G-orbits in Sg (i, 1(0)) is dense in
Sg(ﬁgl(O)). We note also that the union of the open G—orbits is locally finite in Sg(ﬁgl(O))
which can be seen as follows. For every p € pi,, 1(O) there exists a slice neighborhood G - § =
G x¢g, S where G is a compatible subgroup of G and S can be viewed as an open neighborhood
of 0 in a G,—representation space. Since GG, has at most finitely many open orbits in this
representation space, we conclude that only finitely many open G—orbits intersect the open
set G - S which shows that the union of the open G-orbits in Sg(ﬁgl(())) is locally finite.

Let W be the union of open G-orbits which contain (zg,~) in their closure and let W be
the closure of W in Sg([lgl(())). Then W consists of only finitely many open G—orbits and
consequently W contains an open neighborhood of (zg,~). By Corollary 11.18 in [HS07b],
W intersects ﬁgl(O) in K- (zo,7). Therefore K - (z,) is isolated in ﬁgl(O) which shows that
the quotient i, ' (0)/K is discrete. Then ,ugl(’y) /M is discrete by Lemma 5.4 which means
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that the M—orbits in ,ugl('y) are open. But M < K7 so the K7—orbits are open in ,ugl(v) as
well.

This completes the proof of Theorem 1.

Corollary 5.9. — Let X be a spherical G—gradient manifold. Then every G-stable real-
analytic submanifold Y of X is also spherical.

Proof. — The claim follows from the facts that Y is a G—gradient manifold with respect to
tply and that pp]y almost separates the K—orbits in Y since this is true for pp. O

Corollary 5.10. — If one G—gradient map locally almost separates the K—orbits in X, then
every G—gradient map on X almost separates the K —orbits.

6. Applications

6.1. Homogeneous semi-stable spherical gradient manifolds. — Let G = K exp(p)
be connected real-reductive and let X be a spherical G—gradient manifold with gradient map
pp: X — p. We have seen in Lemma 2.1 that G has an open orbit in X. In this subsection
we consider the case that X = G/H is homogeneous. In addition, we suppose that X is
semi-stable, i.e. that X = Sg(M,) holds. Consequently, we may assume that H is of the
form H = Ky exp(py) with Ky = KN H and py =pNbh.

Remark. — The class of homogeneous semi-stable spherical gradient manifolds generalizes
the class of homogeneous affine spherical varieties in the complex setting.

Letp=1p H@pﬁ be a K g—invariant decomposition; then we have the Mostow decomposition
G/H = K X, pj; (see Theorem 9.3 in [HS07b] for a proof which uses gradient maps).
Since X is spherical, we conclude from Theorem 1 that the Mostow gradient map pp,: G/H =
KXk, 95 — 9, [k, €] — Ad(k)&, almost separates the K —orbits. In other words, the inclusion
p# < p induces a map p3;/ Ky — p/K which has discrete fibers. This discussion proves the
following

Proposition 6.1. — Let X = G/H be a semi-stable homogeneous G—gradient manifold and
suppose that H = Kgexp(pg) is compatible in G = K exp(p). Then X is spherical if and
only if the map pJH/KH — p/K induced by the inclusion pﬁ — p has discrete fibers.

Ezample. — For H = {e} we have Ky = {e} and p;; = p. Consequently, X = G is
spherical if and only if the quotient map p — p/K has discrete fibers, i.e. if and only if K
acts trivially on p.

Finally, we show that reductive symmetric spaces are spherical. Recall that G/H is a
reductive symmetric space if there is an involutive automorphism 7 on G such that (G7)° C
H C G7 holds. In this situation we may assume without loss of generality that 7 commutes
with the Cartan involution 6. Hence, H = K7 exp(p”) is compatible. In order to show
that X = G/H is spherical, we must prove that p~7 /K™ — p/K has discrete fibers. From
[p~7,p 7] C & we conclude that every K™—orbit in p~7 intersects a maximal Abelian subspace
ap C p~ 7 in an orbit of the finite group Wy := Ng-(ag)/Zxk~(ap). Extending ay to a maximal
Abelian subspace a of p we see that p~7 /K™ = a9/Wy — a/W = p/K has indeed finite fibers.
Therefore we have proven the following

Proposition 6.2. — Let X = G/H be a semi-stable homogeneous gradient manifold. If H
is a symmetric subgroup of G, then the Mostow gradient map py: X — p has finite fibers.
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6.2. Relation to multiplicity-free representations. — Let X be a real-analytic G-
gradient manifold. Then G acts linearly on the space C¥(X) of complex-valued real-analytic
functions on X. Since G is a compatible subgroup of some complex-reductive group UC, we
observe that G' embeds as a closed subgroup into its complexification GC. Moreover, if G
contains no non-compact Abelian factors, then GC is complex-reductive.

Proposition 6.3. — Suppose that G acts properly on X and that GC is complex-reductive.
If the G-representation on C*(X) is multiplicity-free, then X is spherical.

Proof. — As is proven in [Hei93], there exists a Stein GE-manifold X© such that X admits a
G—equivariant embedding as a closed maximally totally real submanifold into X©. According
to the example discussed in Section 2.2 it suffices to show that XC is GC-spherical.

In order to see this, note that the restriction mapping O(X®) — C¥(X) is injective and
G-equivariant. This implies that the G- (and hence also the G~)representation on O(X©)
is multiplicity-free. Therefore, Theorem 2 in [AHO04] applies to show that XC is spherical
which finishes the proof. O

Remark. — In Proposition 6.3 properness of the G—-action on X is needed to guarantee
the existence of the complexification XC. If X = G/H is homogeneous, then we may take
XC:= G®/HC and the same argument as above shows: If the G-representation on C*(G/H)
is multiplicity-free, then G/H is spherical.

Even if we assume that G acts properly on X, the converse of Proposition 6.3 does not
hold as the following example shows.

Example. — Let G = K be a compact Lie group acting by left multiplication on X =
K. Then p, = 0 separates the K-orbits in X but the K-representation on C¥(K) is not
multiplicity-free which can be deduced from the Peter-Weyl Theorem.

However, there is a special class of real-reductive Lie groups for which the proof of the
complex multiplicity-freeness result generalizes to the real situation. A real-reductive Lie
group G belongs to this class if the minimal parabolic subalgebras qp = m @ a ® n are
solvable, i.e. if m is Abelian.

Example. — Among the classical semi-simple Lie groups this is the case e.g. for SL(n,R),
Sp(n,R), SU(p, p), SO(p,p) and SO(p,p + 1) (see Appendix C.3 in [Kna02]).

Lemma 6.4. — Let X be a spherical G—gradient manifold. If the minimal parabolic subal-
gebras of g are solvable, then the G—representation on C¥(X) is multiplicity-free.

Proof. — We must show that dimHomg(V,C¥(X)) < 1 holds for every complex finite-
dimensional irreducible G—module V. Let Qo = M AN be a minimal parabolic subgroup
of G and let V be a complex finite-dimensional irreducible G-module. By Engel’s Theorem
the space VN of N-invariant vectors has positive dimension. The restriction map induces a
linear map

Homg (V,C¥(X)) — Hompra (VY,C¥(X)V),

which is injective since VI generates V as a G-module. Hence, it is enough to show
dim Hompza (VY,C¥(X)N) < 1. Let us assume the contrary. Then there are linearly inde-
pendent functions f1, fo € C¥(X)" which transform under the same character of the Abelian
group MY A. Consequently, the quotient f;/f> is a real-analytic function defined on the dense
open set {fa # 0} and invariant under Q) = MYAN. Since this contradicts the assumption
that Q¢ has an open orbit in X, the proof is finished. O
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6.3. Open Borel-orbits are Stein. — In this subsection we consider the holomorphic
situation, i.e. G = UC is complex-reductive and acts holomorphically on the Kéhler manifold
Z such that the U—action is Hamiltonian with moment map p: Z — u*. In Section 5 we have
given a new proof of the following result of Brion.

Theorem 6.5. — The moment map p: Z — u* separates the U—-orbits in Z if and only if
Z is spherical, i. e. if a Borel subgroup B C G has an open orbit in Z.

In this subsection we will show that our proof further implies that the open B—orbit in Z
is Stein.

Proposition 6.6. — If the moment map p: Z — u* separates the U-orbits in Z, then the
open B—orbit in Z is Stein.

Proof. — Let z € Z be a generic element and let () C G be the parabolic subgroup associated
to p(z). Consequently, the zero fiber of the shifted moment map on the Kéahler manifold
Z x(G/Q) is non-empty. We may assume without loss of generality that the element (z,eQ) €
Z x (G/Q) is contained in this zero fiber. By Proposition 5.7 the orbit G - (z,eQ) is open
in Z x (G/Q) which in turn implies that @ - z is open in Z. Moreover, since (z,eQ) lies in
the zero fiber of a moment map, the isotropy G, .q) = G N Q) = @ is complex-reductive
which proves that @ -z = Q/Q is Stein (see Theorem 5 in [MMG60]). The open B-orbit in
Z must be contained in @ - z and is therefore holomorphically separable. Applying a result
of Huckleberry and Oeljeklaus ([HO86]) we finally see that the open B—orbit is Stein. [

References

[AHO4] D. AKHIEZER & P. HEINZNER — “Spherical Stein spaces”, Manuscripta Math. 114 (2004),
no. 3, p. 327-334.

[AV99] D. AKHIEZER & E. B. VINBERG — “Weakly symmetric spaces and spherical varieties”,
Transform. Groups 4 (1999), no. 1, p. 3-24.

[Bre72] G. E. BREDON — Introduction to compact transformation groups, Pure and Applied Math-
ematics, vol. 46, Academic Press, New York-London, 1972.

[Bri87] M. BRION — “Sur I'image de 'application moment”, in Séminaire d’algébre Paul Dubreil et
Marie-Paule Malliavin (Paris, 1986), Lecture Notes in Math., vol. 1296, Springer, Berlin,
1987, p. 177-192.

[GS84] V. GUILLEMIN & S. STERNBERG — Symplectic techniques in physics, Cambridge University
Press, Cambridge, 1984.

[Hei93] P. HEINZNER — “Equivariant holomorphic extensions of real analytic manifolds”, Bull. Soc.
Math. France 121 (1993), no. 3, p. 445-463.

[HH96] P. HEINZNER & A. T. HUCKLEBERRY — “Kéhlerian potentials and convexity properties of
the moment map”, Invent. Math. 126 (1996), no. 1, p. 65-84.

[HSO7a] P. HEINZNER & P. SCHUTZDELLER — “Convexity properties of gradient maps”,
arXiv:0710.1152v1 [math.CV], 2007.

[HS07b] P. HEINZNER & G. W. SCHWARZ — “Cartan decomposition of the moment map”, Math.
Ann. 337 (2007), no. 1, p. 197-232.

[HS07c] P. HEINZNER & H. STOTZEL — “Semistable points with respect to real forms”, Math. Ann.
338 (2007), no. 1, p. 1-9.

[Ho65] G. HOCHSCHILD — The structure of Lie groups, Holden-Day Inc., San Francisco, 1965.

[HO86] A. T. HUCKLEBERRY & E. OELJEKLAUS — “On holomorphically separable complex solv-
manifolds”, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 3, p. 57—65.

[HW90] A. T. HUCKLEBERRY & T. WURZBACHER — “Multiplicity-free complex manifolds”, Math.
Ann. 286 (1990), no. 1-3, p. 261-280.



18 CHRISTIAN MIEBACH & HENRIK STOTZEL

[Kna02] A. W. KNAPP — Lie groups beyond an introduction, second ed., Progress in Mathematics,
vol. 140, Birkhauser Boston Inc., Boston, MA, 2002.

[Kos73] B. KOSTANT — “On convexity, the Weyl group and the Iwasawa decomposition”, Ann. Sci.
Ecole Norm. Sup. (4) 6 (1973), p. 413-455.

[MM60] Y. MATSUSHIMA & A. MORIMOTO — “Sur certains espaces fibrés holomorphes sur une
variété de Stein”, Bull. Soc. Math. France 88 (1960), p. 137-155.

[St08] H. STOTZEL — “Quotients of real reductive group actions related to orbit type strata”,
Dissertation, Ruhr-Universitat Bochum, 2008.

[Wo07] J. A. WOLF — Harmonic analysis on commutative spaces, Mathematical Surveys and Mono-
graphs, vol. 142, American Mathematical Society, Providence, RI, 2007.

CHRISTIAN MIEBACH, Centre de Mathématiques et Informatique, UMR-CNRS 6632 (LATP), 39, rue Joliot-
Curie, Université de Provence, 13453 Marseille Cedex 13 France e E-mail : miebach@cmi.univ-mrs.fr

HENRIK STOTZEL, Fakultdt fiir Mathematik, Ruhr-Universitdt Bochum, Universitatsstrafie 150, D - 44780
Bochum e E-mail : henrik.stoetzel@ruhr-uni-bochum.de



