
Growing Hierarchical Self-Organizing Map for

Alarm Filtering in Network Intrusion Detection

Systems

Ahmad FAOUR

INSA of ROUEN

Laboratoire LITIS

Email: ahmad.faour@ul.edu.lb

Philippe Leray

INSA of ROUEN

Laboratoire LITIS

Email: pleray@insa-rouen.fr

Bassam Eter

Lebanese University

Laboratoire LPM

Email: beter@ul.edu.lb

Abstract— It is a well-known problem that intrusion detection
systems overload their human operators by triggering thousands
of alarms per day. This paper presents a new approach for
handling intrusion detection alarms more efficiently. Neural
Network analyses based on the self-organizing map (SOM) and
the growing hierarchical self-organizing map (GHSOM) are used
to discover interrest patterns signs of potential scenarios of
attacks aiming each machine in the network. The GHSOM
addresses two main limits of SOM which are caused, on the
one hand, by the static architecture of this model, as well as, on
the other hand, by the limited capabilities for the representation
of hierarchical relations of the data. The experiments conducted
on several logs extracted from the SNORT NIDS, confirm that
the GHSOM can form an adaptive architecture, which grows in
size and depth during its training process, thus to unfold the
hierarchical structure of the analyzed logs of alerts.

I. INTRODUCTION

With the ever growing deployment of networks and the

Internet, the importance of network security has increased.

Over the past ten years, the number as well as the severity of

network-based computer attacks have significantly increased

[1]. As a consequence, classic computer security technologies

such as authentication and cryptography have gained in im-

portance. Simultaneously, intrusion detection has emerged as

a new and potent approach to protect computer systems [2],

[3]. In this approach, so-called Intrusion Detection Systems

(IDSs) are used to monitor and analyze the events occurring

in a computer system. Recently, we have witnessed many

theoretical and semi-practical approach to use data mining

technology in the area of intrusion detection [4]. The gov-

erning approach was to use data mining algorithms to detect

anomalies that represent intrusions, or attacks. There was an

attempt to use data mining as a replacement for existing

intrusion detection techniques. However, except for specific

areas there is no practical implementation of this approach.

The main reason being that existing technologies suffice for

detecting intrusions, and, that data mining does not provide

enough context to serve as an intrusion detection tool. Regard-

less of the development in the Security Information area, there

is still a huge problem with existing tools. For both signature

based and behavioral rules approach, most of the rules are too

generic. The consequence is that although these tools detect

all intrusions, they detect much more than that. This problem,

known as false positives, is a big barrier for intrusion detection

tools to cross before their deployment can be practical. To

date, security experts, are struggling with an inherent conflict

and are sometimes forced to write less adequate detection

rules just to reduce the number of false positives. In this

paper we suggest a different approach for using data mining

technology in the intrusion detection area. We claim that

the best positioning for a data mining technology within an

intrusion detection system is not as a detection engine, but

rather as an analysis layer that will filter out the false positives.

In our past researches [?], [?], we proposed an automatic

process that consists of two steps. The first step aims at

grouping similar standard behavior for external machines with

destination to internal machines using clustering algorithms

like self-organizing maps [5]. The second step uses these

information for determining if the network is really attacked

and filter out the false positives using probabilistic tools

like Bayesian Networks [6]. The SOM has shown to be

exceptionnally successful in arranging high-dimensional input

data along its two-dimensional output space such that similar

inputs are mapped onto neighboring regions of the map. In

other words, the similarity of the input data is preserved

as faithfully as possible within the representation space of

the SOM. Despite the large number of research reports on

application of the SOM [?] some deficiencies remained largely

untouched. First, the SOM uses a static network architecture

both in terms of number and arrangement of neural processing

elements, which have to be defined prior to the start of training.

Second, hierarchical relations between the input data are rather

difficult to detect in the map display. So far, both issues

are have been addressed seperately by means of adaptive

architectures, e.g. the Growing Grid [?], or hierarchies of

independent SOMs, e.g. the Hierarchical Feature Map [?] or

the Tree-structured SOM[?].

In this paper, we propose a neural network model, namely

the Growing Hierarchical Self-Organizing Map (GHSOM)[7],

that addresses both deficiencies as outlined above within one

framework. Basically, this neural network model is composed



of independent SOMs, each of which is allowed to grow in size

during the training process until a quality criterion regarding

data representation is met. This growth process is further

continued to form a layered architecture such that hierarchical

relations between input data are further detailed at lower layers

of the neural network.

The outline of this paper is as follows. Section 2 gives an

overview of the limitation of the intrusion detection systems

and discusses related works. Section 3 gives a breif overview

of our approach proposed in [?]. in which we used SOM,

and compare it by GHSOM. Section 4 shows the experiments

and the obtained results and finally section 5 concludes and

presents our future works and perspectives.

II. NETWORK INTRUSION DETECTION SYSTEMS

The NIDS (Network Intrusion Detection System), software

created to detect the abnormal activities on the network,

generally function by signatures, on the same principle of

anti-virus softwares [8]. The known attacks are indexed in

signature databases and each time that an activity resembles

one of these attacks, an alarm is generated. When a new

exploit (successful intrusion attempt) is detected, an adapted

signature will be added to the signature database. Another

approach, sometimes used jointly with the preceding one, is a

statistical approach. During a training phase (i.e., adjustment

of the parameters of the statistical model), the NIDS learns

a standard profile (number of exchanged packets, volume of

flow, numbers of connections, etc. . . ) from the network and

alarms the administrator when the traffic deviates this profile.

The main problem that the administrators discover when

they install a NIDS is the huge amount of generated alarms

(false positives). On an average size network (one or two

public classes C), several thousands of alarms are generated

daily making almost impossible the analysis of the results.

The consequence is that the administrator has to seriously

increase his tolerance level, which will lead it to miss many

real problems and to make it possible to an advanced intruder

to make successfully of a sufficiently discrete attack not to

be detected a whole. In fact, the NIDS is not able to judge

relevance, gravity and correlation of the alarms. It generates

so much alarms which it will be very difficult to detect the

serious problems between all alarms.

A. Related work

The intuitively most appealing way of dealing with false

positives is to build ”better” IDSs, which trigger less false

positives. This is a challenging endeavor because false posi-

tives are the result of multiple problems. Examples of IDSs

that are less prone to false positives include the embedded

detectors technology by [9], a lightweight tool for detecting

Web server attacks by [10], and a network-based IDS that

focuses exclusively on low-level network attacks [11].

Recently, there have been several proposed techniques for

filtering the alarms issued by the NIDS. All these techinques

used post-processing methods that uses the alarms as input and

try to give the administrator the dangerous alarms and filter

NIDS Temporal pre-processing

Aggregation
IPext, IPint

Spatial pre-processing

Standard Behaviors
/ IPint

Classification

Log files
(alerts)

Network
Data

Attack ?

Fig. 1. General description of our approach

out the rest. Alarm correlation systems [12], [?], [13], [14],

[?] try to group alarms so that the alarms of the same group

pertain to the same type (e.g., the same attack). In that way,

they offer a more condensed view on the security issues raised

by an IDS [15]. These techniques can be classified in three

general categories: (a) Alert Clustering ([?], [?]): they use

probabilistic-based reasoning to correlate alerts by measuring

and evaluating the similarities of alert attributes. (b) Matching

predefined attack scenarios: Debar and Wespi [13] apply

backward and forward reasoning techniques to correlate alerts

with duplicate and consequence relationship. Morin and Debar

[16] apply chronicle formalism to aggregate and correlate

alerts. The approach performs attack scenario pattern recog-

nition based on known malicious event sequences. The main

limitation of this approach is that it rely on various forms of

predefined knowledge of attack conditions and consequences.

They cannot recognize a correlation when attack is new. (c)

Prerequisties / consequences ([17], [18], [19], [20], [20]): They

build alert correlation systems based on matching the pre-

/post-conditions of individual alerts. The idea of this approach

is that prior attack steps prepare for later ones. Therefore, the

consequences of earlier attacks correspond to the prerequisites

of later attacks. The correlation engine searches alert pairs that

have a consequence and prerequisite matching. One challenge

to this approach is that a new attack cannot be paired with

any other attacks because its prerequisites and consequences

are not defined.

III. OUR APPROACH

The goal of our system is starting from the alarms generated

by a NIDS, and filtering these alarms to determine if there

were an attack on the network during a fixed lapse of time.

Our system is composed of three components showed in figure

1 and detailed in [?].

By considering that a scenario of attack consists of a serie of

events proceeding in an interval of time, we start by making a

synthesis of alarms generated by the NIDS in a fixed temporal

window. This synthesis gives us a summary of the behavior of

all the external machines IPext (potentially attacking) to all

the internal machines IPint (potentially attacked). The logs

used in our experiments contain 406 different types of alerts

generated by SNORT [21]. At the end of this phase, we obtain



a summary [window IPext IPint Nalert1 . . . Nalert406] of

the behavior of each internal machine in our network gathered

for each external machine in connection. To take account of

the average traffic of each internal machine we proposed to

normalize the data.

In the second part (special prerocessing), we work starting

from the number of alarms of each type generated for each

couple (IPext , IPint), by supposing that this vector is

a representative behavior of each IPext in connection to

each IPint. On the basis of the principle that this behavior

can be similar for several external machines connecting to

one or more internal machines, we will use a technique of

unsupervised classification to cluster these behaviors in a given

number of behavior-types. We used a self-organizing map [5]

as clustering algorithm. The quality of clustering using SOM

are mainly influenced by three essential parameters: (1) size

of the map, (2) initialization of weights (codebook vectors)

and (3) neighborhood functions.

However, the use of SOM requires to define a priori

these three parameters of the map. For choosing the best

parameters several validation measures are proposed [22],

among which we used the Davies-Bouldin index (DB). The

DB index will have a small value for a good clustering.

After the choice of the best SOM, we proceed according

to two approaches. In the first approach (Approach1), we

made a synthesis [window IPint dist2clust1 . . . dist2clustn]
of the sum of the distance for every vector (IPext, IPint) to

the behavior-types (clust1 . . . clustn) detected for each IPint

independently of IPext in a mobile window of time. In the

second approach (Approach2), for every IPint, we made a

synthesis of the number of behavior-types detected bound for

this IPint in a temporal window. By this way, we obtain a

synthesis [window IPint NBofclust1 . . . NBofclustn] of

the behavior-types (clust1 . . . clustn) detected for each IPint

independently of IPext to be able to compare the profile of

two different internal machines.

The synthesis of the behavior-types calculated for every

IPint is supposed to be representative of the various types

of potential attacks aiming each internal machine of the

network during a fixed window of time. We propose in the

last phase (clustering) to use these information to determine if

the network were really attacked (ATT = true or false). To

implement this task of classification, we tested two supervised

classifiers; the Bayesian networks [23], [24] and the SVM [?].

IV. THE GROWING HIERARCHICAL SELF-ORGANIZING

MAP

The Growing Hierarchical Self-Organizing Map (GHSOM)

[?], which is an extension to the growing grid SOM [?] and

hierarchical SOM [?], can build a hierarchy of multiple layers

where each layer consists of several independent growing

SOMs. The size of these SOMs and the depth of the hierarchy

are determined during its learning process according to the

requirements of the input data. As depicted in Fig. 2, the

GHSOM architecture is similar to a tree structure where the

SOM(s) at each layer can branch out to additional SOMs at the

'

&

$

%

Basic steps for horizental growth:

1) Initialize the weight vector of each neuron with random values.
2) Perform the traditional SOM learning algorithm for a fixed

number λ of times.
3) Find the error unit e and its most dissimilar neighbor unit

d. (Note that the error unit e is the neuron with the largest
deviation between its weight vector and the input vectors it
represents.)

4) Insert a new row or a new column between e and d. The weight
vectors of these new neurons are initialized as the average of
their neighbors.

5) Repeat steps 2−4 until the mean quantization error of the map
MQEm < τ1 ∗ qeu where qeu, is the quantization error of
the neuron u in the preceding layer of the hierarchy.

Basic steps of hierarchical growth:

1) Check each neuron to find out if its qei > τ2 ∗qe0, where qe0

is the quantization error of the single neuron of Layer 0, then
assign a new SOM at a subsequent layer of the hierarchy.

2) Train the SOM with input vectors mapped to this neuron.

TABLE I

Basic steps of the horizontal growth and the hierarchical growth of the

GHSOM.

subsequent layer. The upper layers show a coarse organization

of the major clusters in the data, whereas the lower layers offer

a more detailed view of the data.

For the initial setup of the GHSOM, at Layer 0, a single-

neuron SOM is created and the neuron’s weight vector is

initialized as the average of all input vectors. Then, the

learning process starts at Layer 1 with a small SOM (usually a

22 grid) whose weight vectors are initialized to random values.

The GHSOM grows in two dimensions: horizontally (by

increasing the size of each SOM) and hierarchically (by

increasing the number of layers). For horizontal growth, each

SOM modifies itself in a systematic way very similar to the

growing grid [12] so that each neuron does not represent too

large an input space. For hierarchical growth, the principle is

to periodically check whether the lowest layer SOMs have

achieved sufficient coverage for the underlying input data.

The basic steps of the horizontal growth and the hierarchical

growth of the GHSOM are summarized in Table I.

The growth process of the GHSOM is controlled by the

following four important factors.

• The quantization error of a neuron i, qei, is calculated

as the sum of the distance between the weight vector of

neuron i and the input vectors mapped onto this neuron.

• The mean quantization error of the map (MQEm) is the

mean of all neurons’ quantization errors in the map.

• The threshold τ1 is for specifying the desired level of

detail that is to be shown in a particular SOM.

• The threshold τ2 is for specifying the desired quality

of input data representation at the end of the learning

process.

V. BEHAVIOR TYPES DISCOVERY BY THE GHSOM

In order to exemplify some of the differences between the

SOM and the GHSOM clustering models, the unsupervised

classification problem described in Section III is retaken.



We work starting from the number of alarms of each type

generated for each couple (IPext , IPint) in the temporal

preprocessing phase, by supposing that this vector is a repre-

sentative behavior of each IPext in connection to each IPint.

Starting from the principle that this behavior can be similar for

several external machines connecting to one or more internal

machines, we used GHSOM for clustering these behaviors into

a number of behavior-types. The number of behavior-types is

not defined a priori like the case of SOM, but determined

dynamically during the process of the creation of the map. As

it is well known, the resulting map is governed by the two

parameters (τ1 and τ2). Generally, the values for τ1 and τ2

are chosen such that 0 < τ2 << τ1 < 1. The choice of the

parameter τ2 is not critical as it is possible to set it to values

smaller than necessary and to decide after the training process

how many layers are sufficient. On the other hand, τ1 leads

to decisions which cannot be undone at later stages without

retraining the GHSOM. Setting τ1 to small values will lead

to small maps and a deep hierarchy, while large values will

result in large maps with a flat hierarchical structure. Usually

the user will train and manually evaluate several maps until

an appropriate value for τ1 is estimated.

For the interpretation of the obtained maps, we admit the

following suppositions:

• the codebook vector of each cluster is a representative of

the data projected in this cluster.

• for each codebook vector we determine the most signif-

icant variables (for instance, the first top 5 variables).

As each variable corresponds to one specific alarm, we

obtain the characteristic alarms of each cluster.

• every data projected in a cluster is classified as the more

frequent situation also projected in the same location

during the learning phase.

VI. EXPERIMENTS AND RESULTS

A. Description of the Data

We work starting from log files issued from SNORT NIDS.

These files contain 32031 alarms generated over a duration

of 20 days from 20/11/2004 to 10/12/2004. These alarms

correspond to 4638 external machines trying to connect 288

internal machines. Alarms generated during these 20 days are

of 406 different types and include 16 real attacks scenarios,

some are of a few minutes, others lasting several days and

the other are for normal scenario. The scenarios of attack are

distributed as 4 scenarios brute force on POP3, 3 scenarios

crawler Web, 2 scenarios Web IIS, 2 scenarios scanner of

vulnerability, 1 scenario IIS attack against apache server, 3

scenarios brute force against FTP server and 1 scenario SNMP

attack. After implementing the temporal pre-processing phase

we decomposed the base in one learning base and one testing

base. The learning base contains 10 scenarios of attacks and

the testing base contains six scenarios of attacks.

To choose the best couple of the values of (τ1, τ2), we

launched a set of experiments varying these two parameters

and calculating the percentage of detection of the attacks

(detection rate) and the percentage of the ”false positive”.

B. Quantitative Analysis

1) Horizental Expansion: We started by fixing the pa-

rameter τ2 = 0.03, and varying the parameter τ1 between

0.4 > τ1 > 0.1 to study the influence of the horizontal

expansion of the map. The results obtained for the application

of the GHSOM on the learning data and validation data are

presented in the tables II and III.

TABLE II

THE OBTAINED RESULTS FOR τ2 = 0.03 ET 0.4 > τ1 > 0.1 FOR THE

LEARNING DATA.

τ1 τ2 Detection Rate False Positive

0.4 0.03 88% 6.56%
0.3 0.03 95.2% 7.3%
0.2 0.03 95.2% 13%
0.1 0.03 95.2% 13%

TABLE III

THE OBTAINED RESULTS FOR τ2 = 0.03 ET 0.4 > τ1 > 0.1 FOR THE

VALIDATION DATA.

τ1 τ2 Detection Rate False Positive

0.4 0.03 88% 10%
0.3 0.03 96% 8.4%
0.2 0.03 96% 8.7%
0.1 0.03 96% 8.7%

2) Hierarchical Expansion: To study the influence of the

vertical expansion (hierarchical) of the map in the represen-

tation of the structure of the data, we fix this time τ1 = 0.3
and we vary τ2 between 0.01 and 0.03. The smallest is τ2, the

deeper will be the hierarchy. The results obtained are presented

in the tables IV and V. The best the result is obtained for the

couple of value (τ1 = 0.3, τ2 = 0.01).

TABLE IV

THE RESULTS OBTAINED FOR τ1 = 0.3 AND 0.03 > τ2 > 0.01 IN THE

LEARNING DATA.

τ1 τ2 Detection Rate False Positive

0.3 0.03 95.2% 7.3%
0.3 0.02 96.4% 7.38%
0.3 0.01 96.4% 4%

TABLE V

THE RESULTS OBTAINED FOR τ1 = 0.3 AND 0.03 > τ2 > 0.01 IN THE

VALIDATION DATA.

τ1 τ2 Detection Rate False Positive

0.3 0.03 96% 8.4%
0.3 0.02 96% 4.7%
0.3 0.01 96% 4.7%

From the obtained results, we can notice the influence of

the refinement of the map by the degradation of the value

of the parameter τ2. Indeed, for τ2 = 0.03, the obtained

map consists of only one level map with 132 clusters. The

”false negative” was equal to 4.8% and the ”false positive”



was equal to 7.3%. The cluster (18) classified as ”normal”

contains 1.2% of the vectors belonging to the scenario of

attack 9. These vectors are drowned between normal data

projected in this cluster and consequently they are not detected

and are regarded as (false negative). The degradation of τ2

from 0.03 → 0.02, gave the birth of two maps (children) from

two clusters (18 and 68) of the initial map. The first map

(child) contains 90 clusters and the other contains 12 clusters

(figure 2). This hierarchical extension permitted the isolation

the attacks vectors of scenario 9 into one cluster classified

as attack in the new map. Consequently the detection rate of

attacks is increased to 96.4%.

Fig. 2. Hierarchical expansion of the map obtained by decreasing the value
of τ2 from 0.03 → 0.02.

In the same way the degradation of τ1 from 0.02 → 0.01
caused the addition of 3 new maps (children) in the second

level. These 3 new maps are projected starting from the cluster

130 which is classified as ”attacks” and which contains 3.33%
of the ”normal” data hidden between the vectors ”attacks” of

the scenario 10 projected in this cluster (see figure 3). This

projection made it possible to separate the normal data from

the attack’s data and to distribute them on a great number

of new clusters classified all as ”normals”, and to distribute

the vectors of new scenarios 10 into two clusters classified as

”attacks”. This way of expansion or refinement decreased the

”positive false” of 3.38% (see table IV).

Fig. 3. Hierarchical expansion of the map obtained by decreasing the value
of τ2 from 0.02 → 0.01.

TABLE VI

THE PROJECTION OF ATTACK SCENARIOS WITH THE TOP(1)

CARACHTERISTIC OF EACH CLUSTER.

Scnario Type of Sce-
nario

Cluster TOP(1)

1 access page
denied

121 Attack-responses 403
forbidden

3 brute force
POP3

123 Incorrect Password
POP

5 brute force
FTP

27 Access FTP test

8 vulnerability
scanner

122 WEB-IIS mem bin
access

9 brute force
FTP

28 Access FTP admin

10 SNMP
attack

130 SNMP request tcp1

11 brute force
FTP

27 Access FTP test

14 brute force
POP3

114 Incorrect User POP3

C. Qualitative Analysis

The qualitative analysis makes it possible to measure the

quality of the clusters obtained during the phase of clustering.

As we mentioned in the section V, each cluster is caracterized

by the first top 5 variables of its codebook vector. The table VI

show the caracteristics of the some clusters and the scenarios

projected in it.

The scenarios 5 and 11 are two brute force attacks against

FTP server. They are projected in the cluster 27. As we

can see in the table, the top(1) carachteristics of this cluster

is ”Access FTP test” which is sign of this type of attacks.

Another example is the scenario 10 which is a SNMP attack.

This scenario is projected in the cluster 130 of which the

top(1) is ”SNMP request tcp”, and so on. As a result, 90%
of the scenarios are projected in clusers of which the top(1)

characteristic is sign of these scenarios and 100% of scenarios

obtained top(3).

VII. CONCLUSION

The major advantages of the GHSOM model over the

standard SOM are the following. First, the overall training

time is reduced since only a necessary number of units are

developed to organize the data at a certain level of detail.

Second, the GHSOM uncovers the hierarchical structure of

the data, allowing the user to understand and analyse a large

amount of data in an exploratory way. Each SOM array in the

hierarchy explains a particular set of characteristics of data.

This makes the GHSOM analysis an excellent tool for feature

extraction and classification. Third, the size of the SOM array

does not have to be specified subjectively before hand.

In this work, we presented the application of the GHSOM

for filtering the alarms issued by a network intrusion detection

system. The results obtained demonstrate that GHSOM is very

suitable to this kind of problems and can overpass SOM. The



table VII presents a summuray of the best results obtained by

SOM and GHSOM.

TABLE VII

THE RESULTS OBTAINED BY GHSOM AND SOM.

Model DR FP Top(1) Top(3) Top(5)

GHSOM 96% 4.7% 90% 100% 100%
SOM 70% 15% 33% 83% 83%

REFERENCES

[1] J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel, and E. Stoner,
“State of the practice of intrusion detection technologies,” Carnegie
Mellon University, Tech. Rep., 2000.

[2] R. Bace, Intrusion Detection. Macmillan Technical Publishing, 2000.

[3] H. Debar, M. Dacier, and A. Wespi, “A revised taxonomy for intrusion
detection systems,” Annales des Télécommunications, Tech. Rep. 55(7-
8), 2000.

[4] W. Lee, “Applying data mining to intrusion detection: the quest for
automation, efficiency, and credibility,” SIGKDD Explor. Newsl., vol. 4,
no. 2, pp. 35–42, 2002.

[5] T. Kohonen, Self-Organizing Maps, 3rd ed., ser. Series in Information
Sciences. Berlin: Springer, 2001, vol. 30.

[6] F. V. Jensen, An introduction to Bayesian Networks. London, United
Kingtom: Taylor and Francis, 1996.

[7] D. M. Michael Dittenbach, Andreas Rauber, “Uncovering hierarchical
structure in data using the growing hierarchical self-organizing map,”
Neurocomputing, vol. 48, no. 1-4, pp. 199–216, October 2002.

[8] J. Zimmermann, L. M, and C. Bidan, “Introducing reference control
for intrusion detection at the os level,” in Proceedings of the 5th

International Symposium on the Recent Advances in Intrusion Detection,
I. Network and D. S. S. S. N. 2000), Eds. Springer Verlag, 2002, pp.
157–170.

[9] D. Zamboni, “Using internal sensors for computer intrusion detection,”
Ph.D. dissertation, Purdue university, 2001.

[10] M. Almegren, H. Debar, and M. Dacier, “A lightweight tool for detect-
ing web server attacks,” in Network and Distributed System Security

Symposium (NDSS 2000), 2000, pp. 157–170.
[11] R. Sekar, Y. Guang, S. Verma, and T. Shanbhag, “A high performance

network intrusion detection system.” in 6th ACM Conference on Com-
puter and Communications Security, 1999, pp. 8–17.

[12] F. Cuppens, “Managing alerts in a multi-intrusion detection environ-
ment,” in In 17th Annual Computer Security Applications Conference
(ACSAC), 2001, pp. 22–31.

[13] H. Debar and A. Wespi, “Aggregation and correlation of intrusion alerts.”
in In 4th Workshop on Recent Advances in Intrusion Detection (RAID

2001), L. S. Verlag, Ed., Berlin, 2001, pp. 85–103.
[14] S. Staniford, J. Hoagland, and J. McAlernay, “Practical automated

detection of stealthy portscans,” in ACM Computer and Communications

Security IDS Workshop, 2000, pp. 1–7.
[15] K. Julish and M. Dacier, “Mining intrusion detection alarms for action-

able knowledge,” in 8th ACM International Conference on Knowledge

Discovery and Data Mining, 2002, pp. 366–375.
[16] B. Morin and H. Debar, “Correlation of intrusion symptoms: An

application of chronicles.” in RAID, 2003, pp. 94–112.
[17] P. Ning, Y. Cui, and D. Reeves, “Constructing attack scenarios through

correlation of intrusion alerts.” in In 9th ACM Conference on Computer

and Communications Security., November 2002.
[18] F. Cuppens and A. Mige, “Alert correlation in a cooperative intrusion

detection framework.” in In proceedings of the 2002 IEEE Symposium

on Security and Privacy, Oakland, CA, May 2002, pp. 202–215.
[19] S. Cheung, U. Lindqvist, and M. W. Fong, “Modeling multistep cyber

attacks for scenario recognition,” in In proceedings of the third DARPA

Information Survivability Conference and Exposition (DISCEX), Wash-
ington, D.C., April 2003.

[20] P. Ning, D. Xu, C. Healey, and R. Amant, “Building attack scenarios
through integration of complementary alert correlation methods.” in In

proceedings of the 11th Annual Network and Distributed System Security
Symposium (NDSS’04)., San Diego, CA, February 2004.

[21] M. Roesch, “Snort - lightweight intrusion detection for networks,” in
Proceedings of Thirteenth Systems Administration Conference (LISA

’99), 1999, pp. 229–238.
[22] G. W. Milligan and M. C. Cooper, “An examination of procedures for

determining the number of clusters in a data set,” Psychometrika, 1985.
[23] P. Leray and O. Francois, “Réseaux bayésiens pour la classification -

méthodologie et illustration dans le cadre du diagnostic médical,” Revue

d’Intelligence Artificielle, vol. 18/2004, pp. 169–193, 2004.
[24] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference. Morgan Kaufmann, 1988.


