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Generation of Incomplete Test-Data using Bayesian Networks

Olivier François and Philippe Leray

Abstract— We introduce a new method based on Bayesian
Network formalism for automatically generating incomplete
datasets. This method can either be configured randomly to
generate various datasets with respect to a global percentage of
missing data or manually in order to handle many parameters.
[1] proposed three types of missing data : MCAR (missing
completly at random), MAR (missing at random) and NMAR (not
missing at random). The proposed approach can successfully
generate all MCAR data mechanisms and most of MAR data
mechanisms. NMAR data generation is very difficult to manage
automatically but we propose some hints in order to cover some
of the NMAR data situations.

I. INTRODUCTION

Software testing is a time-expensive component of soft-
ware development. A particulary labor-intensive component
of this testing process is the generation of test data to
satisfy testing requirements. This is the primary method
to establish confidences in the performances of softwares.
These confidences are ordinarily established by executing
the algorithm on test-data chosen by some systematic testing
procedure.

Through the years, various methods for generating test-
data have been proposed.
These methods have been divided into three classes [2] :

• Random test-data generation [3], [4],
• Structural or path-oriented test-data generation [5], [6]

(for instance with mutation analysis and constraint sat-
ifaction [7]) and

• Goal oriented test-data generation [8] (for instance with
genetic algorithms [9]).

Our approach could be classify in the random test-data
generation class as it selects inputs randomly from the un-
derlying probability distribution given by a specific Bayesian
Network.

Another field of application of our work concerns Machine
Learning : learning algorithms also have to be compared
in various contexts. Some of them deal with incomplete
databases but available datasets with incomplete data do not
cover all the missing data processes with various missing
data rate.

Our method aims at modelling missing data processes
using Bayesian Network formalism, in order to automatically
create incomplete datasets with different characteristics.

We first introduce Bayesian Network formalism and its
use for data generation. The next section is devoted to
missing data mechanisms. We then propose to model these
mechanisms with Bayesian Networks and give some hints in
order to constraint the global percentage of missing data.
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II. BAYESIAN NETWORK FORMALISM

A. Preliminaries

Bayesian Networks aim at modelling complex systems
[10], [11] by taking graphically into account conditional
independences between variables (by means of a directed
acyclic graph) and by giving a compact representation of
the joint probability distribution as the product of local
conditional probability distributions (one for each node in
the graph).

In this paper, we are going to use Fractur font for proba-
bility distributions, SCRIPT font for random variables and
Bold font for instantiations. Moreover, we will use Normal
font for nodes which represent random variables in Bayesian
Networks and Italic font for all other notations.
In a Bayesian Network, we have the following decomposition
of the joint probability distribution:

P(X1,X2, · · · ,Xn) =
n∏

i=1

P(Xi|Pa(Xi)) (1)

where Pa(Xi) is the random vector built from the parent set
of node Xi in the graph associated to the Bayesian Network.

Bayesian Networks, as other probabilistic models, can
be used as generative models, that’s why we choose this
formalism to generate Test-Data.

B. Sampling in Bayesian Networks

The first idea of stochastic methods is using knowledge
about a distribution (here conditionnal probabilities) to auto-
matically generate samples following this distribution.

Probabilistic logic sampling [12] is the simplest and the
first proposed sampling algorithm for Bayesian Networks.
Rejection sampling could be used when P is not known and
if a function Q that satisfy 1 6 P

Q 6 M is known, where M
is a known bound. The generated sample is accepted with the
probability P(X )

M ·Q(X ) . So if M is too large, we rarely accept
samples.

Importance sampling [13], [14] is close to the logic
sampling algorithm except that the importance function Q
is updated to periodically revise the conditional probability
tables in order to make the sampling distribution gradually
approach the posterior distribution. The generated sample is
accepted with the probability min

(
1, P(x)Q(x|xt−1)

P(xt−1)Q(xt−1|x)

)
.

Another family of stochastic sampling methods is formed
by so-called Markov Chain Monte Carlo (MCMC) methods
that are divided into Gibbs sampling, Metropolis sampling,
and Hybrid Monte Carlo sampling [15], [16]. When applied
to Bayesian Networks [17], [18], [19], those approaches
determine the sampling distribution of a variable from its
previous sample given its Markov blanket [20].



Gibbs sampling is a special case of Metropolis-Hastings
algorithm which is applicable to state spaces in which we
have a factored state space and access to the full conditionals.
So it is perfect for Bayesian Networks.

The idea is to transit from one state (variable assignment)
to another iteratively. The algorithm is simple and could be
describe as follows :
1) pick a variable,
2) sample its value from the conditional distribution,
3) goto step 1) until all variables are not instanciated.
The importance ratio is

r =
P(x)Q(x|xt−1)

P(xt−1)Q(xt−1|x)
= 1 as Q = P in the Gibbs sampler,

so we always accept the new sample.
We propose to use the Gibbs sampler. Let choose the

variable in step 1) in the set of root nodes as their a priori
probability tables give the optimal importance function. If
there is no more root nodes, let pick a node that have all its
parent set instanciated.

C. Random generation of Bayesian Network structures

As the proposed approach is aimed to build datasets from
various mechanisms of data generation and deletion, it should
be judicious to randomly generate Bayesian Network struc-
tures. For instance, [21] or [22] have proposed methods for
random generation of bayesian networks based on Markov
chains.

III. INTRODUCTION TO MISSING DATA

A. Notations

Let n and m be natural integers and let
X 1

1 , . . . ,X 1
n ,X 2

1 , . . . ,Xm
n be n × m random variables

that respectively follow distributions Xj
i , for 1 6 i 6 n and

1 6 j 6 m. Suppose that we have a dataset

D = [[xj
i ]] 1 6 i 6 n

1 6 j 6 m

This dataset D is an instantiation of the random vector
D = (X 1

1 , . . . ,X 1
n ,X 2

1 , . . . ,Xm
n ). This vector D follows the

distribution D = (X1
1, . . . ,X

1
n,X2

1, . . . ,X
m
n ). Let θ be the

parameters of D. Let xj
i be the instantiation of X j

i in D.

Let R = (R1
1, . . . ,R1

n,R2
1, . . . ,Rm

n ) be the random
vector where the random variable Rj

i takes the value 1 if
X j

i is said to be missing and takes the value 0 if X j
i is

observed.
The random vector R follows a distribution named

R = (R1
1, . . . ,R

1
n,R2

1, . . . ,R
m
n ). Let µ be the parameters of

the distribution R.
Let R = [[rj

i ]] 1 6 i 6 n
1 6 j 6 m

be the matrix where rj
i = 0 if X j

i

is observed and 1 if not.
Finally, let O = {xj

i}{(i,j)|rj
i=0} be the part of the dataset

D that will be observed and let H = {xj
i}{(i,j)|rj

i=1} be the
part of the dataset D that will not be observed and

D = {O,H}

Notice that in these notations, the dataset D is a complete
dataset. The variables H are measured in D, but ”forgotten”
because of R variables. Dmeasured = {O,H = missing}
is the ”real” incomplete dataset containing only O.

Our approach will sample D and R from distribution D
and R that are modelled by a Bayesian Network. The output
is Dmeasured which is built by taking only the values xj

i in
D where rj

i = 0.
As a lot of distributions are concerned, assumptions have

to be made to simplify the model, but before, let us describe
the different missing data mechanisms.

B. Missing Data mechanisms

Rubin [1] has highlighted that

P(O,H,R|θ, µ) = P(O,H|θ) · P(R|O,H, µ) (2)

as R does not depend on θ and D does not depend on µ.
we can distinguish three missing data mecanisms

according to the distribution P(R|O,H, µ).

a) MCAR: The data is said to be Missing Completely
At Random. In this case, the missing data is independent
either of the observed ones, and of the others missing data
and P(R|O,H, µ) = P(R|µ) (for instance P(Rj

i = 1) = α,
for all i and j).

b) MAR: If we consider the situation where a data
is not systematically measured for a special configuration
of the other variables then this data is said to be Missing
At Random. Here, the missing data is dependent of the
observed ones, but is independent of the others missing
data, i.e. P(R|O,H, µ) = P(R|O, µ).

c) NMAR: In the last situation, a missing data can
be a consequence of the actual state of any variable and
we can not simplify P(R|O,H, µ). The data is said to be
Not Missing At Random, as it could exists deterministic
mechanisms to empty the dataset. For instance, we can
imagine that variable X can not be measured between times
t and t + T because of a sensor failure. Even if the fact that
the sensor failure is non-deterministic, the fact that data is
missing depends on time and then the dataset should not be
i.i.d any longer.

C. Assumptions for MAR and NMAR situations

Usually, we assume that data are independent and identi-
cally distributed (i.i.d). Samples xj = (xj

1, · · · , xj
n) do not

depend to each other This hypothesis leads to the following
assumption :

A1: ”if j 6= l, random variables X j
i and X l

k

are independent”

Another hypothesis that is often made is the stationnarity.
In other term, we suppose that the sampling distribution
do not vary during the sampling phase. This claim can be
reformulate as



A2: ”For all j, distributions Xj
i are the same”

In the following, we will forgot the ’j’ by calling this unique
distribution Xi and will do the same for variables Xi if the
context is clear.

To be coherent, the same assumptions will be made on
distributions Rj

i as there is no reason that the missingness
mechanism varies over time. This claim implies the two
following assumptions:

A3: ”if j 6= l, random variables Rj
i and Rl

k

are independent”

A4: ”For all j, distributions Rj
i are the same

For the remainder of this paper, we will forgot the ’j’ index
by naming this unique distribution Ri and will do the same
for variables Ri if the context is clear.

As the dataset we want to create is i.i.d, the fact that a data
is missing does not depend on the next of previous values in
the dataset. This claim implies that

A5: ”if j 6= l, random variables X j
i and Rl

k

are independent”

In section VI, some hints will be given to soften some of
these assumptions in NMAR situations.

D. Our general approach

The approach we propose here stands for Bayesian Net-
work formalism. We first assume that we have a generative
model X that can be use to generate a complete dataset. This
model is the bayesian network in the top box of the figure 1.
It only contains variables Xi that are represented by nodes
named Xi using assumption A1 and A2.

We then have to add new variables Ri in this model in
order to indicate if each variable Xi is measured or not. Using
assumptions A3 and A4, we will represent those variables by
nodes named Ri.

The output sample of our approach are the values of nodes
Mi which are evaluated using only Xi’s and Ri’s values.

Not only the way we will connect nodes Ri, Xi and Mi

together will lead us to MCAR or MAR situations but also
the way we create Conditional Probability Tables as we could
include independencies from these tables.

As, for the sample j, variable Mi takes either the value
taken by Xi if Ri = 0 or the value missing if Ri = 1, its
Conditionnal Probability Table (CPT) is known and is

PPPPPPPPXi,Ri

Mi v1 v2 v··· vsi missing

P(Mi|Xi = v1 , Ri = 0) 1 0 0 0 0
P(Mi|Xi = v2 , Ri = 0) 0 1 0 0 0
P(Mi|Xi = v···, Ri = 0) 0 0 1 0 0
P(Mi|Xi = vsi , Ri = 0) 0 0 0 1 0
P(Mi|Xi = v1 , Ri = 1) 0 0 0 0 1
P(Mi|Xi = v2 , Ri = 1) 0 0 0 0 1
P(Mi|Xi = v···, Ri = 1) 0 0 0 0 1
P(Mi|Xi = vsi , Ri = 1) 0 0 0 0 1

(3)

X1 Xi Xn

R1 Rn

1M iM nM

Ri

structurerandom

possible edges

?

?

??

?

?

Fig. 1. Generic Bayesian Network for incomplete Test-Data generation.

where si denote the size of the variable Xi. Notice that using
zero probabilities in CPTs could introduce independencies.
For instance, here, the fact that Mi = missing depend only
on the value 1 for Ri.

The two next sections will describe our modelisation for
MCAR and MAR mechanisms. We will then adapt these
models in order to take into account some NMAR situations.

IV. MCAR MECHANISMS MODELING

A. The model

Methods that have been proposed for MCAR dataset
generation usually remove data for each variable with the
same probability α. We propose here a more general method
where a different ”missing” probability is associated to each
variable.

As P(R|O,H, µ) = P(R|µ) for MCAR mechanisms and
with assumption A3, we have

P(R|µ) =
m∏

j=1

P(Rj
1, · · · ,Rj

n|µ) (4)

but we can’t have a smaller decomposition as independences
between Rj

i , for a given j, are not known. But, with
assumption A4, they do not depend on j.

Then in a MCAR process, we can imagine having rules
such as : ”if Xi is missing then Xk is missing too”.

In a MCAR mechanism, Mi depend on Ri and Xi,
for fixed i, but Ri’s could have interdependencies when i
varies. The way we represent a generic MCAR mechanism
is illustrated in figure 2.

In a first subsection we are going to highlight some
parameters that have to be fixed and how to fix them. Then
we are going to built a simple MCAR mechanism and explain
how it works.

B. Identifying parameters

The only parameter users usually want to specify is the
goal probability of missingness. Let α be that goal. With our



X1 Xi Xn

R1 RnRi

1M iM nM

structurerandom

no edge

possible edges

Fig. 2. Bayesian Network modelization for MCAR mechanism.

notations, we have
E(R) = α (5)

where R =
1

n ·m
∑
i,j

Rj
i .

Then assumptions A3 and A4 give E(R) =
1
n

n∑
i=1

E(R1
i ).

As E(R1
i ) =

∑
r∈{0,1}

r · P(R1
i = r) = P(R1

i = 1), we have

α =
1
n

n∑
i=1

P(R1
i = 1) (6)

In the following, let βi be the probability P(R1
i = 1).

To have an entirely automated (an randomized) method to
compute an incomplete dataset generation process we have to
build the βi’s randomly. To do so, we could gener a random
vector [β1, βn−1] of n − 1 values in [α − ε, α + ε] ⊂ [0, 1]

uniformly around α and then choose βn = n · α−
n−1∑
i=1

βi.

C. A simple example

Suppose we want to create MCAR data and we have the
following assumption (only for this example):
”Random variables Ri and Rk are marginally independent
if i 6= k”.
Then we can represent our dependencies by the Bayesian
Network described figure 2 (but without any link between
the Ri’s).

To fill the a priori probability tables of nodes Ri, we have
to generate the probability vector β = (β1, · · · , βn) with

respect to the constraint given by equation 6: α =
1
n

n∑
i=1

βi.

Then, we simply have to use the result to build tables

P(Ri) = [1− βi , βi] (7)

X1 Xi Xn

R1 RnRi

1M iM nM

structurerandom

no edge

no edge

possible edges

Fig. 3. Bayesian network modelization for MAR mechanism.

D. General situation

In pratice, one could prefer to build more general MCAR
mechanism. In this situation, edges between nodes Ri have
to be created. The model that is schematized by the figure 2
is obtained. The previous method proposed to fill the prob-
ability tables does not work anymore as we have to specify
values for Conditional Probability Tables (CPTs) instead of a
priori probability tables. The methodology used to determine
the CPTs is close to the one presented in section IV-B and
will be presented in section V-B as we also use it in a more
general way for MAR mechanisms.

V. MAR MECHANISMS MODELING

A. The model

For MAR processes, nodes representing the missingness
of a variable can no longer be disconnected from observable
nodes (remember that P(R|O,H, µ) = P(R|O, µ)) as we
could see in figure 3.

Edges between Mi’s and Xi’s are allowed to take into
account the fact that the probability of being missing is no
more independent of the observable part of the system.

Here, we don’t need edges between Ri’s anymore as
dependencies between Ri’s comes from the fact that Ri is
dependent of some Mi’s and that Mi’s are dependent of some
other Ri’s.

With this model, we have to adjust the probability of a
node to be missing with respect to other variable values.
Then we have to fix random values for µ = (µibk)ibk where

µibk = P(R1
i = b|Pa(Ri) = k) (8)

with 1 6 i 6 n, b ∈ {0, 1} and k ∈ Ki where Ki is the set
of possible configurations of Pa(Ri).

As the probability of a node to be missing does not
depend on the unobserved part of the system, some other
constraints on the way to fix the µibk’s have to be made
and we must have
P(Ri = 1|Pa(Ri) = completly missing) = βi and



P(Ri = 1|Pa(Ri) = partially missing) =
= P(Ri = 1|observed part of Pa(Ri))
which is obtained by inference in the bayesian Network.

B. Identifying parameters

Remember that βi = P(Ri = 1), then
βi =

∑
k

P(Ri = 1,Pa(Ri) = k) and the Bayes formula

gives

βi =
∑
k

µi1k · ξik (9)

where ξik = P(Pa(Ri) = k). All the ξ values can be
obtained by inference in the Bayesian Network.

Then we simply have to use a methodology close to the
previous one used to gener βi’s to randomly generate pa-
rameters µi1k with additional verification tests to validate the
supplement constraints explained in the previous paragraph.

Now suppose Ri has only one parent node Mi′ . The
whole conditionnal probability table P(Ri|Pa(Ri)) is then
completly determined by

t
[

µi01 , · · · , µi0k , · · · , µi0si , 1− βi

µi11 , · · · , µi1k , · · · , µi1si , βi

]
where si is the size of the node Xi and µi0k = 1− µi1k.

If Ri has more than one parents, we have to consider that
some µibk must be identical and then, we simply have to
sum the corresponding γik, to factorise, and to use the same
kind of formula.

If the two last recommendations of section V-A are not
checked, we need to model NMAR mechanisms. But there
is a lot of ways to build such mechanisms. Let us give some
hints to built some of them.

VI. NMAR MECHANISMS MODELING

The main problem of NMAR mechanisms is that, in prac-
tice, samples of the dataset are usually no longer i.i.d. The
number of NMAR mechanisms that could lead to pseudo-
real data is infinite as it depends on external factors, so we
are free to imagine all the factors we want.

A first hint to generate NMAR data is modifying the con-
ditional probability densities previously described in MAR or
MCAR situations in order to lost the specific independences
entailed in these densities.

Another solution will be the use of a dynamic bayesian
network [23] to represent data samples that are time depen-
dent, for instance by connecting Ri(t) to Ri(t + 1). With
this solution the fact that a variable is missing will become
a Markov chain.

Another mean could be to introduce one or many new
variables and to build dependencies between Ri and those
variables by drawing new edges on the Bayesian Network.

We could also imagine to mix all this processes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

khi−square values of parameters tested on generated datasets

p
e
rc

e
n
ta

g
e
 o

f 
p
a
ra

m
e
te

rs
 f
o
r 

a
 g

iv
e
n
 k

h
i−

s
q
u
a
re

 v
a
lu

e

Fig. 4. Histogram of χ2 value of parameters tested from generated samples.
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Fig. 5. Zoom of the flat part of Figure.4.

VII. EXPERIMENTATIONS

For the experimentation stage, we have used our formal-
ism to generate datasets from randomly generated Bayesian
networks (between 4 and 13 nodes). Those networks have
been used to gener MAR incomplete datasets with 10000
samples with a percentage of missingness which is randomly
chosen between 15% and 40% (results on MCAR datasets are
similar). Then we pick up different parameters which model
the percentage of missingness of an attribute in a specific
context for each incomplete dataset generative Bayesian
network. We then calculate the χ2 critical value that this
parameter has if we test it on the corresponding generated
dataset.

In figure 4, an histogram of Chi-square values of param-
eters tested on generated datasets is shown.



As we could see on figures 4 and 5, the distribution of
Chi-square values is high for small values (i.e. < 0.05) and
arround 65% of the parameters tested have a Chi-square
value smaller than 0.01.

On figure 5, we could see that arround 0.02% of tested
parameters could have a fixed Chi-square value higher than
0.3. Those values are reach for parameters that lead to a small
number of samples in the datasets. Then the tests are not
reliable in this case as the number of corresponding samples
is often smaller than 20 samples.

VIII. CONCLUSION AND FUTURE WORK

The method we proposed here aims at modelling missing
data processes using Bayesian Network formalism, in order
to automatically create incomplete datasets with different
characteristics. We first used a generative model X to gen-
erate a complete dataset. We then added new variables Ri

and Mi in this model in order to indicate if each variable
Xi is measured or not and to give the value of the measured
variables. The connectivity between variables Ri, Mi and
Xi and a specific form of the corresponding conditional
probability densities lead to MCAR or MAR models. We
also proposed some first hints to adapt these models in order
to take into account some NMAR situations.

For each of the MCAR and MAR models proposed here,
we also described how to randomly generate the parameters
with respect to the global probability of missingness α we
want to reach.

The methodology described here for discrete data genera-
tion can be extended to continuous data by using conditional
gaussian models for X variables, and softmax functions for
P(Ri|Xj ,Rk) conditional probability distributions.

An experimental phase has been done to show the reli-
ability of such a method when we gener MAR incomplete
datasets.

We have implemented all these models in BNT Matlab
toolbox [24] and functions are freely available in the Struc-
ture Learning Package [25]. An application of this work
could be seen in [26] with more than 4300 generated datasets.

We plan to identify some usual NMAR situations and
model those situations with the method proposed here, by
example using Dynamic Bayesian Network formalism to
model a sensor that will have a given lifetime.
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