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Abstract

Depending on the loading conditions on brittle materials, damage can generally not be re-
duced to a simple scalar. Microcrack orientation affects the stiffness in a preferential direction
perpendicular to the crack lips. Taking into account the damage anisotropy in phenomenological
models is a possible option, but the identification of the corresponding models with respect to
damage anisotropy is not an easy task, usually because of the limited number of experimental
results. Handling and performing tensile experiments on damaged samples made of quasi-brittle
heterogeneous material is quite delicate. Then, one can consider virtual testing for the identifi-
cation of specific properties. We propose in the present work such a protocol, based on the use
of discrete element models and codes as a virtual testing machine. Discrete models are based on
a material description at the microscopic scale by an assembly of particles. Cracks (and cracks
orientations) are naturally described by broken connections between particles. After a brief de-
scription of the chosen model, a cross-identification procedure is proposed for the determination
of an hydrostatic sensitivity parameter of an anisotropic damage model. A second application
deals with the description of the evolution of the strength envelope under different isotropic
and anisotropic damage states. These examples show the interest of virtual testing by discrete
modeling for material behavior characterization at fine scale.

Keywords: discrete model; damage; anisotropy; brittle materials; virtual testing

1 Introduction

Damage anisotropy becomes nowadays an important concern for structures durability studies.
A simple calculation of crack density in the material is no more sufficient when dealing with
flow through a cracked wall, or with sliding dissipation under a cyclic loading: one needs to
have access to crack orientation, crack opening. Considering phenomenological model for de-
scribing large scale structure behavior, two main kinds of approaches can be used to deter-
mine crack orientations: a fracture mechanics crack description using XFEM approach for ex-
ample [Moes et al., 1999, Wells and Sluys, 2000], or a tensorial damage mechanics description
[Cordebois and Sidoroff, 1982, Murakami, 1988, Lemaitre and Desmorat, 2005], instead of a sim-
pler scalar (isotropic) damage description. But the parameter identification of such models is
often uneasy because of the lack of experimental results. Performing reliable and reproductive
tests on damage samples made of brittle material is difficult, especially under tensile loading
or more generally under positive hydrostatic stresses. Note that recent experimental measure-
ment devices such as digital image correlation techniques can help to perform such delicate tests
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[Sutton et al., 2000, Fayolle et al., 2007]. An alternative for identification procedure is the con-
cept of “virtual testing” or “cross-identification”, in which a numerical discrete or damage model
is preferred (see for example [Garboczi et al., 2004, Sun et al., 2007, Gonzlez and LLorca, 2007]
for recent applications). Such an approach cannot obviously replace a full experimental process
but it can help for identifying specific properties.

One proposes in this work to use a discrete element model [Cundall and Strack, 1979, Herrmann and Roux, 1990
Schlangen and Van Mier, 1992] as a “virtual testing” machine. The model is based on a Voronoi
particles assembly for describing material microstructure. Material heterogeneity is naturally
taken into account through the mesh randomness, and a non linear material behavior is ob-
tained by considering brittle links between particles. Due to its natural and explicit descrip-
tion of cracks [Bolander and Saito, 1998, D’Addetta et al., 2002, Potyondy and Cundall, 2004,
Delaplace and Ibrahimbegovic, 2006], this kind of model is powerful for describing quasi-brittle
material behavior, in particular under tensile loading.

Once the description of the discrete element model made, one uses the model for the character-
ization of material behavior under anisotropic damage states. A first application is devoted to the
cross-identification of a 3D anisotropic damage model (see [Desmorat and Otin, 2007] for other
damage cross-identification procedures). The strength of the model is that the dissymmetry ten-
sion/compression is due to the loading induced anisotropy so that six parameters (including two
parameters for elasticity) are sufficient to describe both the tension and compression responses of
concrete. The anisotropic damage pattern of microcracks orthogonal to the stress in tension and
parallel to the stress in compression is represented. But one of the parameters introduced, the pa-
rameter η of sensitivity to hydrostatic stresses, is tricky to identify because it only acts on tensile
hydrostatic stresses, or in an equivalent manner on the bulk modulus. The discrete model is then
used to identify this specific parameter. A procedure based on a succession of loading/unloading
tests with increasing damage states is performed on cube samples with different boundary condi-
tions. A second application concerns the evolution of the failure envelope in biaxial tensile loading.
Different studies [Kupfer and Hilsdorf, 1969, Lee et al., 2004] have already proposed an experi-
mental determination of this function but only for an initial undamaged state. Determining the
failure envelope for pre-damaged samples, under isotropic or anisotropic damage, is more difficult.
Again, the discrete model is used opportunely for this purpose. A parallelepiped sample, similar
to the representative volume element tested in the experimental studies, is broken under different
initial damage states. The failure envelope is determined for the different pre-damaged states.

2 Discrete model

In the considered discrete model, the material is described as a Voronoi particles assembly, rep-
resentative of the material heterogeneity. A grid support is used for generated Voronoi particles
nuclei [Moukarzel and Herrmann, 1992] in order to easily control mesh variability and to simplify
the application of boundary conditions. Figure 1 presents two examples of meshes, the first one
in 2D and the second one in 3D. Basically, two kinds of interactions are considered: cohesive and
contact forces. Because our study focuses only on tension loading, we consider next only cohesive
forces.

2.1 Cohesive forces

Interaction between particles is limited to cohesive forces. In 3D, each particle has six degrees of
freedom (three translations and three rotations) and a 12×12 local stiffness matrix is adequate to
represent the complete interaction. Following [Schlangen and Garboczi, 1997, Van Mier et al., 2002],
an Euler-Bernoulli beam matrix is used in the model to connect each pair of neighboring particles
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Figure 1: Example of a 2D mesh (top) and a 3D one (bottom).

i and j. Such matrix depends on four beam parameters: the Young modulus Eb (chosen equal for
all beams), the area Ab

ij, the length ℓbij and the moment of inertia Ib
ij. Mesh geometry fixes two

parameters:

• ℓbij is the distance between the two particle centers,

• Ab
ij is the area of the common facet (a convex polygon for the Voronoi tesselation) of the

two particles i and j.

The two other parameters Eb and Ib
ij are identified from material elastic parameters, the Young

modulus E and the Poisson coefficient ν. Eb is easily identified as it is directly proportional to
E and it has no effect on ν. The moment of inertia can be estimated from the curve plotted
in figure 2: it shows the evolution of ν versus the adimensioned (with respect to the equivalent
circular moment of inertia) moment of inertia α.
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 α

0
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Figure 2: Evolution of elastic material parameter ν with respect to beam parameter α.

2.2 Nonlinear behaviour

Damage evolution of the material is rendered by considering a perfectly elastic behavior for the
beams. The breaking criteria for a beam ij depends on its strain εij and on rotations of both
particles i and j:

Pij =
( εij
εcr

)2

+

(

max(|θi|, |θj |)

θcr

)

≥ 1 (1)
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θi and θj are the maximum rotation value of particles i and j. Parameters εcr and θcr control the
nonlinear evolution of the model. The first variable acts mainly on tensile behavior as the second
one acts on compressive behavior. Identification procedure is the following one:

1. Identify εcr from the material peak stress σt
max in tension (εcr is proportional to σt

max).

2. Identify θcr from the material peak stress in compression σc
max.

Note that for the forthcoming study, we only deal with tension loading and the identification of
parameter θcr is not necessary. The response of the discrete model with parameters identified on
a concrete behaviour is plotted in figure 3, for either tension or compression.

-40 -20 0

 ε (x 10
-4

)

-30

-20

-10

0

σ 
(M

Pa
)

Figure 3: Response of the discrete model in tension and compression (Eb = 45 GPa, α =
0.74, εcr = 1.5 × 10−4 and θcr = 5 × 10−3).

We propose next to use this discrete model as a “virtual testing machine”. The first part is
dedicated to the identification of a parameter of an anisotropic damage model, as the second one
is dedicated to the characterization of the biaxial tensile strength of a damaged material.

3 Identification of a phenomenological model

3.1 Anisotropic damage model

The proposed damage model aims to describe concrete behaviour. It is based on the representation
of damage by a tensorial thermodynamic variable, here a second order tensor [Cordebois and Sidoroff, 1982,
Ladevèze, 1983, Murakami, 1988, Desmorat et al., 2007]. The chosen state potential is continu-
ously differentiable, a key point to ensure 3D stresses-strains continuity even in a non proportional
loading cases. For this model, the Gibbs free enthalpy is split into a deviatoric part and a hydro-
static one [Papa and Taliercio, 1996, Lemaitre et al., 2000]. Using the notation 〈x〉 = max(x, 0)
for the positive part of a scalar, Gibbs free enthalpy reads:

ρψ∗ =
1 + ν

2E
tr

[

(1− D)−1/2
σ

D(1 − D)−1/2
σ

D
]

+
1 − 2ν

6E

[

〈trσ〉2

1 − ηDH
+ 〈−trσ〉2

]

(2)

with E and ν the Young modulus and Poisson ratio of the initially isotropic material, DH = 1

3
trD

and where (·)D denotes the deviatoric part. The parameter η represents the material sensitivity
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to hydrostatic stresses, a parameter closely related to strain localisation [Lemaitre et al., 2000].
Note that the dependence of the hydrostatic part on trD has been shown in a previous study by
using a discrete model [Delaplace and Desmorat, 2008].

The state laws derive from the state potential (2), the elasticity law reading then

ε = ρ
∂ψ∗

∂σ
=

1 + ν

E

[

(1− D)−1/2
σ

D(1 − D)−1/2
]D

+
1 − 2ν

3E

[

〈trσ〉

1 − η
3
trD

− 〈−trσ〉

]

1

(3)

The strain energy release rate density, the thermodynamics force associated with the damage D,
is gained as [Lemaitre and Desmorat, 2005]

Y = ρ
∂ψ∗

∂D
. (4)

Concerning damage, a criterion function f is considered defining the elasticity domain by f < 0
and damage growth by the consistency condition f = 0 and ḟ = 0,

f = ε̂ − κ (trD) (5)

where ε̂ is Mazars equivalent strain [Mazars, 1984, Mazars et al., 1990],

ε̂ =

√

√

√

√

3
∑

I=1

〈εI〉2 =
√

〈ε〉+ : 〈ε〉+ (6)

built from the positive extensions (〈ε〉+ is the positive part of the strain tensor in terms of principal
values). The function κ allowing for modeling both tensile and compressive response of concrete
with a single set of material parameters is:

κ (trD) = a · tan

[

trD

aA
+ arctan

(κ0

a

)

]

(7)

and

κ−1 (trD) = aA

[

arctan

(

ε̂

a

)

− arctan
(κ0

a

)

]

(8)

The interested reader may refer to [Desmorat et al., 2007] for a full description of the model and
for the numerical implemention in both a local and a nonlocal form. The monotonic response of
the model in tension and compression is plotted in figure 4.

A main feature of the model is, as already stated, the reduced number of material parame-
ters introduced to represent the full 3D anisotropic damage evolution, 6 including the elasticity
parameters:

• the elasticity parameters E, ν,

• the damage threshold κ0,

• the damage parameters A, a,

• the parameter of damage sensitivity to hydrostatic stresses η.

The first five parameters can be easily identified from basic experimental tension and compression
tests. On the other hand, last parameter η is more subtle to identify, because it is mainly acting
on triaxial tension states difficult to represent with an experimental setup for brittle materials.
An alternative of experimental tests for these specific identifications is to consider virtual testing
(or a “numerical laboratory”) for which a numerical model representing the microstructure of
the material is used. We propose this alternative by using the discrete model presented above to
identify the η parameter.
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Figure 4: Response of the model in tension and compression (E = 30 GPa, ν = 0.2,
κ0 = 5 × 10−5, a = 3 × 10−4, A = 5 × 103 and η = 1).

3.2 Cross-identification procedure

The identification strategy of parameter η is based on the expression of the damaged -or effective-
bulk modulus:

K̃ =
trσ

3tr ε
(9)

By using expression (3), one has:

K̃ =
E(1 − η

3
trD)

3(1 − 2ν)
= K(1 −

η

3
trD) (10)

where K is the modulus of the virgin material. Considering this last expression, one can pro-
pose the following global procedure, based on a succession of uniaxial and triaxial loading tests
(figure 5):

Figure 5: Boundary conditions for uniaxial (left) and triaxial (right) loading states.

• Perform one elastic uniaxial tension test on a cube.

– Measure E, ν and compute elastic compressibility modulus K = E/(3(1 − 2ν))
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• Perform n-nonlinear tritension tests using the discrete model for different loads q ∈ {1, ..n}.
Proceeds as follows:

1. Apply equally imposed displacements ūq
1

= ūq
2

= ūq
3

on the cube faces and measure the
damage bulk modulus K̃q

2. Unload the specimen

3. Apply three elastic uniaxial loads in the three loading directions x ≡ 1, y ≡ 2, z ≡ 3.

– Measure damaged Young modulus Ẽq
1
, Ẽq

2
and Ẽq

3

– Compute damage values for each direction

1 −Dq
1

=
2(1 + ν)

E
(

5

Ẽq

1

− 1

Ẽq

2

− 1

Ẽq

3

− 1

3K̃q

) ,

1 −Dq
2

=
2(1 + ν)

E
(

− 1

Ẽq

1

+ 5

Ẽq

2

− 1

Ẽq

3

− 1

3K̃q

) ,

1 −Dq
3

=
2(1 + ν)

E
(

− 1

Ẽq

1

− 1

Ẽq

2

+ 5

Ẽq

3

− 1

3K̃q

) ,

– Store the set (K̃q,Dq
1
,Dq

2
,Dq

3
)

• Identify η from the linear relation (10), K̃q/K = (1 − η
3
trDq), q ∈ {1, ..n}.

The identification has been performed on three different samples, with properties presented
in table 1.

sample size number of particles number of dof
8 × 8 × 8 512 3 072

16 × 16 × 16 4 096 24 576
32 × 32 × 32 32 768 196 608

Table 1: Different samples tested for the identification of parameter η.

We present here the tritension responses obtained for the 8-cube sample (figure 6). Stress-
strain curves are plotted for the three directions of loading and, more important, evolution of
the damage moduli Ẽi, i ∈ {x, y, z} are plotted versus DH (upperscripts q corresponding to the
maximum applied displacement are omitted next). Stress-strain responses for 16-cube sample and
32-cube sample are plotted in figure 7.

For successive loading steps, tritension test is stopped and an uniaxial tensile loading is applied
elastically in order to obtain the corresponding damage values Di. Finally, the evolution of the
damages Di versus the effective bulk modulus K̃ is plotted in figure 8. As expected, relationship is
linear emphasing the fact that η can be considered as a material parameter. The best fitted line is
computed and the damage hydrostatic parameter is evaluated from its slope. Finally, parameter
η is successfully evaluated from the three responses of the three samples:

η ≈ 1.2

The corresponding crack patterns obtained at the end of the loading are plotted in figure 9.
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Figure 6: Up: stress-strain responses for the three directions during tri-tension, and bottom:
evolution of stiffnesses Ẽx, Ẽy, Ẽz.
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Figure 7: Up: stress-strain responses for the 16-cube sample, and bottom: for the 32-cube
sample.

4 Failure envelope for anisotropically damaged sam-

ples

The determination of a criterion function f is nowadays necessary for delimiting the elasticity
domain (f < 0) of any plasticity or damage models or to characterize the strength of a material
under multiaxial loading. This function can be obtained by considering different proportional
loading paths and by fixing an offset. For brittle materials, experiments need a particular setup,
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Figure 8: Evolution of damages Di versus K̃ for the 8-cube sample. Bold line is the best
fitted line.

Figure 9: Crack patterns for the three samples (top 8× 8× 8, middle 16× 16× 16, bottom
32 × 32 × 32).

especially for biaxial tension-tension loading in order to avoid unstable failure. An example of
such a setup is given in [Kupfer and Hilsdorf, 1969, Lee et al., 2004]. In these two studies, the
biaxial behavior of concrete is investigated and the criterion functions (for both the elasticity
domain and the strength envelope) are determined for initially undamaged specimen. To our
knowledge no experiments have been done for initially isotropically and anisotropically damaged
samples. This is easily understood considering the difficulty to perform such experiments as for
the determination of the η parameter in previous part, the experimental procedure is based on
the succession of loading (to create an initial (or pre-) damaged state), unloading and reloading
(to extract the ultimate strength) with changing boundary conditions. This can be envisaged for
compression-compression or compression-tension loading cases, but the tension-tension case will
remain difficult to carry out properly. This is why one proposes in this part to perform numerically
such tests. This virtual testing is made with discrete models and one focus on the tension-tension
region.
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4.1 Numerical procedure

We use a 200 mm × 200 mm × 60 mm square plate form for the numerical sample to mimic
the experimental sample used in [Lee et al., 2004]. The number of particles is 20 × 20 × 6=2400,
that corresponds to 14400 dof. We apply different ratios α = f2/f1 where f1 is the applied force
in the x-direction and f2 in the z-direction, with a uniform displacement condition on loading
faces (figure 11). The chosen ratio are α = {0, 0.4, 0.6, 0.8, 1., 1.25, 1.67, 2.5,∞}. In our study
and contrary to the experimental study of [Kupfer and Hilsdorf, 1969] or [Lee et al., 2004], we do
not plot the half part (1 < α < ∞) by symmetry with respect to the other one (0 ≤ α ≤ 1),
considering the potential anisotropy of the damage.

Figure 10: The 20 × 20 × 6-particles sample.

f1

f2

x
z

Figure 11: Boundary conditions for the tension-tension specimen.

4.2 Undamaged failure envelope

The undamaged failure envelope is shown in figure 12. The numerical curve obtained by simu-
lations is compared to the experimental one obtained by [Lee et al., 2004] (the curve obtained
by [Kupfer and Hilsdorf, 1969] is similar). The domain (and the following ones) is presented in a
normalized diagram with respect to the uniaxial tension peak stresses σt0

1 and σt0
2 . As expected,

the domain numerically obtained is in agreement with the experimental one. In both experimental
and numerical cases, it is observed an initial tangent inclination when entering the tension-tension
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region. Note that this inclination, typical of a strain criteria for describing rupture, is rarely rep-
resented by analytical criterion functions.
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Figure 12: Undamaged failure envelope.

The strain-stress relationship for the different ratios is plotted in figure 13. Results are again
really similar to the experimental results of [Lee et al., 2004]. Behavior is quasi-brittle in tension
and the linear relationship is naturally obtained.
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ε
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Figure 13: Stress-strain relationship for different ratios.

The last presented results concern the cracking pattern. Figure 14 shows the different cracks
orientations for three different loading ratios α = f2/f1. Cracks are represented for the discrete
model by the drawing of the associated polygon with each breaking link.
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Figure 14: Cracking pattern obtained for the different loading ratios: α = 0., α = 1.,
α = ∞.

4.2.1 Isotropically damaged failure envelope

We propose in this part to evaluate the evolution of the failure envelope with an initial isotropic
damaged or cracking state. This initial damage is obtained by randomly removing bonds between
particles in the numerical sample:

• From the initial state, a random value ti picked from a uniform distribution between 0 and
1 is ascribed to each bond i.

• For a given threshold tc, a link i is removed if ti > tc.

• Furthermore, to control the orientation of damage, a link i is removed only if the normal vec-
tor ~ni of the corresponding facet (i.e. the common polygon of the two neighboring particles)
verifies ~ni.~x > ~ni.~y or ~ni.~z > ~ni.~y.

Table 2 gives the evolution of the normalized apparent stiffnesses Ex/E
0
x and Ez/E

0
z after bonds

removing for a sample with initial stiffnesses E0
x = E0

z = 30.0 GPa.
Figure 15 shows the evolution of the stiffnesses and the evolution of the peak stresses for a

uniaxial test with respect to the threshold values (tc = txc = tzc).
The evolution of the new failure envelope after pre-damaging is plotted in figure 17. Not

surprisingly, the different envelopes are similar. The main effect is the evolution from an acute
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tc 0.9 0.8 0.7 0.6 0.5 0.4
Ex/E

0
x 0.839 0.674 0.525 0.394 0.286 0.190

Ez/E
0
z 0.844 0.680 0.531 0.412 0.293 0.197

Table 2: Evolution of the effective stiffnesses for different threshold values.
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Figure 15: Up: evolution of the normalized stiffness Ex/E
0
x and Ez/E

0
z and bottom: evo-

lution of the normalized peak stresses σx/σ
t0
x ≡ σ1/σ

t0
1 and σz/σ

t0
z ≡ σ2/σ

t0
2 for initial

isotropic damage.

shape to an (slightly) obtuse one, with a decrease of the bitension peak stress with respect to
the uniaxial one. The initial tangent inclination observed for the undamaged state decreases
and becomes negative at high pre-damage levels. Note the asymmetric shape of some envelopes
due to the non purely isotropic repartition of damage, asymmetry which can not be revealed if
symmetrically conditions are applied to plot the envelope. The failure envelopes normalized to
each damaged peak stress are shown in figure 17. The evolution of the envelope shape is clearly
visible.

4.2.2 Anisotropically damaged failure envelope

In this part, anisotropic pre-damage is considered. We limit our study to initial damage in the
z-direction. We proceed as for the initial isotropic damage, i.e. link i is removed if its associated
random value ti > tzc and if ~ni.~z > ~ni.~x and ~ni.~z > ~ni.~y. Table 3 gives the evolution of the
normalized apparent stiffness Ex/E

0
x and Ez/E

0
z for a sample with initial stiffnesses E0

x = E0
z =

30.0 GPa, and the evolution of the normalized stiffnesses and normalized peak stresses are plotted
in figure 18. Note the small but non null reduction of Ex: removed links are mainly oriented along
z-axis, but the x-component of the normal vector is not null.

Finally, failure envelopes for damage anisotropy is plotted in figure 19. In this normalized dia-
gram, the evolution is similar to the isotropic one. Again, the initial tangent inclination decreases
for direction 2. In a normalized diagram with respect to the damaged uniaxial peak stresses (fig-
ure 20), the envelopes become symmetric with respect to the bisecting line σ1 = σ2 and look like
the envelopes obtained for the initial isotropic damaged states.
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Figure 16: Iso-damaged failure envelopes normalized to undamaged uniaxial peak stresses.
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Figure 17: Iso-damaged failure envelopes normalized to damaged uniaxial peak stresses.

5 Conclusion

We have proposed in this paper the use of a discrete particle model as a complimentary numeri-
cal or virtual testing in conditions where experiments are difficult to perform (multiaxial tensile
loading on quasi-brittle materials, repetition of elastic loading on the same sample but in differ-
ent directions). In particular, the effect of damage anisotropy is investigated. The identification
of a specific parameter of a phenomenological anisotropic damage model has been successfully
performed, noting that the first five parameters of the model are easily identified from classi-
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tzc 0.9 0.7 0.5
Ex/E

0
x 0.979 0.926 0.877

Ez/E
0
z 0.866 0.600 0.392

Table 3: Evolution of the effective stiffness for different threshold values for initial
anisotropic damage.
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Figure 19: Aniso-damaged criterion functions normalized to undamaged uniaxial peak
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Figure 20: Aniso-damaged criterion functions normalized to damaged uniaxial peak stresses.

cal experimental tension-compression tests. The parameter of damage sensitivity to hydrostatic
stresses, η, is gained from a proposed identification procedure, based on a succession of loading
and unloading tension tests with varying boundary conditions. This procedure can not be en-
visaged experimentally for quasi-brittle materials. The parameter is identified to be η ≈ 1.2 for
quasi-brittle materials, value quite different to the values obtained for plastic metallic materials
for which η ∈ [2, 3] [Lemaitre et al., 2000] and which corresponds to a cross-identification with
the discrete model.

One has proposed to characterize the evolution of the failure envelope for different initial dam-
aged (pre-damaged) states. The failure envelope for quasi-brittle material has been experimentally
obtained for brittle material, but only for initial undamaged state. The discrete model allows a
fine control of the initial damage, isotropic or not. After a comparison between experimental and
numerical failure envelopes for undamaged state, we study the evolution of the envelope with
damage evolution. We show that the initial acute shape of the envelope becomes slightly obtuse
one, both for isotropic and anisotropic damaged states.

This first attempt shows the interest of discrete element model for characterizing the multiaxial
tensile strength of initially undamaged or initially damaged materials.
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