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Kinematic analysis of a class of analytic planar 
3-RPR parallel manipulators  

Philippe Wenger and Damien Chablat  

 

Abstract: A class of analytic planar 3-RPR manipulators is analyzed in this paper. 
These manipulators have congruent base and moving platforms and the moving 
platform is rotated of 180 deg about an axis in the plane. The forward kinematics 
is reduced to the solution of a 3rd-degree polynomial and a quadratic equation in 
sequence. The singularities are calculated and plotted in the joint space. The sec-
ond-order singularities (cups points), which play an important role in non-singular 
change of assembly-mode motions, are also analyzed.   

Keywords: Forward kinematics, Singularity, Planar 3-RPR parallel manipulator, 

Analytic manipulator, Cusp point. 

Introduction 

Solving the forward kinematic problem of a parallel manipulator often leads to 
complex equations and non analytic solutions, even when considering planar 3-
DOF parallel manipulators [1]. For these planar manipulators, Hunt showed that 
the forward kinematics admits at most 6 solutions [2] and several authors [3, 4] 
have shown independently that their forward kinematics can be reduced as the so-
lution of a characteristic polynomial of degree 6. Conditions under which the de-
gree of this characteristic polynomial decreases were investigated in [5, 6]. Four 
distinct cases were found, all defining analytic manipulators, namely, (i) manipu-
lators for which two of the joints coincide (ii) manipulators with similar aligned 
platforms (iii) manipulators with non-similar aligned platforms and, (iv) manipula-
tors with similar triangular platforms. In cases (i), (ii) and (iv) the forward kine-
matics was shown to reduce to the solution of two quadratic equations in cascade 
while in case (iii) it was shown to reduce to a cubic and a quadratic equation in 
sequence. More recently, a new class of analytic manipulators was discovered [7]. 
These manipulators have congruent base and moving platforms and the moving 
platform is rotated of 180 deg about an axis in the plane. Contrary to the analytic 
manipulators with similar base and moving platform that are singular in the full (x, 
y) plane for =0, the recently defined analytic ones do not have this non desirable 
feature and, thus, might find industrial applications. Like in case (iii), their for-
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ward kinematics was shown to reduce to the solution of a cubic and a quadratic 
equation in sequence. This paper investigates the kinematics of these analytic ma-
nipulators more in detail, namely, (i) the number of assembly-modes and their re-
partition in the joint space, (ii) the singularity surfaces in the workspace and in the 
joint space, and (iii) the determination and the plot of the second-order singularity 
curves (cusps) in the joint space. 

Description of the analytic manipulator 

Figure 1a shows a general 3-RPR manipulator, constructed by connecting a tri-
angular moving platform to a base with three RPR legs. The actuated joint vari-
ables are the three link lengths 1, 2 and 3. The output variables are the position 
coordinates (x, y) of the operation point P chosen as the attachment point of link 1 
to the platform, and the orientation  of the platform. A reference frame is centred 
at A1 with the xaxis passing through A2. Notation used to define the geometric pa-
rameters of the manipulator is shown in Fig. 1a.  

The forward kinematics of general 3-RPR manipulators, as proposed in [3], is 
first briefly recalled here.  The constraint equations are first set as follows: 

2 2 2
1 x y    (1) 

     2 22
2 2 2 2cos sinx l c y l        (2) 

     2 22
3 3 3 3 3cos sinx l c y l d             (3) 

A system of two linear equations in x and y is first derived by subtracting Eq. 
(1) from Eqs. (2) and (3), thus obtaining a system of the form 

0Rx Sy Q    (4) 

0Ux Vy W    (5) 

where the expressions of R, V, S, Q and W can be found in [3] and [7]. 
If RVSU0, x and y can be solved from Eqs. (4, 5). The 6th-degree characteris-

tic polynomial is then obtained upon substituting the expressions of x and y into 
Eq. (1). When RVSU is equal to zero, however, the inverse kinematics cannot be 
established using the same procedure. The new analytic manipulators were found 
out in [7] by writing conditions under which RVSU is always equal to zero (i.e. 
for any input joint values). These conditions are [7]: 

2 2

3 3

3 3

sin( ) /

cos( )  /

l c

d l

c l





  
 

 (6) 

They means that the base and platform triangles are congruent and, because 
sin( )  is negative, the platform triangle is rotated of 180 deg about an axis in the 
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plane. Figure 1(b) shows an instance of an analytic manipulator satisfying the 
above conditions.   

 

Figure 1: General 3-RPR parallel manipulator (a) and analytic (b) 

Forward kinematics and number of solutions 

To obtain this polynomial, one must write that, in addition to RVSU=0, 
SWVQ=0, or, equivalently, RWUQ=0. Substituting in this equation 
 tan( / 2)t   and the conditions (6) yields the following 3rd-degree characteristic 
polynomial for the analytic manipulators at hand (see [7] for details): 

2 2 2 2 2 3 2 2 2 2
3 1 2 2 3 2 2 3 1 3 3 2 2 2 1

2 2 2 2 2 2 2
3 1 2 3 2 3 2 1 2 3 2 1

( ( 4 4 ) ( )) (8 4 )

( ( ) 4 ) ( ) 0

c c c c c t d c c c t

c c d c c t d

     

     

        

       
 (7) 

Once t is determined from (7), rather than calculating x and y  from (1), (4) and 
(5), it is more convenient to substitute x=1cos(θ) and y=1sin(θ) in equations (4) 
and (5) (where θ is the angle between A1P and the x axis) and to solve one of these 
two equations for θ, which yields up to two values for θ and for (x, y). 

The number of solutions of a general 3-RPR manipulator is fully determined by 
the number of real solutions of its 6th-degree characteristic polynomial. Out of sin-
gularities, this number is 0, 2, 4 or 6. For our analytic manipulators, the number of 
solutions is not uniquely determined by the characteristic polynomial since a 
quadratic equation must be solved in sequence, which may not have real solutions. 
For our analytic manipulator, the number of direct kinematic solutions might be 6, 
4 or 2 (out of singularities), depending on the following situations: 

- 6 solutions whenever (7) has 3 real roots and the quadratic equation admits 
2 real roots for each root of (7);  

- 4 solutions whenever (7) has three real roots and for two of these roots, the 
quadratic equation has two real roots and it has no real roots for the re-
maining root of (7); 

- 2 solutions whenever (7) has only one real root and for this root the quad-
ratic equation has 2 real roots. 

In the following, we analyze the singularity surfaces of our analytic manipula-
tors in the workspace and in the joint space.  
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Singularity surfaces  

In the literature, the singularity surfaces are generally derived in the workspace. 
For a general 3-RPR manipulator, these surfaces are of degree 2 in x and y and of 
degree 4 in t [8, 9]. We now derive the equation of the singularity surfaces in the 
workspace for the analytic manipulators under study, by substituting the condi-
tions (1-3) into the general singularity equation. The equation can be shown to fac-
tor as follows: 

1:      0 f x ty   

 
   

3
3 3 3

2 2 2
3 2 3 3 3 3 3 2 3 3 3

2 :     2

          2 2 2 2 2 0

f c d xd t

c c c d yd t c d c d xd t d y

  

        
 

It is interesting to note that the first factor does not depend on the geometric pa-
rameters of the manipulator. It is linear in x, y and t. The second factor is also lin-
ear in x and y but it is of third order in t. Clearly, the singularities are much sim-
pler than for general manipulators.  Figure 2 shows the plots of the singularity 
surfaces for the analytic manipulator defined by c2 = l2 = 1, c3 = 0, d3 = 1, l3 = 1 and 
 = /2. The surface displayed in red is associated with the first factor (the one 
that is independent of the manipulator geometry).  
 
 
 
 
 
 
 
 
 

Fig. 2 Singularity surfaces in the 
workspace for the analytic manipula-
tor defined by c2 = l2 = 1, c3 = 0, d3 = 
1, l3 = 1 and  = /2. 

 
 

Keeping in mind that the upper and lower sides of the joint space should be 
“glued”, it is apparent that this manipulator has two aspects (singularity-free do-
mains [10]). Since it may have up to 6 assembly-modes, there will be two assem-
bly-modes in one single aspect;, namely, this manipulator can change its assem-
bly-mode without crossing a singularity if the actuated joints are unlimited. In 
fact, we will show in the last section that this feature is true for all analytic ma-
nipulators satisfying conditions (6). 

Singularity surfaces in the joint space 

As shown in [11], it may be useful to determine the singularity locus in the 
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joint space as well as the second-order singularity curves (cusp points) as it makes 
it possible to analyse non-singular assembly-mode changing motions [12-15]. De-
riving the singularity surfaces in the joint space, however, is much more difficult 
as the algebra involved becomes extremely complex for general robots. This is 
why the singularity surfaces were determined only numerically in the past. We 
show here that for the analytic manipulators considered in this paper, the deriva-
tion of the singularity surfaces in the joint space is more tractable. 

The first singularity surface is defined by the characteristic polynomial (7) and 
its derivative with respect to t. Eliminating t from these two equations yields a 8th-
degree polynomial in 1, 2 and 3. Because its expression is rather long, it is not 
reported here but it can be found at http://www.irccyn.ec-
nantes.fr/~chablat/3RPR.html. The remaining singularity surfaces are defined by 
the quadratic equation in x used to calculate the position (x, y) once t is found by 
the characteristic polynomial, and its derivative with respect to x. Eliminating x 
from the quadratic equation and its derivative yields an equation in 1, 2, 3 and t. 
The singularity surfaces in the joint space are then obtained by eliminating t from 
the aforementioned equation and the characteristic polynomial (7). We then obtain 
a factored expression of the form 1 2 3 4 =0KQ Q Q Q , where the Qi’s are quadratics in 
1, 2, 3 and K is a term that never vanishes. Note that we used the resultant 
function of Maple for all eliminations. 

Finally, we come up with five independent singularity surfaces. The first one, 
which is the most complex, is the only surface that may contain second-order sin-
gularity points (cusps). This is because the remaining four surfaces come from a 
quadratic equation that cannot generate triple roots.  

As an illustrative example, we now plot the singularity surfaces for the analytic 
manipulator analyzed in fig. 2. After assigning c2 = l2 = 1, c3 = 0, d3 = 1, l3 = 1 and 
 = /2, the equation of the first singularity surface S takes on the following ex-
pression: 

S:

   
 

 

8 2 6 4 2 2 2 2 2 4
2 1 2 3 1 3 1 1 1 2

2 4 4 2 2 6 4 2
1 3 1 1 3 1 1 2

8 2 6 6 4 4 4 6 2
3 1 3 1 1 3 1 1 3

8 6 2
1 1 1

4 3 2 (20 4 ) 16 44 8 ( 2)

(20 4 ) (8 80 88) 8 24 32

4 3 (16 44 8 ) (24 8 32)

64 16 64 0

         

       

        

  

        

       

       

    

 

The four quadratics take on the following expression: 

Q1: 
2 2 2
2 1 2 1 1 3 3

1 1
2 0

2 2
             

Q2: 
2 2 2
2 1 2 1 1 3 3

1 1
2 0

2 2
             

Q3: 
2 2 2
2 1 2 1 1 3 3

1 1
2 0

2 2
             

Q4: 
2 2 2
2 1 2 1 1 3 3

1 1
2 0

2 2
             
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Figure 3 shows the plots of the five singularity surfaces in a section (1, 3) a of 
the joint space defined by 2=1. The Qi’s form portions of ellipses in the quadrant 
1>0 and 3>0 (correspondence is indicated on the figure). The curve that includes 
cusp points is associated with S. As shown theoretically some years ago [8], the 
joint space is divided into regions (called basic components) where the number of 
assembly-modes is 2, 4 or 6. These regions are separated by the singular surfaces. 
Under the action of the forward kinematics, these regions give rise to several dis-
tinct regions in the workspace (called basic regions [8]), each one being associ-
ated with an assembly-mode. The number of solutions in each region is repre-
sented in Fig. 3 by distinct colours:  green for 2 solutions, red for 6 solutions and 
yellow for 4 solutions.  
 
 
 
 
 
 
 
 
 

Fig. 3 Singularity surfaces in section 2=1 of 
the joint space for the analytic manipulator 
defined by c2 = l2 = 1, c3 = 0, d3 = 1, l3 = 1 
and  = /2. The two cusp points are shown 
with circles. 

1

2

3

3

0 1 2 3



Q

Q2

Q

Q

Second-order singularity curves (cusps) 

The second-order singularities play an important role in non-singular assembly-
mode changing motions: such motions are possible only if the 3-RPR manipulator 
has cusp points in sections of its singularity surfaces in the joint space [12, 14]. 
The 4 analytic manipulators defined in the past (cases (i), (ii), (iii) and (v) recalled 
in the introduction) do not have any cusp points. This is because the polynomials 
involved in their forward kinematics cannot have triple roots. Indeed, manipula-
tors of cases (i), (ii) and (iv) have a characteristic polynomial of degree 2 and in 
case (iii) the cubic was shown to have only two real roots [5].  

Instead, the analytic manipulators studied in this paper can be shown to have 
always cusp points and, thus, they can perform non-singular assembly mode 
changing motions. Let first determine the second-order singularity curves. Con-
trary to general 3-RPR manipulators that do not lend themselves easily to such 
calculations because of the complex algebra involved, the analytic manipulators 
studied in this paper are much simpler to analyze. The second-order singularities 
can be defined by Eq. (7) and its first and second derivatives with respect to t. 
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Combining these three equations and eliminating t and one of the joint variables, 
say 2, makes it possible to determine the projection onto (1, 3) of the second-
order singularity curves. Setting c2=1 without loss of generality and after eliminat-
ing spurious solutions, the resulting equation is a cubic in R3=3

2 shown in Eq. (8) 
below. 

12 d32 2 c3 15 d32 c33 6 d32 2 c32 69
4

d32 c34 27
2

c35 27
4

c36 57
4

d34 c32     



3
2

d34 c3
27
4

d34 6 d34 2 3
2

d32 c32 27
4

c34 15
4

d36 3 d32 4       

 R3

( )  3 d32 c32 3 d34 3 d32 2 6 d32 c3 R32 d32 R33 27 c36 2

4
  

3 c32 d36 57 d34 2 c32

4
6 c3 d36 3 d34 4 6 d32 c35 c36 d32     

 (8) 
69 d32 2 c34

4
3 d32 2 c32

2
8 d32 c33 12 d32 c34 6 d32 4 c3    

3 d32 4 c32 15 d32 2 c33 27 c34 2

4
d32 6 27 c35 2

2
3 d34 c34     

27 d34 2

4
12 d34 c33 3 d34 2 c3

2
12 d34 c32 d38 15 d36 2

4
      0

  
Now, the derivative of this cubic has two roots and one of them can be shown 

to be always positive. For this positive root, the left-hand side of (8) can be shown 
to be also positive. Since, in addition, the coefficient of R33 is negative, the left-
hand side of (8) tends to -∞  when R3→ +∞ .  This shows that the cubic has at 
least one positive root. Thus, the analytic manipulators under study have cusp 
points. In particular, the manipulator analyzed in figs 2 and 3 has two cusp points 
at 2=1 (encircled in Fig. 3), located at (1= 1.73205080, 3=1) and (1= 
1.04789131, 3=2.48920718).  

Conclusions 

This paper was devoted to the kinematic analysis of a family of analytic 3-RPR 
manipulator recently discovered. Their forward kinematics can be solved with a 
cubic and a quadratic equation in sequence. The equation of the singularity sur-
faces were derived both in the workspace and in the joint space. In the workspace, 
the singularity equation was shown to be composed of two factors. One is linear in 
t, x and y and, surprisingly, is independent of the manipulator geometry. The other 
one is linear in x and y and of degree 3 in t. In the joint space, the singularity equa-
tion could be determined symbolically for the first time. It was show to be com-
posed of five factors. One of them is of degree 8 in 1, 2 and 3 and contains the 
cusps. The remaining four factors are quadratics. Finally, the second-order singu-
larity curves were determined and it was shown that, contrary to all other analytic 
manipulators found in the past, the ones analyzed in this paper have always cusp 
point and, thus, can perform non-singular assembly-mode changing motions. 
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