
HAL Id: hal-00412870
https://hal.science/hal-00412870

Submitted on 2 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New trends in collision detection performance
Quentin Avril, Valérie Gouranton, Bruno Arnaldi

To cite this version:
Quentin Avril, Valérie Gouranton, Bruno Arnaldi. New trends in collision detection performance.
VRIC, Apr 2009, Laval, France. pp.53. �hal-00412870�

https://hal.science/hal-00412870
https://hal.archives-ouvertes.fr

New trends in collision detection performance

Quentin Avril, Valérie Gouranton and Bruno Arnaldi
INSA de Rennes – France

INRIA Centre de Rennes – Bretagne Atlantique - France
IRISA, UMR CNRS 6074 – Rennes - France
Université Européenne de Bretagne, France

Email: {quentin.avril, valerie.gouranton, bruno.arnaldi}@irisa.fr

Abstract
Collision detection on industrial digital mock-up is one of the challenging problems for real-
time interaction in virtual reality applications. The fast increase of graphics hardware
performance, multiplication of cores number and recent improvements on their
programmability, bring new directions to the optimisation of collision detection algorithms.
Since few years methods appear handling General-Purpose Processing on Graphics Processing
Unit (GPGPU) and more recently using multi-cores. We present in this survey an analysis on
new trends in collision detection performance and we study the use from GPU to grid for virtual
reality applications. We not only deal with algorithmic improvement but we propose a first
approach on the new link-up between two fields of computer graphics, namely virtual reality
(collision detection) and computers performance.

Keywords: collision detection, performance, parallel computing, scalable, graphics hardware,
GPGPU, clusters, grids

1. Introduction

Industrial applications of virtual reality (VR)
become more and more sized and the performance
level for a real-time interaction of users is no longer
satisfying. From more than thirty years, collision
detection became the principal bottleneck of real-
time VR applications. Collision detection (CD) is a
wide field dealing with, apparently, an easy
problem: determine if two (or several) objects
collide. It is used in several domains namely
physically-based simulation, computer animation,
robotics, mechanical simulations (medical, biology,
cars industry…), haptics applications and video
games. In all of these applications, real-time
performance, efficiency and robustness are more
and more required.
During several years, people work on different
collision detection approaches but recently, few
papers appear dealing with a new type of problem:
speeding up the detection using hardware power
(CPU and GPU) [27, 44].
In the wide range of collision detection algorithms
we can notice that recent articles [11, 22] have a low
complexity and provide perfect collision detection.
But used with million and million of objects in a
huge environment, they are inefficient for a real-
time interaction. We may hope a constant evolution
of processors power to resolve the real-time
problem but trend is no more on that but rather in

the processors multiplication. Hardware graphics is
also subjected to an impressive power evolution. So
it appears that having a different look on the real-
time collision detection problem centred on
hardware performance can not be ignored.
In the following section 2 gives a brief survey on
collision detection algorithms. In section 3 we
describe the hardware and architecture evolution,
followed by software and middleware evolution in
section 4. We present in section 5, a survey on the
new link-up between collision detection and
architecture performance. At the end we expose our
personal point of view on this new link-up.

2. Collision detection

We now expose a short survey on the collision
detection, for more details we refer to excellent
surveys on the topic [24, 30, 32, 46]. Collision
detection has generated a wide range of problems
families: convex or non-convex objects, 2-Body or
N-Body simulations, rigid or deformable objects,
continual or discrete methods. Algorithms are also
linked to geometric used models (polygonal,
Constructive Solid Geometry (CSG), implicit or
parametric functions). All of these problems reveal
the high complexity and difficulty of this field of
study.
Given n moving objects in a virtual environment,
testing all objects pairs tend to perform O(n²)

pairwise checks. When n is large it becomes a
computational bottleneck. Collision detection is,
since Hubbard [23], represented and built as a
pipeline. This one is composed by three parts
namely, broad-phase, narrow-phase and exact-phase
(core-phase). The goal of this pipeline is to apply
successive filters in order to break down the O(n²)
complexity. These filters provide an increasing
efficiency and robustness during the pipeline
traversal. As input, the pipeline takes all the
geometric data of the simulation and feeds in output
the collision response module. Nowadays pipeline
is shared in two phases: broad and narrow phases
(exact phase being included in narrow-phase). The
first part of the pipeline, called the broad-phase, is
in charge of a quick and efficient removal of the
objects pairs that are apparently not in collision. In
the other hand, narrow-phase is in charge of
determining exact collision detection.

2.1 Exact collision detection

The narrow phase constitutes the pairwise tests
within subgroups of potentially colliding objects.
We present important parts of exact collision
detection starting by basic tests between
polyhedrons, following with bounding volumes and
their hierarchies.

2.1.1 Basic tests

In case of polygonal representations, tests are made
on objects primitives. With CSG representations,
tests are made on elementary geometrical objects
(cubes, cones…). Implicit function or parametric
surface representations involve tests with
membership function. We present different
algorithms used to detect collision with polygonal
representation.

Detection between convex polyhedrons

It is easy to imagine that two objects separated by a
plan don’t intersect. Beginning with this
assumption, different methods have been proposed
to compute this separating plan. Some of them use a
vectorial product exploiting temporal coherence or
compute a bounded distance between objects to
build a separating plan [16].
Other methods proposed to determine inter-objects
distance. The most famous one is the GJK
algorithm [15] that uses Minkowski difference on
polyhedrons. A lot of GJK algorithm improvements
have been proposed:
- ‘Enhancing GJK’ [8] uses hill climbing method to
optimize computing time.
- ‘ISA-GJK’ [6] uses data caching to increase
performances and uses a faster method to build
separating plan using temporal coherence.

- MS [26] couples GJK algorithm with Lin-Canny
algorithm.
Lin-Canny approach [33] or Voronoï Marching was
the first algorithm working with objects primitives.
Space around objects is divided in Voronoï regions
that allow detecting closest features pairs between
polyhedrons. The V-Clip algorithm [34] operates on
a pair of polyhedron, defining closest points
between pairs in terms of closest features of the
polyhedron. Another way to compute distance
between objects is to perform pre-computations on
polyhedrons in order to reduce intersection
detection complexity.
It is also possible to compute the interpenetration
between two objects. Several approaches use GJK
algorithm to compute penetration depth [8].
Gregory et al. [20] propose to extend Voronoï
marching method coupling with temporal
coherence. Given direction, depth penetration can
be compute with Dobkin’s hierarchy [12]. The use
of normales space to find translation direction has
been proposed [28]. More recently, a method
detects interpenetration with ray casting [22].

Detection between non-convex polyhedrons

Algorithms described previously are suited for
convex polyhedrons, use it with non-convex objects
and they would do mistakes on the non-collision
detection or collision non-detection.
To avoid expensive computing time, most of
approaches use a bounding volume hierarchy that
allows creating series converging to minimal
distance [25]. Quinlan [38] uses spheres to prune
parts of his models, Sato et al. [41] propose to
couple Quinlan’s spheres-trees with GJK algorithm.
Other methods propose to find a separating plan
with points of one object in the negative side and
points of the other in the positive side [49].
It is also possible to test objects primitives in order
to determine if a vertice of an object is inside
another one or if a segment intersects an object face
[7]. Comparisons on objects triangles [35] or
rectangles are possible.
To compute penetration depth between non-convex
objects, Fisher et al. [14] show that using
Minkowski sum can have a O(n6) complexity.
Dobkin et al. [12] propose a method to compute this
penetration between a non-convex object and a
convex one, but with two non-convex objects,
complexity becomes too high. A trivial approach
consists in separating object into convex parts and
computing penetration between overlapping convex
parts [28]. Distance fields can also be used for the
penetration depth computing [14].

2.1.2 Bounding Volume

Most of strategies use bounding volume hierarchies
to perform collision tests. There are a lot of

bounding volume such as sphere [23], Axis-
Aligned-Bounding-Box AABBs [5], Oriented-
Bounding-Box OBBs [17], discrete oriented
polytopes (k-DOP) [48] or convex hulls. As
explained in [13], many other types of volume have
been suggested as bounding volume namely,
sphere-swept volumes, cones, cylinders, spherical
shells, ellipsoids and zonotopes.
Using bounding volume (BV) to perform tests
before testing the object itself, highly improves
performance. Although tests have been simplified,
to test collision between two objects, the same
pairwise check is still performed. Bounding volume
hierarchies (BVH) allow arranging BV into a tree
hierarchy in order to reduce the number of tests to
perform. An excellent description on these BVH
and a comparison between their performance can be
found in [13, 30]. Construction of these trees is
performed according to three primary categories:
top-down, bottom-up and insertion.
Deformable objects are very challenging for BVH
because hierarchy structures (trees) have to be
updated when an object deforms itself. As trees can
not be updated at each time step, better solutions are
compulsory [5, 46].

2.2 Accelerative steps

Broad-phase algorithms are classified into three
main families [30], namely brute force method with
bounding volumes, spatial hashing and topological
and cinematic methods.

2.2.1 Brute force

Brute force approach is based on comparing
bounding volumes of the overall objects pairs to
determine if they are in collision or not. This test is
very exhaustive because of its O(n²) pairwise
checks.

2.2.2 Spatial partitioning

Spatial hashing method is based on a simple rule:
two objects situated in distant space sides have no
chance to collide during next time step. To divide
space into unit cells several methods have been
proposed: regular grid [36], octree [3], quad-tree,
Binary Space Partitioning (BSP), k-d tree structure
[4] or voxels. Subdivisions made on space can be
independent from the environment [4] and can also
be given by it. This technique is only accurate when
the environment is static (2-body context). It is also
possible to use tetrahedron meshing or use a
constraints set projected on a high-dimensional
space (six dimensions) [9]. Teschner et al. [45]
employ a hash function to compress a potentially
infinite regular spatial grid.

2.2.3 Topology and cinematic

Topology methods are based on the positions of
objects in relation to others. A couple of objects that
are too far one to the other is deleted. One of the
most famous methods is called the “Sweep and
Prune” [10] approach and consists in projecting
objects coordinates on axis. If the projection reveals
an overlapping of objects coordinates, they are
probably in collision and they are then given to
narrow-phase. This method is, in general, used with
bounding volume like AABBs [10] or OBBs [40]
(Figure 1).
On the contrary, the cinematic approach takes care
of the objects movement, if objects are moving
away, they can not collide. Vanecek [47] used
cinematic of the objects and back-face culling
technique to speed up collision detection.

Figure 1: “Sweep and Prune” with oriented-
bounding boxes.

3. Hardware and Architecture
evolution

We now expose the evolution of computer
hardware and architecture that can be used to
improve collision detection. First we start with a
presentation of graphics hardware (GPU) that has
been highly improved those last years. We then
present evolution of CPU from simple-core to
multi-core and many-core. We introduce several
features of the architecture evolution in order to
take care of it during collision detection
optimisation. At last, we briefly present the cluster
and grid architectures, their use and different
problems that can be encountered in performing
real-time collision detection.

3.1 GPU evolution

Recent years have seen the evolution of graphics
hardware from fixed function units toward an
increasingly programmable graphics pipeline.
Contrary to CPU, Graphics Processing Unit (GPU)
has a very important power evolution since few

years (cf. Figure 2). This impressive evolution can
be explained by the way that in one hand, CPU is a
generalist processor (cf. Figure 4) that deals with
ordinary data expressing a high level of
dependencies, several of its components are in
charge of the data stream control while its memory
latency period is hidden by data caching. In the
other hand GPU processors are well-suited to
highly parallelisable computations (cf. Figure 5a). It
deals with independent data so it does not need a
sophisticated data stream control and its memory
latency period is hidden by computations. For
instance, we compare principal graphics cards of
ATI1 and Nvidia2 in 2008 (cf. Figure 2).

ATI Radeon HD 4870

(RV770)
Nvidia GeForce GTX

280 (G200)

800 ALUs = 160 x 5
512Mo Ram(GDDR5)

Bw =115,2Gb/s
1,2 TFlops

240 ALUs + 60 SFU
1024Mo Ram(GDDR3)

141,7 Gb / s
933,12 GFlops

Figure 2: Comparison of recent graphics cards of
Nvidia and ATI.

Figure 3: Comparison of the CPU and GPU
evolution from 2003 to 2007

GPU can be imaged (in the GeForce 8800 version)
as a big computing unit with 16 cells of 8 ALUs
(Arithmetic Logical Unit) handling each one 4
threads. These 16 cells are able to manipulate all
current instructions on 512 threads, with a flow of
256 operations per cycle. GeForce 8800 has been
described as a GPU equipped with 128 processors
allocated to 8 high frequency partitions (1350
MHz).
Bandwidth on GPU is also higher than on CPU [37]
but a fundamental problem of performing
computations on GPU is the bandwidth between

CPU and GPU (only 4 GB/s). A recent solution*
proposes to hide data-transferring time by using
concurrent memory copy (between CPU and GPU)

 – 16-01-2009 - Taiwan
.Y. Schive, T. Chieuh & Y. C. Tsai)

and execution on GPU.
* Workshop on GPU supercomputing
(H

omparison of the architecture of CPU
nd GPU.

.2 CPU evolution

e power

multi-core in collision

/
4 http://www.sun.com

Figure 4: C
a

3

Compared to actual outlook, it seems clear that
Gordon Moore was a lucky man. Since 1965, he
predicts a duplication of the number of transistors
on a microprocessor each two years. During more
than forty years, this guesswork seems exact but we
know now that physical limits (power and heat)
prevent this duplication. Nowadays trend tends to
be duplication of cores (cf. Figure 5b) in computers
and parallel architectures. The first personal
computer with a core-duo arrived in 2005 with
AMD1 followed by Intel3. In 2006 Sun4 presented
its new octo-core called Niagara2. Intel presents last
year a 32 in-order x86 cores [42] and Sun recently
announce 80 cores computer. Another emerging
CPU concept is many-core: the computer
dynamically adapts the number of active cores with
respect to the user needs. Many-core is useful
because when people do not need the entir
of cores, computer turns off some of them.
Until now, 3D objects and virtual environments
grew up in parallel to processor power, so
researchers were continuously looking for
improvements on the collision detection algorithms
in order to increase their precision, robustness and
efficiency [11, 22]. But now, processors power stays
roughly constant while virtual environments are
more and more sized, so new scientific
contributions are not only in the algorithms
improvement but also in the algorithms architecture
modification. As we can not hope a continual
evolution of processors we have now to study what
it is possible to do with
detection algorithms.
Nowadays it is impossible to present CPU without
dealing with central memory handling. Indeed, on a
multi or many cores, there is a very complex cache
handling between cores. This handling is
continously improved to increase computer

1 http://www.amd.com/us-en/
2 http://www.nvidia.com/

3 http://www.intel.com

http://www.amd.com/us-en/
http://www.nvidia.com/

performance. Cache and memory handling is
another point that cannot be ignored in the
optimisation of the collision detection performance.

.3 Clusters and Supercomputers

 that can be

ng maximum of cluster performances

proposed, for
stance: cubes, hypercube or torus.

.4 Grids

resources
anagement because of their volatility.

3

A cluster, imaged as a computer grape, is a
powerful engine with high performance
useful for real-time collision detection.
It is composed by localised machines connected
through a local network (for instance Ethernet or
Giga-Ethernet). In comparison to distributed units
in GPU and multi or many cores in CPU, a cluster,
with a higher scale, can be seen as a many or multi
computers machine (cf. Figure 5c). A survey [39]
has been done on different approaches that have
been developed to use PC clusters for virtual reality
applications. This survey also presents middle-ware
allowing usi
(section 4).
Differences between a cluster and a supercomputer
become very thin because they use same CPUs and
GPUs connected with a high performance network
working on the same Operating System. Contrary to
personal computers, clusters and supercomputers
receive great attention on their communication
architecture. The problem changes when you have
to manage 10, 50, 500 or 2000 nodes. Several
network topologies have been
in

3

A grid computing is an infrastructure composed by
a mass of non-homogenous informatics resources
(PC-clusters, computers, servers, mobiles…). Grid
sites are geographically separated and it is usually
used for huge scientific computations (cf. Figure
5d). A grid is a bit different than clusters and
computers because it is not in the parallel
computing world but rather in the distributed world.
A middleware is integrated into grids in order to
abstract all resources and so to exploit computation
power (processor, memory…). Using a grid can
reveal some more important problems than on
clusters because of the resources volatility, the
access rights and the latency time. Communication
between grid resources is done with optical fibre
and every one knows that its bandwidth physical
limit is light speed. But as optical fibres go through
signals amplifiers, bandwidth is reduced. This speed
reduction has to be taking account into distributed
computation for real-time interaction. Algorithms
that would work on grid have to be more predictive
than detective due to the latency. These algorithms
have also to provide a dynamic
m

Figure 5: Comparison of simplified architectures of
GPU, quad-core, PC-Cluster and grid.

3.5 Conclusion

For any architectural levels from GPU to grid, we
can notice a fractal-like hierarchy (cf. Figure 5). In
this figure, even if architectures schemes have been
obviously simplified, they are still representative. In
all of them, there are several computational units
and a lot of memories and caches units through
communication architectures.

4. Software and Middlewares
evolution

Computer architecture is able to provide high
computational performance. To fully exploit this
power we need well-suited software tools and
middleware. Given that our future goal is not to
propose a new architecture disposition or a new
cache handling, we now focus on available tools
allowing the use of the overall computer power.
We follow the same previous plan to present
middleware from GPU to grid.

4.1 GPGPU

General-purpose Processing on Graphics Processing
Unit is the technique allowing graphics hardware
(GPU) to perform computations traditionally
reserved to CPU. A survey has been published [37]
on GPGPU focusing on a simple presentation of
GPGPU applications.
Using graphics cards in order to increase
mathematical computations is not recent. During
the nineties, some researchers use rasterizer and Z-
Buffer of the graphics cards to accelerate path, for
instance, path finding or Voronoï printing. But
revolution appears in 2003 with evolved shaders
allowing matrix computations on graphics cards.
From this year, a SIGGRAPH5 section is dedicated
to this new computation technique. To handle GPU
in 2003, OpenGL or Direct3D were essential.
Brook was the first C language extension that
allowed using GPU as a co-processor for parallel
computations.
Recently (2007) Nvidia developed a language and a
software called CUDA6 (Compute Unified Device
Architecture) exploiting GPU’s power, using
principles of parallel programming with threads.
This API can be seen as a C language extension and
its assembly language is PTX. As depicted in
Figure 6, CUDA offers two API:

- An high level one : CUDA Runtime
- An low level one : CUDA Driver

The third software layer is a librairies set: CUBLAS
for linear algebra computations and CUFFT for
signal treatment computations.

.

Figure 6: CUDA Architecture.

ATI/AMD develops its own language for graphics
cards, called Brook+. Runtime uses CAL for the
GPU backend. Even if AMD technology is as
efficient as Nvidia’s (or even more), Brook+ is less
used than CUDA, due to a lack of documentation
on it and to a higher difficulty to code solution. In
Figure 7, we present several high level languages
used in GPGU.

Figure 7: Presentation of high level language for
GPGPU

4.2 OpenCL

OpenCL7 (Open Computing Language), performed
by Khronos7, is the first open standard for general-
purpose parallel programming (GPGPU) of
heterogeneous systems. It is analogous to OpenGL
and OpenAL that are open industry standards for
3D graphics. It is a framework for writing programs
executed on heterogeneous platforms (CPUps,
GPUs and other processors). It includes a language
based on C99 that is a modern dialect of C.
Khronos argues that molecular and fluid dynamics
simulations will match very well to GPUs with
OpenCL. The OpenCL 1.0 specifications and

5 http://www.siggraph.org/
6 http://www.nvidia.com/object/cuda_home.html

7 http://www.khronos.org/opencl/

http://en.wikipedia.org/wiki/OpenGL
http://en.wikipedia.org/wiki/OpenAL

header files are available but not the
implementation yet.

4.3 Middleware

In order to have an efficient use of computer or
cluster power, a well-suited middleware is needed.
The goal of a middleware is to give an abstract view
of all hardware components to connect applications
code to run-time infrastructure. In our study, we
focus on grid and cluster middlewares providing a
thin granularity of the architecture to users but
having their own specificities.

Cluster Middleware

The main difficulty of a cluster middleware is first,
to provide an efficient assembling and distribution
of the overall components, and also to keep the
application coherence.
Kerrighed8 is an operating system working on
cluster and providing a unique view of the overall
nodes. It can be compared to a multi-processors
machine with shared memory. FlowVR [1] is a
cluster middleware dedicated to VR applications
and it can also be implemented on a grid
environment. These clusters middlewares provide
both an abstract view and a thin granularity of
resources.

Grid Middleware

To present grid middleware, we take a project
example called XTreemOS9. The main objective of
the XtreemOS project is the design, implementation,
evaluation and distribution of an open source Grid
operating system that can work on a wide range of
platforms, from clusters to mobiles. The system is
installed on each participating machine offering a
single system view and giving the illusion to use a
traditional computer. As we noticed previously,
latency time is an incompressible physical limit, so
even if grid middlewares provide good resources
abstraction, collision detection algorithms have to
be adapted to take into account this latency.
Algorithms have also to provide an efficient
dynamic resources management.

5. Collision detection and new
architectures

Recent years have seen an increasing interest of
performing collision detection algorithms taking
into account computer architecture. We present
three main families of architecture-based
algorithms: GPU, Multi-threads and Multi-cores.

5.1 GPU-based algorithm

Image-based algorithms have been proposed to
exploit the growing computational power of
graphics hardware. GPU is very efficient in
rasterisation of polygons; GPU-based collision
detection algorithms rasterise the objects and
perform either 2D or 2.5-D overlap tests in screen
space [19]. Given several objects meshes, it returns
pairs of objects primitives that are then computed
on the CPU. A good advantage of using graphics
hardware is the un-use of precomputed volumetric
data structures and its use with rigid or deformable
objects. GPU can also be useful to compute
distance fields using a uniform spatial grid [43].
Furthermore, visibility computations can be
performed using occlusion queries and used to
compute both intra- and inter-object collisions
among multiple objects [18].
A technique using image-space have been proposed
and compared to a CPU-based implementation;
results show that GPU accelerates collision
detection in complex environments but CPU-based
methods provides more flexibility and better
performance in small environments [21]. Broad-
phase is also made with GPU using image-space
visibility queries [19].
Cinder [29] is an algorithm exploiting GPU to
implement a ray-casting method to detect collision.
When a ray strikes an edge, a count of the
difference in the number of back-facing and front-
facing polygons lying between the edge point and
the ray’s origin at the viewport is made.
GPU-based algorithms for self-collision and cloth
animation have also been introduced by
Govindaraju et al. [18]. An efficient backward
voxel-based AABB hierarchy method was proposed
to handle deformable surfaces that are highly
compressed using graphics hardware [2].

5.2 Multi-threads based algorithm

Since few years, researchers are working on the
implementation of multithreaded algorithms in
collision detection and more precisely in dynamics
molecular simulation. Lewis et al. [31] propose a
new multithreaded algorithm to simulate planetary
rings. An evaluation of the performance of a
parallelized back-end of the pipeline has been made
by Zachmann [49] and shows that if the
environment density is large compared to the
number of processors, then good speed-ups can be
noticed. This evaluation did not parallelize the other
phases of the pipeline.

5.3 Multi-cores based algorithm

Very recently, few papers appear dealing with new
parallel collision detection algorithms using multi-
cores. Tang & al. [44] propose to use a hierarchical

8 http://www.kerrighed.org/
9 http://www.xtreemos.org/

http://www.kerrighed.org/

representation to accelerate collision detection
queries and an incremental algorithm exploiting
temporal coherence, the overall is distributed
among multiple cores. They obtained a 4X-6X
speed-up on a 8-cores based on several deformable
models. Kim & al [27] propose to use a feature-
based bounding volume hierarchy (BVH) to
improve the performance of continuous collision
detection. They also propose novel task
decomposition methods for their BVH-based
collision detection and dynamic task assignment
methods. They obtained a 7X-8X speed-up using a
8-cores compared to a single-core.

6. Revisited CD pipeline

Trough this survey, it appears that the architecture
of collision detection algorithms needs to be
improved to face real-time interaction. In this way,
we are thinking about reviews of the collision
detection pipeline. We work on a global
parallelisation of the pipeline in order to avoid
starvation of each phase. They would not stop and
run continuously during simulation. Broad-phase is
still pruning un-colliding objects pairs and feeds an
object pairs buffer that is, in the same time, used by
narrow-phase to provide exact tests. This pipeline
can be imagined as a double-buffer with access
control. This parallelised pipeline would adapt itself
on different hardware architectures. For instance
this architecture would provide a very efficient,
robust and fast broad-phase that would work on
several GPUs. Then architecture would provide a
narrow-phase working on multi-cores.
We have designed a novel view of a tri-dimensional
collision detection pipeline (cf. Figure 8). The
sequential pipeline has been revisited as a parallel
pipeline working with broad and exact phase using
buffers. Contrary to sequential pipeline, we propose
to add a third dimension. This new dimension is the
architecture showing that one phase can be done on
GPUs and another on CPUs or one part of phase.
This 3D pipeline might be dimensioned for a cluster
or grid architecture. We also imagine running a
collision detection system on grid, taking into
account latency time. On the overall distributed
machines predictive algorithms would compute
possibly colliding sets of objects and local
machines would compute exact collision.

7. Conclusion

We have presented in this survey new trends in
collision detection performance quest. With the
wide range of available architecture from GPU to
grid, we have shown that developing new models
taking into account computer power is essential to
expect real-time interaction in large-scale
environment. The link-up between virtual reality
and computer performance has to be more and more

studied and reinforced. Future algorithms providing
a real-time interaction have to be performed
through the use of GPGPU, multithreads, multi or
many-cores processors with memory and cache
handling and cluster or grid architecture.

Figure 8: Example of a new tri-dimensional
collision detection pipeline.

References

[1] Jeremie Allard, Valerie Gouranton, Loick Lecointre,
Sebastien Limet, Bruno Raffin, and Sophie Robert.
FlowVR: A middleware for large scale virtual reality
applications, August-September 2004.

[2] George Baciu and Wingo Sai-Keung Wong. Image-
based collision detection for deformable cloth models.
IEEE Trans. Vis. Comput. Graph, 10(6):649–663, 2004.

[3] Srikanth Bandi and Daniel Thalmann. An adaptive
spatial subdivision of the object space for fast collision
detection of animated rigid bodies. Comput. Graph.
Forum, 14(3):259–270, 1995.

[4] Jon Louis Bentley and Jerome H. Friedman. Data
structures for range searching. ACMCS, 11(4):397–409,
1979.

[5] Gino Van Den Bergen. Efficient collision detection of
complex deformable models using aabb trees. J. Graph.
Tools, 2(4):1–13, 1997.

[6] Gino Van Den Bergen. A fast and robust gjk
implementation for collision detection of convex objects.
J. Graph. Tools, 4(2):7–25, 1999.
[7] J. W. Boyse. Interference detection among solids and
surfaces. Communications of the ACM, 22(1):3–9,
January 1979.

[8] Stephen Cameron. Enhancing GJK: Computing
minimum and penetration distances between convex
polyhedra, January 27 1997.

[9] J. Canny. Collision detection for moving polyhedra.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 8:200–209, 1986.

[10] Jonathan D. Cohen, Ming C. Lin, Dinesh Manocha,
and Madhav K. Ponamgi. I-collide: An interactive and
exact collision detection system for large-scale
environments. In SI3D, pages 189–196, 218, 1995.

[11] Daniel S. Coming and Oliver G. Staadt. Velocity-
aligned discrete oriented polytopes for dynamic collision
detection. IEEE Trans. Vis. Comput. Graph, 14(1):1–12,
2008.

[12] Dobkin, Hershberger, Kirkpatrick, and Suri.
Computing the intersection-depth of polyhedra.
ALGRTHMICA: Algorithmica, 9, 1993.

[13] Christer Ericson. Real-time Collision Detection.
Morgan Kaufmann, 2005.

[14] Susan Fisher and Ming C. Lin. Fast penetration
depth estimation for elastic bodies using deformed
distance fields, UNC. July 17 2001.

[15] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A
fast procedure for computing the distance between
complex objects in three-dimensional space. IEEE
Journal of Robotics and Automation, 4:193–203, 1988.

[16] Elmer G. Gilbert and Chong Jin Ong. New distances
for the separation and penetration of objects. In ICRA,
pages 579–586, 1994.

[17] Stefan Gottschalk, Ming Lin, and Dinesh Manocha.
Obbtree: A hierarchical structure for rapid interference
detection. In Proceedings of the ACM Conference on
Computer Graphics, pages 171–180, New York,
August 4–9 1996. ACM.

[18] Naga K. Govindaraju, Ming C. Lin, and Dinesh
Manocha. Fast and reliable collision detection using
graphics processors. In COMPGEOM: Annual ACM
Symposium on Computational Geometry, 2005.
[19] Naga K. Govindaraju, Stephane Redon, Ming C. Lin,
and Dinesh Manocha. Cullide: Interactive collision
detection between complex models in large environments
using graphics hardware. In M. Doggett, W. Heidrich,
W. Mark, and A. Schilling, editors,
SIGGRAPH/Eurographics Workshop on Graphics
Hardware, pages 025–032, San Diego, California, 2003.
Eurographics Association.

[20] Arthur D. Gregory, Ajith Mascarenhas, Stephen A.
Ehmann, Ming C. Lin, and Dinesh Manocha. Six degree-
of-freedom haptic display of polygonal models. In IEEE
Visualization, pages 139–146, 2000.

[21] Bruno Heidelberger, Matthias Teschner, and
Markus H. Gross. Detection of collisions and self-
collisions using image-space techniques. In WSCG, pages
145–152, 2004.

[22] Everton Hermann, Francois Faure, and Bruno
Raffin. Ray-traced collision detection for deformable
bodies. In GRAPP, pages 293–299, 2008.

[23] P. M. Hubbard. Collision detection for interactive
graphics applications. IEEE Transactions on
Visualization and Computer Graphics, 1(3):218–230,
September 1995. ISSN 1077-2626.

[24] Pablo Jiménez, Federico Thomas, and Carme Torras.
3d collision detection: a survey. Computers & Graphics,
25(2):269–285, 2001.

[25] David E. Johnson and Elaine Cohen. A framework
for efficient minimum distance computations. In ICRA,
pages 3678–3684, 1998.

[26] D. d'Aulignac K. Sundaraj and E. Mazer. A new
algorithm for computing minimum distance, October 13
2000.

[27] DukSu Kim, Jea-Pil Heo, and Sung eui Yoon. Pccd:
Parallel continuous collision detection. Technical report,
Dept. of CS, KAIST, 2008.

[28] Young J. Kim, Ming C. Lin, and Dinesh Manocha.
Deep: Dual-space expansion for estimating penetration
depth between convex polytopes. In ICRA, pages 921–
926. IEEE, 2002.

[29] Dave Knott and Dinesh K. Pai. Cinder: Collision and
interference detection in real-time using graphics
hardware. In Graphics Interface, pages 73–80, 2003.

[30] S. Kockara, T. Halic, K. Iqbal, C. Bayrak, and
Richard Rowe. Collision detection: A survey. Systems,
Man and Cybernetics, 2007. ISIC. IEEE International
Conference on, pages 4046–4051, Oct. 2007.

[31] Mark Lewis and Berna L. Massingill. Multithreaded
collision detection in java. In Hamid R. Arabnia, editor,
Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications
& Conference on Real-Time Computing Systems and
Applications (PDPTA'06), volume 1, pages 583–592, Las
Vegas, Nevada, USA, June 2006. CSREA Press.

[32] M. C. Lin and S. Gottschalk. Collision detection
between geometric models: a survey. In Robert Cripps,
editor, Proceedings of the 8th IMA Conference on the
Mathematics of Surfaces (IMA-98), volume VIII of
Mathematics of Surfaces, pages 37–56, Winchester, UK,
September 1998. Information Geometers.

[33] Ming C. Lin and John F. Canny. A fast algorithm for
incremental distance calculation. Technical report, UNC.
March 19 1991.

[34] Brian Mirtich. V-clip: Fast and robust polyhedral
collision detection. ACM Trans. Graph, 17(3):177–208,
1998.

[35] Moller. A fast triangle-triangle intersection test.
JGTOOLS: Journal of Graphics Tools, 2, 1997.

[36] Overmars. Point location in fat subdivisions. IPL:
Information Processing Letters, 44, 1992.

[37] John D. Owens, David Luebke, Naga Govindaraju,
Mark Harris, Jens Krüger, Aaron E. Lefohn, and
Timothy J. Purcell. A survey of general-purpose
computation on graphics hardware. 2007. Warning: the
year was guessed out of the URL.

[38] Sean Quinlan. Efficient distance computation
between non-convex objects. In ICRA, pages 3324–3329,
1994.

[39] Bruno Raffin and Luciano Soares. Pc clusters for
virtual reality. IEEE-VR, pages 215–222, 25-29 March
2006.

[40] Stéphane Redon, Abderrahmane Kheddary, and
Sabine Coquillart. Fast continuous collision detection
between rigid bodies. Computer Graphics Forum,
21(3):279–288, September 2002.

[41] Y. Sato, M. Hirata, T. Maruyama, and Y. Arita.
Efficient collision detection using fast distance-
calculation algorithms for convex and non-convex
objects. In Proc. IEEE Intern. Conf. on Robotics and
Automation (Minneapolis, Minnesota 1996), pages 771–
778. IEEE, 1996.

[42] Larry Seiler, Doug Carmean, Eric Sprangle, Tom
Forsyth, Michael Abrash, Pradeep Dubey, Stephen
Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin,
Roger Espasa, Ed Grochowski, Toni Juan, and Pat
Hanrahan. Larrabee: a many-core x86 architecture for
visual computing. ACM SIGGRAPH'08 Transactions on
Graphics, 27(3), August 2008.

[43] Avneesh Sud, Miguel A. Otaduy, and Dinesh
Manocha. Difi: Fast 3D distance field computation using
graphics hardware. Comput. Graph. Forum, 23(3):557–
566, 2004.

[44] Min Tang, Dinesh Manocha, and Ruofeng Tong.
Multi-core collision detection between deformable
models. In Computers & Graphics, 2008.

[45] M. Teschner, B. Heidelberger, M. Müller,
D. Pomeranets, and M. Gross. Optimized spatial hashing
for collision detection of deformable objects. In T. Ertl,
B. Girod, G. Greiner, H. Niemann, H.-P. Seidel,
E. Steinbach, and R. Westermann, editors, Proceedings of
the Conference on Vision, Modeling and Visualization
2003 (VMV-03), pages 47–54, Berlin, November 19–21
2003. Aka GmbH.

[46] M. Teschner, S. Kimmerle, B. Heidelberger,
G. Zachmann, L. Raghupathi, A. Fuhrmann, M.-P. Cani,
F. Faure, N. Magnenat-Thalmann, W. Strasser, and
P. Volino. Collision detection for deformable objects.
pages 119–140, September 2004.

[47] G. Vanecek, Jr. Back-face culling applied to
collision detection of polyhedra. The Journal of
Visualization and Computer Animation, 5(1), January–
March 1994.

[48] Gabriel Zachmann. Rapid collision detection by
dynamically aligned DOP-trees. pages 90–97, March
1998.

[49] Gabriel Zachmann. Optimizing the collision
detection pipeline. In Proc. of the First International
Game Technology Conference (GTEC), January 2001.s

