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Abstract

A review of the polyspherical approach to the kinetic operators for polyatomic molecules is given.

This approach provides general and correct forms of the kinetic energy operator (KEO) expressed

in terms of curvilinear coordinates. These forms are well adapted to the physical description of

molecular systems and to the numerical methods used to solve the Schrödinger equation. The

approach derives its name, polyspherical, from the fact that the operators are expressed in terms

of spherical coordinates eventually. These kinetic energy operators can be exploited to treat a

large variety of problems such as the calculation of infrared or photo-absorption spectra or the

study of reactive scattering systems. Special emphasis is placed on concrete examples.
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I. INTRODUCTION

During the past years, considerable progress has been made in the field of molecular

quantum dynamics. The domain of applications encompasses broad areas in physics or

chemistry: photo-dissociations or excitations, dissociations of an adsorbate on a metal

surface, intramolecular vibrational energy redistribution and predissociation, infrared

spectroscopy, inelastic surface scattering, molecular reactive scattering, evolution of a

molecular system excited by an ultra-short laser pulse. On the experimental front, decisive

progress, in particular in the field of femto-spectroscopy [1–3] or infra-red/microwave

spectroscopy [4–7], allows the scientists to probe chemical phenomena at an atomic time

scale or to obtain fully resolved spectra of highly excited polyatomic systems. These

ultra-sophisticated experiments require new theoretical tools to interpret, predict and, in

other words, accompany these experimental works.

In addition, it should be emphasized that these molecular processes are generally

impacted to a significant extent by nuclear quantum mechanical effects [8–10] such as

zero-point energy effects or tunnelling of light atoms through barriers (for instance in the

case of electron or proton transfers), transitions due to strong vibronic couplings such as

conical intersections, which seem to play a crucial role in many organic or biological systems.

Several algorithms for solving the Schrödinger equation have thus been developed which

have wide applicability and allow to treat larger systems than in the past. In particular,

one can cite the Multi-Configuration Time Dependent Hartree (MCTDH) [11–20] approach,

the Multimode code [21–25] based on a time independent Vibrational Self-Consistent Field

approach coupled to a Configuration Interaction (CI-VSCF) procedure (see also [26–32] for

other CI-VSCF methods), or the Wave Operator Sorting Algorithm (WOSA) based on the

extraction of an active space within the framework of the Bloch formalism, [33–36].

When solving the Schrödinger equation, the choice of the set of coordinates used to

describe the physical systems is of great importance. First, for a given system treated in

full dimensionality, the convergence of the algorithms that solve the Schrödinger equation

depends on the correlation between the coordinates. More precisely, a set of coordinates

that minimizes the correlation will improve convergence, while a coordinate set that
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introduces strong artificial correlations, i. e. correlations that are entirely due to an

unsuitable choice of coordinates, will slow down convergence. Let us consider an example.

For small amplitude motions around a well defined equilibrium geometry, the vibrations are

often rather harmonic. The well-known normal-mode rectilinear coordinates then make the

Hamiltonian operator almost separable – it is exactly separable for infinitesimal distortions

– and the use of these coordinates will be optimal in a low-energy domain. However, for

more floppy systems exhibiting two or several minima, or at higher excitation energies,

the vibrational amplitudes become larger and the rectilinear normal coordinates cease to

describe the motion in a natural way. This introduces strong artificial correlations. In such

situations, in particular when studying scattering, dissociation, or isomerization problems,

the use of appropriate internal coordinates becomes crucial. In general, curvilinear coordi-

nates, involving angles, are the natural choice, as they usually lead to a more separable and

hence less artificially correlated Hamiltonian operator.

Second, for very large systems, the correspondingly large number of internal coordinates

makes approximations unavoidable. This is true not only for the dynamics, but also,

and above all, for the calculation of the potential operator, i.e. the generation of global

potential energy surfaces, which is restricted to systems with only a few degrees of

freedom. Fortunately, chemical processes can often be described by a limited number of

active degrees of freedom. Under these conditions it is reasonable to invoke simplifying

approximations for the other degrees of freedom. This permits the construction of simple

model Hamiltonians [37–41]. Several general models have been formulated, such as the

reaction surface Hamiltonian [42–45], which makes use of a harmonic approximation locally

defined along one or several reaction coordinates, and the multistate-multimode vibronic

coupling model [46–50] to calculate photoabsorption spectra involving conical intersections.

The choice of the pertinent coordinates is crucial and determined by physical intuition.

It may happen that curvilinear coordinates are the only coordinates that can correctly

describe these chemical processes with a limited number of degrees of freedom. For instance,

several works have proved (i) that the reaction path Hamiltonian may sometimes be far

better described in terms of curvilinear coordinates than of rectilinear coordinates [51, 52];

(ii) that the crossing seam of a conical intersection is, in general, curved [53, 54] and, thus,

that curvilinear coordinates are essential to describe the behavior of the extended seam
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[55, 56].

Unfortunately, the use of curvilinear coordinates often leads to very complicated

expressions of the kinetic energy operator (KEO) [57, 58], which need to be derived

for a particular system [59–66] and are not easy to generalize. This is in contrast to

the rectilinear coordinates, which simplify the mathematical formulation of the same

operator in a systematic way. The problem is not primarily to derive a formula for the

KEO. An algorithmic program such as Mathematica [67] can be used to calculate the

operators analytically. A numerical computation of the action of the kinetic operator is

also possible and several contributions have been put forth in this direction (see, e. g.,

Refs. [68–71]). Consequently, the crucial point is to find a general form of the KEO that

is (i) as compact as possible and (ii) well adapted to the numerical methods used in dynamics.

The polyspherical approach, presented in a series of papers [72–83], accomplishes both

of these requirements. It is a general formulation of the exact KEO of an N -atom system

whose configuration, in the center-of-mass frame, is described by N-1 relative position

vectors. The approach derives its name polyspherical from the fact that the operators

are expressed in terms of spherical coordinates that parametrize the N-1 relative position

vectors eventually.

The polyspherical approach is characterized by the five following properties: (i) it explic-

itly provides rather compact and general expressions of the exact kinetic energy operator

including rotation and Coriolis coupling and avoids the use of differential calculus when

deriving these operators. (ii) Within this approach it is very easy to find a primitive basis

set (e. g. a basis set of spherical harmonics) that discards all singularities that may occur in

the KEO. (iii) General expressions for the KEO are explicitly provided. (iv) There is much

freedom in choosing the underlying set of vectors: they may be of Jacobi, Radau, Valence,

satellite type, or a combination of these. (v) When polyspherical coordinates are used, the

KEO always is separable: i.e. it can be written as a sum of products of monomodal operators.

The purpose of the review is to provide an overview of the polyspherical approach. In

Part II, the polyspherical method is introduced. The background theory is dealt with briefly,

6



before the polyspherical approach is looked at in detail. In Part III, concrete applications

on systems from 4 to 13 atoms are presented: the exact KEOs of these systems involving

all the degrees of freedom derived from the general expressions are given explicitly. Part IV

is devoted to the study of large systems: starting from a limited set of active curvilinear

coordinates, we present a general strategy to obtain the correct KEOs. Several examples

are given for systems such as organometallic complexes or organic molecules involved in

photochemical reactivity.
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II. THE POLYSPHERICAL APPROACH: THEORY

A. Theoretical background

(i) Kinetic energy operators in curvilinear coordinates:

Systems of N particles possess 3N degrees of freedom, of which three can be eliminated by

translational invariance when there is no external field. The reduced system thus obtained

has 3N−3 degrees of freedom, and its configuration can be specified by N -1 relative position

vectors. Hereafter, G will denote the center of mass of the molecular system and the Space-

Fixed (SF) frame will denote the center of mass frame whose origin coincides with G and

whose axes coincide with the axes of the Laboratory-Fixed (LF) frame. The convention

~ = 1 is used everywhere in the present review. Let the configuration of an N -particle

system be described by 3N -3 generalized coordinates qi (i = 1, . . . , 3N − 3), and

xα = xα(q1, . . . , qi, . . . , q3N−3) (α = 1, . . . , 3N − 3) , (1)

be the expression of the SF mass-weighted Cartesian coordinates associated with the N -1

vectors describing the system in terms of the chosen generalized coordinates. (The mass-

weighted coordinates are obtained by multiplying the standard Cartesian coordinates by
√

m, m being the mass of the particle). Coordinates that may be expressed as linear combi-

nations of Cartesian coordinates are called rectilinear, and those that are nonlinear functions

of Cartesian coordinates are called curvilinear. As shown by Podolsky, the expression of the

kinetic energy operator in curvilinear coordinates qi (i = 1, . . . , 3N − 3) is given by the

expression ((−1
2
) times the Laplacian) [57, 58, 84] :

T̂ = −1

2

3N−3
∑

i,j

J−1
e

∂

∂qi
Je Gij

∂

∂qj
, (2)

with

Je = |Det(
∂xα

∂qi
)| , (3)

the absolute value of the Jacobian (in the present review, ’the Jacobian’ stands for the Jaco-

bian determinant, i.e. the determinant of the Jacobian matrix, and not for the matrix itself.

Det denotes the determinant of a matrix) corresponding to the coordinate transformation
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from qi to xα. We assume that Je > 0 except, possibly, on a null set. Gij (i, j = 1, . . . , 3N−3)

in Eq. (2) is given by

Gij =

3N−3
∑

α=1

∂qi

∂xα

∂qj

∂xα
(i, j = 1, . . . , 3N − 3). (4)

In addition, the inverse of G,

g = [gij] = G
−1 = [Gij ]

−1 , (5)

satisfies

gij =
3N−3
∑

α=1

∂xα

∂qi

∂xα

∂qj

(i, j = 1, . . . , 3N − 3). (6)

Eqs. (5,6) come from the fact that Gij and gij are the contravariant and covariant compo-

nents, respectively, of the metric tensor used to measure distances and angles in terms of

curvilinear coordinates qi in the Euclidean space spanned by the mass-weighted Cartesian

coordinates xα. Note, however, that tensor notation is avoided in the present review in order

to simplify the equations. In other words, the matrix elements Gij and gij correspond to gij

and gij , respectively, in tensor notation. It is then straightforward to rewrite equation (2)

as

2T̂ =
3N−3
∑

i,j=1

P̂ †
qi
Gij P̂qj

, (7)

with the momentum operators :

P̂qi
=

1

i

∂

∂qi

, (8)

and their adjoints [58]

P̂ †
qi

=
1

i
J−1

e

∂

∂qi
Je , (9)

which can be rewritten as

P̂ †
qi

= P̂qi
+ Λi ,

Λi = (J−1
e P̂qi

Je) ,

(10)

with Λi, a purely multiplicative operator. The parentheses in Eq. (10) indicate that P̂qi

does not operate beyond the parentheses. In other words,

(J−1
e P̂qi

Je) = −iJ−1
e

∂(Je)

∂qi
. (11)
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Note also that

Je = (|Det(Gij)|)−
1
2 = g− 1

2 . (12)

(ii) Change in the convention of normalization:

The kinetic energy operator of Eqs. (2,7) is correct in case the wave functions are nor-

malized as follows:

∫

Ψ∗Ψdτ = 1 ,

(13)

where

dτ = Je dq1 . . . dq3N−3

(14)

is the usual Euclidean volume element.

Now, if another volume element is used in normalizing the wave-functions, i.e.

dτ ′ = ρ dq1 . . . dq3N−3 ,

(15)

where ρ is an arbitrary weight function (we only assume that ρ ≥ 0 and that, if ρ = 0, it is

only on a null set), the wave function Ψ and the kinetic energy operator are to be replaced

respectively by [58]

Ψ′ = J
1
2
e ρ− 1

2 Ψ , (16)

and

T̂ ′ = J
1
2
e ρ− 1

2 T̂ ρ
1
2 J

− 1
2

e , (17)

so as to preserve the normalization of the wave-functions. The adjoint of the conjugate

momentum P̂qi
becomes
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P̂ † ′

qi
= P̂qi

+ Λ′
i ,

Λ′
i = (ρ−1 P̂qi

ρ) .

(18)

Let us consider an important particular case: the ρ = 1 case. If ρ = 1, Eq. (17) expands

into [58, 85–87]

2T̂ ′ =
3N−3
∑

i,j

P̂qi
Gij P̂qj

+ 2V ′ , (19)

with V ′
D a purely multiplicative operator called ’extra potential term’, which reads

2V ′ = (

3N−3
∑

i,j

J
− 1

2
e P̂qi

Je Gij P̂qj
J
− 1

2
e ) . (20)

(Again, the parentheses in Eq. (20) indicate that P̂qi
and P̂qj

do not operate beyond those).

(iii) Introduction of quasi-momenta:

Now, let us introduce a new set of linear combinations of the P̂qi
(n ≥ 3N − 3):

P̂K =
3N−3
∑

i=1

Ai
K P̂qi

(K = 1, . . . , n) . (21)

The following cases may occur :

(1) there exists a coordinate transformation from qi to some new coordinates QK such that

Ai
K is the ordinary Jacobian matrix :

Ai
K =

∂qi

∂QK
, (22)

so that P̂K is the momentum conjugate to the curvilinear coordinate QK .

(2) no such coordinate transformation exists and the P̂K that cannot be written as momen-

tum conjugates are usually said to be quasi-momenta [58, 81]. The usual angular momentum

component operators introduced in quantum mechanics are a particular case of such opera-

tors.

The KEO can be recast in terms of these new momenta:

2T̂ =

n
∑

K,L=1

P̂ †
K G′

KL P̂L , (23)
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with

P̂ †
K =

3N−3
∑

i=1

P̂ †
qi

Ai
K , (24)

the adjoint of P̂K . The elements of matrix G
′ are functions of the elements of the matrices

G and A:

G = AT
G

′A, (25)

AT denotes the transpose of A.

Let us consider an important particular case: the three BF-components of ~̂J , the total

angular momentum of a molecular system. In order to separate the overall rotation from

the internal deformation, let us introduce a Body-Fixed (BF) frame, {G; ~e xBF , ~e yBF , ~e zBF }.
The BF frame is linked to the system, and its axes ~e xBF , ~e yBF and ~e zBF rotate in a con-

ventional manner when the particles move. The orientation of the BF frame with respect

to the SF frame is determined by three Euler angles: α, β, γ, and, after definition of the

three Euler angles, the shape and the size of the molecules are described by 3N−6 internal

BF coordinates. We have 3N -3 coordinates such as {qi, i = 1, . . . , 3N − 6} correspond to

the 3N−6 internal BF coordinates and q3N−5 = α, q3N−4 = β, and q3N−3 = γ. This sepa-

ration greatly facilitates the construction of the irreducible representations of the rotation

symmetry group, thus reducing the size of the calculations needed to solve the Schrödinger

equation. The three BF-components of ~̂J can be expressed in terms of the three momentum

operators associated with the Euler angles as























ĴxBF

ĴyBF

ĴzBF























= AJ





























1
i

∂
∂α

1
i

∂
∂β

1
i

∂
∂γ





























. (26)

(see Eq. (77), in Section IIC 1 below, for an explicit expression of AJ). The KEO can be

rewritten in terms of the 3N − 6 momentum operators associated with the 3N−6 internal
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BF coordinates and of the three quasi-momenta, ĴxBF , ĴyBF , and ĴzBF :

T̂ =
3N−6
∑

l,m=1

P̂ †
ql
Σqlqm

P̂qm

2
+

3N−6
∑

l=1

∑

α=x,y,z

P̂ †
ql
σqlαĴαBF + ĴαBF σαql

P̂ql

2

+
∑

α=x,y,z

∑

β=x,y,z

ĴαBF ΓαβĴβBF + ĴβBF ΓβαĴαBF

2
.

(27)

The matrices Σ, σ and Γ parametrize the vibrational (T̂vib), Coriolis (T̂cor) and rotational

(T̂rot) parts of the KEO, respectively. (To be rigorous, it is never possible to fully isolate

the different parts of the KEO corresponding to the vibration, the rotation and the Coriolis

coupling. This depends on the coordinate system and the definition of the BF frame. Hence,

there is also some Coriolis coupling in T̂vib and T̂rot. However, we keep this notation for

simplicity). The elements of the matrices σ and Γ depend on the elements of the matrices

G and AJ of Eqs. (7) and (26), respectively. Indeed, we have

G =





1 0

0 AJ
T









Σ σT

σ Γ









1 0

0 AJ



 =





Σ σTAJ

AJ
T σ AJ

TΓAJ



 . (28)

The elements of the matrix Σ are identical to the elements of the matrix G corresponding

to the 3N -6 internal coordinates. In other word, Σqiqj
= Gij, (i, j = 1, . . . , 3N − 6). The

matrix Σ does not depend on the definition of the BF frame.

Let us point out that it is possible to introduce other quasi-momenta, for instance, the

BF-components of the angular momenta associated with the N − 1 relative position vectors

that will appear, in the polyspherical approach, in Section IIB.

Another important ’historical’ case of quasi-momenta are the so-called vibrational mo-

mentum components, π̂α (α = x, y, z), introduced by Watson [88, 89]. They read

π̂α = −i
3N−6
∑

k,l=1

ζα
klQk

∂

∂Ql

, (29)

where Qk are the normal coordinates and ζα
km are Coriolis parameters defined in Ref. [88].

It goes without saying that they are different from the angular momenta introduced in the

polyspherical approach.
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Finally, let us point out that it is also possible to introduce hermitian quasi-momentum

operators by the standard procedure:

P̂ H
K = P̂K + P̂ †

K . (30)

It can be shown (see Chapter 3 in Ref. [58]) that

P̂ H
K = J− 1

2 P̂KJ
1
2 +

1

2
λK , (31)

with

λK =

3N−3
∑

i=1

(P̂qi
Ai

K) , (32)

and that

2T̂ =

n
∑

K,L=1

g
1
4 (P̂ H

K +
1

2
λK)G′

KLg− 1
2 (P̂ H

L − 1

2
λL)g

1
4 . (33)

The latter expression of the KEO is similar to the general expression given by Watson in

Ref. [88, 89]: see, for instance, Eq. (A.23) in Ref. [89]. As explained by Watson the terms

in λK or λL are closely connected with the non-commutativity of the quasi-momenta.

(iv) Derivation of kinetic energy operator:

The derivation of the KEO of Eqs. (7,23,27) is a difficult task. In concrete terms, it is

possible to follow one of two routes: either to obtain the classical kinetic energy expression

and to quantize it [59, 73, 74, 87] or to use the chain rule to transform the space-fixed

Cartesian KEO to derive the new KEO [60, 61, 63–65, 90–93]. Note that the polyspherical

approach uses the first route and this is why we shall start from the classical expression

of the kinetic energy in Sections IIB 1 and IIB 2 and quantize it in a second step. In this

context, Lukka greatly simplified the derivation of KEOs in bond coordinates by suggesting

the use of infinitesimal rotation angles [94]. In the same manner, Pesonen proposed to use

geometric algebra to easily calculate the KEOs [95–97]. However, with the development of

algorithmic programs such as Mathematica, the main problem is no longer the derivation of

the KEO itself but rather the availability of a general expression of the KEO in curvilinear

coordinates that is not too complicated and well adapted to the numerical methods used in
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dynamics. To our knowledge, there are not many available general expressions of the KEO in

curvilinear coordinates: the most famous one is given by the Wilson G matrix formulation

[98, 99] (see also Ref. [100–103] for applications). One can also cite the formulation of

Gu at al. [104, 105] and, finally, the polyspherical approach, which is the subject of the

present review. They all correspond to different parametrizations of the N-body system.

Regarding the polyspherical approach, Chapuisat and Iung [73] were perhaps the first to

adopt this family of coordinates in quantum dynamics in a systematic way. The exact

quantum mechanical formulation was given in a series of papers a little bit later [72, 74–77].

It should also be pointed out that Mladenović has given a very clear presentation of the

equations of the polyspherical formulation in angular momenta [79, 106]. After this brief

presentation of the general background, let us describe the polyspherical approach in detail.

B. Vector parametrization and properties of angular momenta

As aforementioned, in the absence of external fields, it is possible to separate the transla-

tional degrees of freedom from the rest of the kinetic energy and to describe the configuration

of an N -particle system in the SF frame, by N -1 relative position vectors. In all that

follows, we no longer use mass-weighted Cartesian coordinates but, instead, the standard

Cartesian coordinates. In addition, we confine ourselves to studying isolated molecular

systems. Note, however, that if an external field is present or if the molecule is located in

a noble gas matrix or on metal surface, all the results subsequently presented remain true.

One simply has (i) to add one vector more:
−→
OG, O being the center of the Laboratory-Fixed

(LF) frame and G the center of mass of the molecular system, and (ii) to add the ki-

netic energy of the center of mass of the molecular system to the final expression of the KEO.

As said in Sec. IIA, in the polyspherical approach, we start from the classical expression

of the kinetic energy and quantize it afterwards. More precisely, we start with the description

of molecular systems by N -1 vectors. To illustrate such vector parametrization, we consider

two examples in Sec. II B 1. Thereafter, we introduce the angular momenta associated

with these vectors and give a general expression of the KEO in terms of these angular

momenta. The latter are quasi-momenta (see the definition of the quasi-momenta in Section

IIA (iii)), and they may be looked upon as ’intermediates’ in the polyspherical approach.
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FIG. 1: Definition of the three Jacobi vectors for an ABCD system. Here, g1 is the center of mass

of the (AB) subsystem, g2 is the center of mass of the (CD) subsystem.

The introduction of these intermediates allows (i) to obtain a very compact expression of

the KEO whatever the set of vectors. For orthogonal coordinates, this compact expression

is given in Eq. (65) in Sec. II B 2. (ii) It allows to derive a general expression of the KEO

for the family of standard polyspherical coordinates (Eq. (92) in Sec. IIC 1 for orthogonal

coordinates) without using differential calculus. It is also the introduction of the angular

momenta that avoids the use of differential calculus. (iii) It allows to find straightforwardly

a primitive basis set (e. g. the basis set of spherical harmonics associated with the angular

momenta) discarding all singularities that may occur in the KEO. To illustrate our ideas

we will consider in Section IIB 1 a four-atom system, ABCD, first using Jacobi vectors and,

second, using valence vectors.

1. Examples

(i) Jacobi vectors:

Let ~rA, ~rB, ~rC , and ~rD be the position vectors from the center of mass G of the atoms A,B,C

and D (see Fig. 1). Jacobi vectors point from one atomic group center of mass to another

one. In general, the choice of the Jacobi vectors is not unique [107] and several ’clustering’

schemes are possible, one of which is shown in Fig. 1. Thus, we will use the Jacobi vectors

as shown in Figure 1:
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~R1 = ~rB − ~rA, ~R2 = ~rD − ~rC , (34)

~R3 =
mC

mC + mD

~rC +
mD

mC + mD

~rD − mA

mA + mB

~rA − mB

mA + mB

~rB .

Let {G,~exSF , ~eySF , ~ezSF } be an inertial Space-Fixed (SF) frame, where ~eλSF (λ = x, y, z) are

fixed unit vectors. The position vector ~rA, when referred to the SF frame, is given by

~rA =
∑

λ=x,y,z

rA λSF~eλSF , (35)

where rA λSF (λ = x, y, z) are the SF Cartesian coordinates. The velocity vector of the atom

A, with respect to the SF frame, is given by

~̇rA =
∑

λ=x,y,z

ṙA λSF~eλSF , (36)

where the dots denote time-derivatives. Similar relations hold of course for the atoms B,C

and D and the Jacobi vectors. The kinetic energy of the system relative to the center of

mass G, i.e. relative to the SF frame, is given by

2T SF = mA ~̇rA ~̇rA + mB ~̇rB ~̇rB + mC ~̇rC ~̇rC + mD ~̇rD ~̇rD , (37)

and which, in view of Eq. (34), can be rewritten as

2T SF = µ1
~̇R1

~̇R1 + µ2
~̇R2

~̇R2 + µ3
~̇R3

~̇R3 , (38)

with the corresponding ’reduced masses’:

µ1 =
mAmB

mA + mB

, µ2 =
mCmD

mC + mD

, (39)

µ3 =
(mC + mD) (mA + mB)

MT
,

and with MT = mA + mB + mC + mD. Equation (38) shows that the kinetic energy has a

diagonal form, and this is why the Jacobi coordinates are said to be orthogonal coordinates

[108]. In other words, the kinetic energy of a four-atom system, relative to its center of mass,
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can be described as the kinetic energy of three fictitious particles of masses µ1, µ2, and µ3

and of the position vectors ~R1, ~R2, and ~R3. To each vector ~̇Ri (i = 1, 2, 3), it is possible to

associate a conjugate momentum

Pi λSF =
∂L

∂Ṙi λSF

=
∂T SF

∂Ṙi λSF

, λ = x, y, z ; (40)

where L is the Lagrangian of the system. It is also possible to define a partial angular

momentum corresponding to each Jacobi vector:

~LSF
i = ~Ri ×

−→
P SF

i . (41)

This leads to

2T SF =

3
∑

i=1

(
−→
P SF

i )
2

µi
=

3
∑

i=1

P 2
Ri

µi
+

(~LSF
i )

2

µiR2
i

. (42)

Here,

Ri = ||~Ri|| (43)

denotes a vector length and

PRi
= ~Pi · ~eRi

(44)

is a radial momentum

(PRi
=

∂L

∂Ṙi

=
∂T SF

∂Ṙi

). (45)

The momentum ~Pi is given by its radial and angular parts as

~Pi = PRi
~eRi

− ~eRi
× ~Li

Ri

, (46)

where

~eRi
= ~Ri/Ri (47)

denotes a unit vector along ~Ri.

The total angular momentum of the molecular system ABCD is

~J = ~rA × mA~̇rA + ~rB × mB~̇rB + ~rC × mC~̇rC + ~rD × mD~̇rD . (48)
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FIG. 2: Definition of the three valence vectors for an ABCD system.

It is straightforward, but tedious to show that

~J =
∑

i=1,2,3

~LSF
i . (49)

Eq. (49) is true whatever the set of N -1 vectors used to describe the system.

(ii) Valence vectors:

The valence vectors are vectors which join one atom to another one. The choice of the

valence vectors is not unique and we will use the following definitions (see Figure 2) :

~R1 = ~rB − ~rA, ~R2 = ~rC − ~rA, ~R3 = ~rD − ~rA . (50)

Inserting Eq. (50) in Eq. (37) leads to a non-diagonal expression of the kinetic energy :

2T SF =

3
∑

i,j=1

µij
~̇Ri

~̇Rj . (51)

Since the expression of T SF is non-diagonal, the valence coordinates are said to be non-

orthogonal. Again, to each vector ~̇Ri (i = 1, 2, 3), it is possible to associate a conjugate

momentum (Eq. (40)) and to define a corresponding partial angular momentum (Eq.
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(41)). Finally, after having inserted Eq. (50) into Eq. (37) and used Eq. (40), we obtain a

non-diagonal expression of the kinetic energy in terms of the momenta

2T SF =
3
∑

i,j=1

−→
P SF

i Mij
−→
P SF

j , (52)

with the matrix M, which reads

M =











1
mA

+ 1
mB

1
mA

1
mA

1
mA

1
mA

+ 1
mC

1
mA

1
mA

1
mA

1
mA

+ 1
mD











. (53)

2. General formulation

(i) Defining a set of N−1 vectors and the corresponding classical kinetic energy:

Let ~R1, ~R2, . . ., ~RN−1 be any set of vectors chosen for the description of a molecular system.

~R1, ~R2, . . ., ~RN−1 can be orthogonal vectors such as Jacobi vectors (i.e. vectors pointing

from one atomic group center of mass to another one) or Radau vectors (see Sec. IIIA 3

for the definition of the Radau vectors) or non-orthogonal vectors such as valence vectors

joining two atoms. The classical SF kinetic energy can be written as

2T SF =
N−1
∑

i,j=1

−→
P SF

i Mij
−→
P SF

j =
∑

i,j=1,...,N−1

∑

λ=x,y,z

Pi λSF Mij Pj λSF , (54)

where Mij are the elements of the mass matrix M. We often use, mainly for orthogonal

coordinates, the notation

µi =
1

Mii
(55)

for the diagonal elements of the matrix M. µi is called the ’reduced mass’ associated with

the vector ~Ri. To determine M, we introduce a (redundant) set of position vectors, ~r1, ~r2,

. . ., ~rN , where ~ri points from the center of mass G to the position of the i-th atom. The

kinetic energy, relative to the center of mass, is simply given by

2T SF =
∑

i=1,...,N

∑

λ=x,y,z

(pi λSF )2

mi
, (56)
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where ~pi is the conjugate momentum associated with ~ri, and mi the mass of the i-th atom.

Let us now return to a set of (N−1) internal vectors, ~R1, ~R2, . . ., ~RN−1 , chosen to describe

the same N -atom system. Then there exists an (N−1) × N matrix A, which connects the

two sets of coordinates (see Eqs. (34) and (50) for two particular cases of an ABCD system):















~R1

~R2

. . .

~RN−1















= A















~r1

~r2

. . .

~rN















. (57)

The symmetric mass-dependent constant matrix M for the internal set of N − 1 vectors

appearing in the KEO is given by M = Am−1AT where m denotes the diagonal matrix of

particle masses. In this formulation, it is thus very easy to switch from one set of vectors to

another, just by changing the matrix M.

For valence and Jacobi vectors, M can be obtained directly by using the following general

property [73]:

(1) The diagonal element Mii is the inverse of the reduced mass associated with the two

groups of particles whose centers of mass are joined by ~Ri.

For instance, in the case of the ABCD system in the Jacobi vectors of Figure 1, we get

M11 =
1

mA
+

1

mB
=

1

µ1
,

M22 =
1

mC
+

1

mD
=

1

µ2
,

M33 =
1

mA + mB
+

1

mC + mD
=

1

µ3
. (58)

In contrast, using the valence vectors of Figure 2, we obtain

M11 =
1

mA
+

1

mB
,

M22 =
1

mA

+
1

mC

,

M33 =
1

mA

+
1

mD

. (59)

(2) For the off-diagonal elements, Mij is zero for Jacobi vectors and for valence vectors with

no common atom. Otherwise, |Mij| is the inverse of the mass of the atom common to both

~Ri and ~Rj. The sign of Mij is + if the two vectors originate from or point towards the same

atom; it is − in the other case.
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FIG. 3: (AB)CB(EF) system parametrised by five valence vectors.

For instance, in the case of the ABCD system in Jacobi vectors of Figure 1, all the

off-diagonal elements are equal to zero, while for the valence vectors described in Figure 2,

we obtain M12 = M13 = M23 = + 1
mA

.

Let us give a final example: in the case of an (AB)CB(EF) system parametrized by five

valence vectors as depicted in Figure 3, the matrix M can be obtained using the previous

result without any calculation:

M =





















1
mA

+ 1
mC

+ 1
mC

0 0 + 1
mC

+ 1
mC

1
mB

+ 1
mC

0 0 + 1
mC

0 0 1
mD

+ 1
mE

+ 1
mD

− 1
mD

0 0 + 1
mD

1
mD

+ 1
mF

− 1
mD

+ 1
mC

+ 1
mC

− 1
mD

− 1
mD

1
mC

+ 1
mD





















. (60)

In the general case, one should calculate the matrix A and derive the matrix M from it.

(ii) Introduction of the Body-Fixed frame and quantization:

In order to separate the overall rotation from the internal deformation, let us now introduce
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a Body-Fixed (BF) frame, {G; ~e xBF , ~e yBF , ~e zBF }. Its orientation with respect to the SF

frame is determined by three Euler angles: α, β, γ. After definition of the three Euler angles,

the shape and the size of the molecules are described by 3N−6 internal BF coordinates. At

this level, the exact definition of the BF frame is not yet specified (and not necessary), but

the classical kinetic energy can already be recast as follows:

2T SF =
∑

i,j=1,...,N−1

∑

λ=x,y,z

Pi λBF Mij Pj λBF , (61)

where Pi λBF are the Cartesian components of the SF (and not BF! see below) conjugate

momenta in the BF frame [81], or in other words, the projections of the SF conjugate

momenta onto the BF-axes:

~Pi = Pi xBF ~e xBF + Pi yBF ~e yBF + Pi zBF ~e zBF . (62)

According to Refs. [58, 81], the exact quantum mechanical counterpart of Eq. (61) is given

by:

2T̂ =
∑

i,j=1,...,N−1

∑

λ=x,y,z

P̂ †
i λBF MijP̂j λBF . (63)

where the adjoint P̂ †
i λBF is given by Eq. (9).

(iii) Introduction of the Body-Fixed projections of the angular momenta associated with

the N-1 vectors

It should be clear that the kinetic energy operator will always be the Space-Fixed one, and

not the Body-Fixed kinetic energy, even after introduction of the BF frame. Furthermore,

the quantum mechanical counterpart of Eq. (46) is given by

~̂Pi = P̂Ri
~ei −

~ei × ~̂Li

Ri
. (64)

After the introduction of a BF frame, projections of the angular momenta onto BF axes

will be used. For instance, in the special case of orthogonal vectors, Eq. (63) yields (here,

µi = 1
Mii

):

2T̂ =
N−1
∑

i=1

P̂ †
Ri

P̂Ri

µi

+
(~̂L†

i · ~̂Li)BF

µiR
2
i

. (65)

If the set of vectors is non-orthogonal, the structure of the kinetic energy operator is more

complex (with crossing terms between the radial and angular momenta proportional to
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the masses Mij , with i 6= j : see Appendix B). At this level, we have already a general

formulation of the kinetic energy operator for any set of vectors expressed in terms of the

BF projections of the momenta associated with these vectors. The 3N − 3 BF-projections

of the angular momenta are quasi-momenta and Eq. (65) appears as a particular case of

Eq. (23) of section IIA.

Let us explain why it is necessary to introduce the BF projections of the momenta when

making a change of coordinates to separate the overall rotation from the internal vibrations.

The action of SF-components of the angular momenta on the primitive basis functions

expressed in BF coordinates is very complicated, whereas the action of the BF-components

onto the primitive basis functions expressed in BF coordinates is rather simple, see, e. g.,

the action of the KEO onto a basis set of spherical harmonics of BF spherical coordinates

discussed in Sec. IIC 1 below. As BF coordinates are needed to separate the overall rotation

from the internal vibrations, it becomes necessary to express the KEO in terms of BF-

components of momenta and angular momenta as in Eqs. (63, 65), rather than in terms of

the SF-components.

It is to be emphasized again that angular momenta that will appear in the kinetic energy

operators (such as in Eq. (65)) are all computed in the SF frame, but are projected onto the

axes of several frames (e. g. the BF frame in Eq. (65)):











L̂i xBF

L̂i yBF

L̂i zBF











= RT (α, β, γ)











L̂i xSF

L̂i ySF

L̂i zSF











, (66)

where R(α, β, γ) is the Euler rotation matrix [109] (see Eq. (70) below for the explicit

expression of this matrix). As aforementioned, the introduction of these projections is nec-

essary when using the BF coordinates, but raises a new technical problem. The projections

of the angular momenta onto the SF-axes satisfy the usual commutation relations, and their

action onto a basis set of spherical harmonics in terms of the SF spherical coordinates is well

known (see for instance Ref. [109]). However, the projections of the same angular momenta

onto the axes of a moving frame may satisfy anomalous, non-definite commutation relations

[81]. Luckily, this problem does not occur for all angular momenta. If a vector is not in-

volved in the definition of a frame F (see Section IIC 1 (i) to understand what we exactly
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mean by ’a vector involved in the definition of a frame’), the expression for the projection of

the corresponding angular momentum onto the F-axes expressed in the coordinates in this

frame is identical to the usual one in an SF frame [58]. For instance, if one vector ~Rj is

not involved in the definition of the BF frame, the projections of ~Lj onto the BF-axes and

expressed in terms of the BF-Cartesian coordinates are given by:























L̂j xBF

L̂j yBF

L̂j zBF























=























Rj xBF

Rj yBF

Rj zBF























×

























1
i

∂
∂R

j xBF

1
i

∂
∂R

j yBF

1
i

∂
∂R

j zBF

























. (67)

This expression is identical to the expression of the projections of an angular momentum

onto the SF-axes in terms of SF coordinates. The origin of this property is explained in

Appendix A. It is easy to verify that the usual commutation relations,

[L̂j λBF , L̂j νBF ] = i
∑

ρ

ǫλνρL̂j ρBF , (68)

are satisfied, where ǫ denotes the well-known totally antisymmetric tensor, i.e. ǫλνρ = 1

(ǫλνρ = −1) if {λνρ} is an even (odd) permutation of {xyz}, and zero otherwise. This

property (especially Eq. (67)) is remarkable and very helpful, since combined with the

previous vector parametrization of N -atom systems, it will allow us to derive kinetic energy

operators in a compact and general form with no need to use differential calculus.

C. A general expression of the KEO in standard polyspherical coordinates

Until now, we have described an N -particle system by a set of N -1 vectors and provided

the expression of the KEO in terms of the conjugate momenta associated with these vectors.

We have explained in Sec. II B 2 (i) how to switch from one set of vectors to another one.

Thereafter, we have introduced the BF projections of the angular momenta associated with

the N -1 vectors in Sec. II B 2 (ii) and brought out some general properties regarding these

projections in Sec. II B 2 (iii). All of this constitutes a framework that makes possible to

derive a general expression of the KEO in terms of the spherical coordinates that parametrize

the vectors in the BF frame whose precise definition must be given now.
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1. Expression in angular momenta

FIG. 4: Definition of the E2 Frame and of the first two Euler angles.

(i) Definition of the BF frame: Fig. 4, 5, and 6.

The orientation of the BF frame with respect to the SF frame is determined by the Euler

angles α, β, γ. There are numerous ways of specifying Euler angles. The one chosen here is

that of Biedenharn and Louck [110] where α and β are the ordinary spherical coordinates

of the ~e BF
z vector in the SF system and γ is an angle measuring a clockwise rotation about

~e BF
z . To be very precise, it means that, for a given vector ~R, the relation between SF and

BF components of this vector is given by











RxSF

RySF

RzSF











= R(α, β, γ)











RxBF

RyBF

RzBF











, (69)

with R(α, β, γ) the Euler rotation matrix, which takes the following form in the convention

of Biedenharn and Louck [110] (see also Ref. [109]):
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FIG. 5: Definition of the BF frame and of the third angle.

R(α, β, γ) = Dz(α) × Dy(β) × Dz(γ)

=











cos α − sin α 0

sin α cos α 0

0 0 1











×











cos β 0 sin β

0 1 0

− sin β 0 cos β











×











cos γ − sin γ 0

sin γ cos γ 0

0 0 1











. (70)

Throughout this Section, a very particular definition of the BF frame is used:

(1) Let {G; ~e xE1 , ~e yE1 , ~e zE1} be the E1 frame resulting from the first Euler rotation, i.e.

whose origin coincides with G, where ~e zE1 = ~e zSF and where ~e xE1 and ~e yE1 are obtained

by a rotation through the angle α about ~e zE1 .

(2) Let {G; ~e xE2 , ~e yE2 , ~e zE2} be the E2 frame resulting from the first two Euler rotations,

where ~e yE2 = ~e yE1 and where ~e xE2 and ~e zE2 are obtained by a rotation through the angle

β about ~e yE2 (see Fig. 4 and 6).

(3) Let {G; ~e xE3 , ~e yE3 , ~e zE3} = {G; ~e xBF , ~e yBF , ~e zBF } be the E3 or BF frame, i.e. the

frame resulting from the three Euler rotations, where ~e zE3 = ~e zE2 , and where ~e xE3 and

~e yE3 are obtained by a rotation through the angle γ about ~e zE2 .
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(4)The Euler angles are chosen such that the BF or E3 frame is oriented in a way that

~e zBF = ~e zE2 is parallel to the vector ~RN−1 and that ~RN−2, ~e xBF and ~e zBF lie in the same

half-plane (see Figs. 5 and 6).
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FIG. 6: Definition of the BF frame and of the three Euler angles. The E2 Frame is the frame

obtained after the first two Euler rotations.

We have thus chosen a very specific definition of the BF frame (note, however, that the

choice of the set of vectors remains free). It is important to notice that this definition of

the BF frame has an important advantage: only two vectors are involved in this definition

of the BF frame. This property will greatly simplify the quantum mechanical expression

of the kinetic energy operator. Indeed, as outlined in Sec. II B 2 (iii), the expressions for

the angular momenta associated with the N−3 remaining vectors are the usual ones when

projected onto the BF-axes and expressed in terms of BF-coordinates. It should be pointed

out that this is very different from the Eckart frame [111], which minimizes the Coriolis

coupling. The definition of this latter frame, however, depends on all vectors rather than

on two. Consequently, using the Eckart frame in general leads to a much more complex

expression of the KEO. This is particularly true for the part of the KEO containing the

Coriolis coupling whose expression directly depends upon the definition of the BF frame.

On the other hand, the KEO for J = 0 is independent of the definition of the BF frame

(see IIA (iii)).

Generally speaking, it is advantageous to choose the vector ~RN−1 (that defines the zBF
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axis) such that its ’reduced mass’,

µN−1 =
1

MN−1N−1
(71)

in Eqs. (54,63,65), is larger than the reduced masses associated with the other vectors (µi,

i = 1, . . . , N−2). Indeed, we shall see later that the part of the KEO containing the Coriolis

coupling is proportional to
1

µN−1

= MN−1N−1. (72)

If it is possible to find such a vector, one reduces the Coriolis coupling without resorting

to a very complex expression of the KEO. It is when such a vector cannot be found that

changing the definition of the BF frame might be appropriate. In the present review, we

do not want to tackle the subject of how to change this definition, and we simply refer the

reader to the article of Wang and Carrington [112], which deals with this issue (see also

Ref. [113] and Sec. IVC3 (ii) for examples).

(ii) Polyspherical parametrization.

Until now, we have not defined the 3N -6 internal coordinates that describe the deformations

of the molecular systems. Let us now parametrize the vectors by spherical coordinates called

the ’polyspherical coordinates’. The spherical coordinates in a given frame F are defined as

Ri xF = Ri sin θF
i cos ϕF

i , Ri yF = Ri sin θF
i sin ϕF

i , Ri zF = Ri cos θF
i ,

with 0 ≤ θF
i ≤ π and 0 ≤ ϕF

i < 2π. The parametrization of the standard polyspherical type

consists of three Euler angles for the overall rotation of the BF frame and 3N−6 internal

coordinates. With our definition of the BF frame, it is clear that the first two Euler angles

simply are the two spherical angles of ~RN−1 in the SF frame, α = ϕSF
N−1 and β = θSF

N−1. The

third Euler angle is given by γ = ϕE2
N−2. The other 3N−6 coordinates are the BF spherical

coordinates, i. e. the N−1 vector lengths Ri ∈ [0,∞), N−2 (BF) planar angles θBF
i ∈ [0, π]

between the vectors ~RN−1 and ~Ri, and N−3 (BF) dihedral angles ϕBF
i ∈ [0, 2π) between

the two vectors ~Ri, ~RN−2 around the vector ~RN−1. They are depicted in Figure 7. If an

Euclidean convention of normalization is used [58], the volume element reads

dτ = R2
N−1 sin β dRN−1dα dβ R2

N−2 sin θBF
N−2 dRN−2 dγ dθBF

N−2

×
N−3
∏

i=1

R2
i sin θBF

i dRi dϕBF
i dθBF

i , (73)
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i.e. it is the usual Euclidean volume element:

dτ = Je dRN−1 dα dβ dRN−2 dγ dθBF
N−2

N−3
∏

i=1

dRi dϕBF
i dθBF

i , (74)

where Je is the absolute value of the Jacobian (see Eq. (3)) corresponding to the coordinate

transformation from the Cartesian coordinates to the polyspherical coordinates.

FIG. 7: Definition of the standard polyspherical coordinates: the N−1 vector lengths Ri ∈ [0,∞),

N−2 (BF) planar angles θBF
i ∈ [0, π], and N−3 (BF) dihedral angles ϕBF

i ∈ [0, 2π).

(iii) Properties of the BF-projections of the angular momenta.

In the expression of the kinetic energy operator in Eq. (65), N−1 angular momenta appear

(the same is true for non-orthogonal coordinates). Since only ~RN−1 and ~RN−2 are involved

in the definition of the BF frame, the projections of all the N -3 angular momenta ~̂L1, . . .,
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~̂LN−3 onto the BF axes are regular. They are characterized by the usual formula [109, 110]






















L̂i xBF

L̂i yBF

L̂i zBF























=























− sin ϕBF
i −cos ϕBF

i cot θBF
i

cos ϕBF
i −sin ϕBF

i cot θBF
i

0 1

































1
i

∂
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i

1
i

∂
∂ϕBF

i











. (75)

Hence, they obey the usual commutation relations and are self-adjoint.

Now, what about the two last angular momenta, ~̂LN−1 and ~̂LN−2? First, it is trivial to elim-

inate ~̂LN−1 by substituting ~̂LN−1 with ~̂J−
∑N−2

i=1
~̂Li where ~̂J is the total angular momentum,

which is a constant of motion when no external field is present. Considering the particular

case of orthogonal vectors, one can recast Eq. (65) as

2T̂ =
N−1
∑

i=1

P̂ †
R iP̂R i

µi
+

N−2
∑

i=1

(~̂L†
i · ~̂Li)BF

µiR2
i

+
(( ~̂J† −

∑N−2
i=1

~̂L†
i) · ( ~̂J −

∑N−2
i=1

~̂Li))BF

µN−1R2
N−1

. (76)

The expression of the BF-projections of the total angular momentum in terms of the Euler

angles is well-known [109, 110, 114]:
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∂
∂γ
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, (77)

and we obtain [ĴλBF , ĴνBF ] = − i
∑

ρ ǫλνρĴρBF , which are the well-known anomalous com-

mutation relations [114]. It is also worth noting that all the components are self-adjoint.

Now, what about the angular momentum ~̂LN−2 associated with ~RN−2? Since ~RN−2 is in-

volved in the definition of the BF frame, nothing can be said a priori about the properties

of the projections of ~̂LN−2 onto the BF-axes. When such a case occurs, one proceeds as

follows. One starts with the projections of the same angular momentum but onto another

frame. Here, it is judicious to start with the projections of ~̂LN−2 onto the E2-axes, because

~RN−2 is not used when defining the E2 frame. (We recall that the E2 frame is the frame

resulting from the first two Euler rotations only, see Fig. 4). Indeed, ~RN−2 is needed only
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for defining the third Euler angle. Consequently, the E2-components of ~̂LN−2 have a regular

form

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

.

(78)

These components obey the usual commutation relations and are self-adjoint. The BF-

projections of ~̂LN−2 are obtained by rotating the E2-projections of ~̂LN−2 through the angle

ϕE2
N−2 = γ around the zE2 axis
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. (79)

A final change of coordinates is then performed

γ = ϕE2
N−2 , (80)

θBF
N−2 = θE2

N−2 ,

θBF
i = θE2

i , i = 1, . . . , N − 3 ,

ϕBF
i = ϕE2

i − ϕE2
N−2, i = 1, . . . , N − 3 .

Applying the chain rule to ∂

∂θ
E2
N−2

and ∂

∂ϕ
E2
N−2

, gives respectively

∂

∂θE2
N−2

=
∂

∂θBF
N−2

, (81)

∂

∂ϕE2
N−2

=
∂

∂γ
−

N−3
∑

i=1

∂

∂ϕBF
i

.
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Inserting these relations into Eq. (79), we obtain
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i. e.
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− cot θBF
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∂θBF
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which satisfy non-definite commutation relations

[

L̂N−2 xBF , L̂N−2 yBF

]

=
1

(sin θBF
N−2)

2 (
∂

∂γ
−

N−3
∑

i=1

∂

∂ϕBF
i

) ,

[

L̂N−2 yBF , L̂N−2 zBF

]

= 0 , (84)

[

L̂N−2 zBF , L̂N−2 xBF

]

= 0 .

The y-BF component of ~̂LN−2 is not Hermitian and its adjoint, ~̂L†
N−2, is given by the

following equation

(~̂LN−2)
† = ~̂LN−2 +











0

i cot θBF
N−2

0











. (85)

We have used Eqs. (10,73) to obtain Eq. (85).

Two points must be addressed here: (1) the BF components of ~̂LN−2 do not com-

mute with those of the other angular momenta (see Eq. (83): L̂N−2 xBF and L̂N−2 zBF

depend upon ĴzBF and L̂izBF (i = 1, . . . , N − 3) so that they do not commute with ĴλBF ,

L̂iλBF (i = 1, . . . , N − 3), λ = x, y), (2) the fact that we have used an intermediate frame
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(the E2 frame here) to determine the projections of ~̂LN−2 onto the BF-axes is of general

character and can be used to determine the projections of other angular momenta with a

non-regular behavior.

(iv) General expression of the KEO in polyspherical coordinates.

If we keep in mind that ~̂LN−2 has a particular behavior, we can establish that [74, 76]:

~̂L†
N−1

~̂LN−1 =

(

( ~̂J† −
N−2
∑

i=1

~̂L†
i ) · ( ~̂J −

N−2
∑

i=1

~̂Li)

)

=

(

~̂J† ~̂J + (

N−2
∑

i=1

~̂Li)(

N−2
∑

j=1

~̂Lj) − 2(

N−2
∑

i=1

~̂Li) ~̂J

)

E2

=

(

~̂J2 + (

N−2
∑

i=1

~̂L†
i )(

N−2
∑

j=1

~̂Lj) − 2 ~̂J(

N−2
∑

i=1

~̂Li)

)

BF

=

(

~̂J2 +

N−2
∑

i=1

~̂L†
i
~̂Li +

N−2
∑

i=1

N−2
∑

j=1,j 6=i

~̂L†
i
~̂Lj − 2 ~̂J(

N−2
∑

i=1

~̂Li)

)

BF

=

(

~̂J2 +

N−2
∑

i=1

~̂L†
i
~̂Li + 2

N−3
∑

i=1

N−2
∑

j=1,j>i

~̂Li
~̂Lj − 2 ~̂J(

N−2
∑

i=1

~̂Li)

)

BF

.

(86)

Note that the order of the operators in the scalar products is strictly fixed! The key point is

the fact that the BF-components of ~̂LN−2 must remain on the right hand side of all the scalar

products. The first line of Eq. (86) is correct whatever the frame used to calculate the scalar

product. The parentheses ( )F indicate that all the scalar products inside the parentheses

are calculated using the F-components of the angular momenta. The non-trivial results of

Eq. (86) are obtained from Eqs. (75,77,82). Now, since

P̂R i =
1

i

∂

∂Ri
(87)

and, in view of Eqs. (73,10),

P̂ †
R i =

1

i

∂

∂Ri

+
2

iRi

, (88)

and since

P̂ †
R iP̂R i = − 1

R2
i

∂

∂Ri

R2
i

∂

∂Ri

= − 1

Ri

∂2

∂R2
i

Ri, (89)

Eq. (76) for orthogonal coordinates can be written as [74, 76]:
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T̂ =

N−1
∑

i=1

(

− 1

2µi

1

Ri

∂2

∂R2
i

Ri

)

+

N−2
∑

i=1

(

1

2µN−1R2
N−1

+
1

2µiR2
i

)

~̂L
†
i
~̂Li

+
N−2
∑

i,j=1 i<j

(~̂Li
~̂Lj)BF

µN−1R
2
N−1

−
N−2
∑

i=1

( ~̂J ~̂Li)BF

µN−1R
2
N−1

+
~̂J2
BF

2µN−1R
2
N−1

. (90)

We recall that if we do not indicate the frame in which the scalar product is computed, like

for the term ~̂L†
i
~̂Li in Eq. (90), it means that the scalar product can be calculated in any

frame. If we now introduce the operators L̂+ = L̂x + iL̂y and L̂− = L̂x − iL̂y for all the

angular momenta and take into account the fact that

L̂N−2 zBF = ĴzBF −
N−3
∑

i=1

L̂izBF (91)

(see Eq. (83)), Eq. (90) yields

T̂ =

N−1
∑

i=1

(

− 1

2µi

1

Ri

∂2

∂R2
i

Ri

)

+

N−2
∑

i=1

(

1

2µN−1R2
N−1

+
1

2µiR2
i

)

~̂L
†
i
~̂Li

+
~̂J2
BF

2µN−1R2
N−1

−
2ĴzBF (ĴzBF −∑N−3

i=1 L̂izBF ) +
∑N−3

i=1 L̂izBF (2L̂izBF +
∑N−3

j=1,j 6=i L̂jzBF )

2µN−1R2
N−1

+

∑N−3
i=1

∑N−2
j=1,j>i(L̂i +BF L̂j −BF + L̂i−BF L̂j +BF ) −

∑N−2
j=1 (Ĵ+BF L̂j −BF + Ĵ−BF L̂j +BF )

2µN−1R2
N−1

,

(92)

where, again, the order of the operators in the scalar products is strictly fixed: the key

point is the fact that the BF-components of ~̂LN−2 must remain on the right hand side of

all scalar products. All the explicit expressions of the projections onto the BF-axes are

given by Eqs. (75,77,82). Consequently, we have explicitly a general expression of the KEO

whatever the number of atoms and whatever the set of N -1 orthogonal vectors for the family

of polyspherical coordinates.

Several points must be emphasized here:

(1) except in Eq. (81), the derivation of the results is free of differential calculus. We have

simply exploited the properties of the angular momenta, which are highlighted in Sec. II B 2

(iii).

(2) The physical meaning of the different parts of the KEO is quite transparent since it can
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be interpreted in terms of the couplings between the momenta associated with the different

vectors.

(3) As already noted, the Coriolis coupling, which is mainly included in the term

−
∑N−2

i=1
( ~̂J ~̂Li)BF

µN−1R2
N−1

, is proportional to 1
µN−1

, the higher the mass µN−1, the smaller the Cori-

olis coupling.

(4) In view of Eq. (83), it clearly appears that the expressions of L̂N−2 +BF and L̂N−2 −BF

are not the usual ones (compare for instance with Eq. (75)). This is due to ~̂RN−2 being

involved in the definition of the BF frame. However, we shall see later that their action onto

an appropriate primitive basis set of spherical harmonics in terms of the BF angles is the

normal one.

(5) The generalization to non-orthogonal coordinates is straightforward and given in Ap-

pendix B.

(6) Finally, if an external field is present or if the molecular system is located in a noble gas

matrix or on metal surfaces, one simply has to add the kinetic energy T̂G of the center of

mass of the system, G, in Eq. (92). In other words, let XG, YG, and ZG be the Cartesian

coordinates determining the position of G in the Laboratory-Fixed (LF) frame. The KEO

for the center-of-mass motion then reads

T̂G = − 1

2MT
(

∂2

∂X2
G

+
∂2

∂Y 2
G

+
∂2

∂Z2
G

), (93)

where MT is the total mass of the molecular system and the final KEO reads T̂ + T̂G.

(7) All the BF-projections of the angular momenta appearing in Eqs. (90,92) are quasi-

momenta and Eqs. (90,92) are particular cases of Eq. (23) of Section IIA.

v) Introduction of a primitive basis set of spherical harmonics.

As often when using curvilinear coordinates, several configurations of the molecular systems

correspond to a singular situation for which the KEO in Eq. (92) has infinite contributions.

Let us consider an example. In the first line of Eq. (92) the following terms do appear:
(

− 1
2µi

1
Ri

∂2

∂R2
i

Ri

)

+
(

1
2µN−1R2

N−1
+ 1

2µiR2
i

)

~̂L
†
i
~̂Li, with i = 1, . . . , N − 3. In view of Eq. (75),

these terms can be recast as
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(

− 1

2µi

1

Ri

∂2

∂R2
i

Ri

)

+

(

1

2µN−1R2
N−1

+
1

2µiR2
i

)

~̂L†
i
~̂Li = (− 1

2µi

1

Ri

∂2

∂R2
i

Ri)

− (
1

2µN−1R2
N−1

+
1

2µiR2
i

)
[ 1

sin θBF
i

∂

∂θBF
i

sin θBF
i

∂

∂θBF
i

+
1

sin2θBF
i

∂2

∂ϕBF
i

2

]

.

(94)

In Eq. (94), if θBF
i is equal to 0 or π or Ri is equal to zero, the terms including 1

sin2θBF
i

and

1
R2

i

diverge and the the volume element

dτ ∝ R2
i sin θBF

i dRidϕBF
i dθBF

i (95)

is equal to zero. In the first case (θBF
i = 0 or π) ϕBF

i is no longer defined, in the second case

(Ri = 0) ϕBF
i and θBF

i are no longer defined. When such situations arise, it is necessary

to find an appropriate primitive basis set that removes all the singularities. Thanks to the

introduction of the angular momenta in Sec. II B 2 (iii), the appropriate angular basis set

appears naturally: it is the basis set of spherical harmonics that is introduced in the present

section.

For orthogonal coordinates, it is also straightforward to find the radial basis set that discards

the singularities for Ri equal to zero: it is a basis set of Bessel functions along with an

appropriate pseudo-spectral approach [115] (see Section II A in Ref. [77]). However, since

they correspond to geometries that rarely occur, the topic of the radial singularities will not

be addressed here.

Let us now introduce the appropriate angular basis set. The overall rotation of the molecule

can be described by a set of (normalized) Wigner rotation matrix elements [109, 110]:

< α, β, γ | J, M, Ω >= DJ∗

MΩ(α, β, γ) , (96)

where the star denotes complex conjugate and M is the projection of the total angular

momentum onto zSF and Ω =
∑N−2

i=1 Ωi is the projection of the total angular momentum

onto zBF , Ωi being the projection of ~Li onto the same axis (note that ΩN−1 = 0, since ~RN−1

is parallel to zBF ).

In the particular case of an isolated molecule, SF is isotropic, i.e. the orientation of zSF is

arbitrary, and any observable must be α-independent. The overall rotation of the molecule

can thus be described by the following basis set [109, 110]:

< (α), β, γ | J, 0, Ω >= Y Ω
J (β, γ)(−1)Ω , (97)
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where Y Ω
J (β, γ) is a spherical harmonic,

Y Ω
ℓ (β, γ) = P̃Ω

ℓ (cos(β))(2π)−1/2 exp(iΩγ) .

Here P̃Ω
ℓ (cos(θ)) is a normalized associated Legendre function times (−1)Ω [109, 110]. Ev-

erywhere hereafter, we assume that the molecule is isolated and that SF is isotropic. If that

is not the case, one simply has to replace Y Ω
J (β, γ)(−1)Ω with < α, β, γ | J, M, Ω > in all

the following equations.

Now we choose the following angular basis for the BF spherical angles of the vectors ~Ri

(i = 1, ..., N − 2):

< (α), β, γ, θBF
N−2, ϕ

BF
1 , θBF

1 , . . . , ϕBF
N−3, θ

BF
N−3 |

ℓ1, Ω1, . . . , ℓN−3, ΩN−3, ℓN−2, ΩN−2; J, Ω >=

Y Ω
J (β, γ)(−1)ΩP̃

ΩN−2

ℓN−2
(cos(θBF

N−2))×

Y Ω1
ℓ1

(θBF
1 , ϕBF

1 ) . . . Y
ΩN−3

ℓN−3
(θBF

N−3, ϕ
BF
N−3) .

(98)

In Eq. (98), we have ΩN−2 = Ω−
∑N−3

i Ωi. Note the following link between the third Euler

angle and the spherical angle associated with ~RN−2:

Y Ω
J (β, γ)(−1)ΩP̃

ΩN−2

ℓN−2
(cos(θBF

N−2)) Y Ω1
ℓ1

(θBF
1 , ϕBF

1 ) . . . Y
ΩN−3

ℓN−3
(θBF

N−3, ϕ
BF
N−3)

= (2π)1/2Y Ω
J (β, 0)(−1)ΩY

ΩN−2

ℓN−2
(θBF

N−2, ϕ
E2
N−2) Y Ω1

ℓ1
(θBF

1 , ϕE2
1 ) . . . Y

ΩN−3

ℓN−3
(θBF

N−3, ϕ
E2
N−3) .

Eq. (99) originates from ~RN−2 being involved in the definition of the BF frame, i.e. γ =

ϕE2
N−2. Regarding the action of the projections of the angular momenta onto the BF-axes

on the previous primitive basis functions, two cases must be distinguished: (i) The BF-

components of the total angular momentum and the operators ~Li (i=1,...,N-3) have their

usual expressions. Their action on the spherical harmonics in the BF coordinates of Eq. (98)

is the usual one and hardly needs mentioning. (ii) For the angular momentum ~LN−2, this

action is less straightforward. However, it was proved that, if care is taken to account for

the unusual features of the BF-components of ~LN−2, this action is eventually a normal one.

For instance, we obtain [74]
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L̂(N−2)±BF < angles | . . . > = c±(ℓN−2, ΩN−2) ×

< angles | ℓ1, Ω1, . . . , ℓN−3, ΩN−3, ℓN−2, ΩN−2 ± 1; J, Ω ± 1 >

L̂(N−2)zBF < angles | . . . > = (ΩN−2)× < angles | . . . >

Ĵ∓BF L̂N−2±BF < angles | . . . ; J, Ω > = c±(J, Ω)c±(ℓN−2, ΩN−2) ×

< angles | ℓ1, Ω1, . . . , ℓN−3, ΩN−3, ℓN−2, ΩN−2 ± 1; J, Ω ± 1 > ,

(99)

with

c±(J, Ω) =
√

J(J + 1) − Ω(Ω ± 1). (100)

(We remind that the BF-projections of ~̂J have an ’anomalous’ behavior [114], i.e. Ĵ± |
J, Ω >= c∓(J, Ω) | J, Ω ∓ 1 >.) The symbol < angles | . . . >J denotes the current element

of the angular basis set. Even though these results are not obvious they are not surprising

as all angular momenta are calculated in the SF frame and several changes of coordinates

and projections onto adequate axes is all that has been performed. Eqs. (92) and (99) lead

straightforwardly, for orthogonal coordinates, to

T̂ | ℓ1, Ω1, . . . , ℓN−3, ΩN−3, ℓN−2; J, Ω >

= [(− 1

2µi

1

Ri

∂2

∂R2
i

Ri) +

N−2
∑

i=1

(
1

2µN−1R2
N−1

+
1

2µiR2
i

)ℓi(ℓi + 1)

+
J(J + 1)

2µN−1R2
N−1

−
2Ω(Ω −

∑N−3
i=1 Ωi) +

∑N−3
i=1 Ωi(2Ωi +

∑N−3
j=1,j 6=i Ωj)

2µN−1R2
N−1

] | . . . ; J, Ω >

+

∑N−3
i=1

∑N−2
j=1,j>i(c+(ℓi, Ωi)c−(ℓj, Ωj) | . . .Ωi + 1 . . .Ωj − 1, . . . ; J, Ω >)

2µN−1R2
N−1

+

∑N−3
i=1

∑N−2
j=1,j>i(c−(ℓi, Ωi)c+(ℓj, Ωj) | . . .Ωi − 1 . . .Ωj + 1, . . . ; J, Ω >)

2µN−1R2
N−1

−
∑N−2

j=1 (c−(J, Ω)c−(ℓj, Ωj) | . . .Ωj − 1, . . . ; J, Ω − 1 >)

2µN−1R2
N−1

−
∑N−2

j=1 (c+(J, Ω)c+(ℓj, Ωj) | . . .Ωj + 1, . . . ; J, Ω + 1 >)

2µN−1R
2
N−1

.

(101)
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Consequently, the basis set of Eq. (98) along with an appropriate pseudo-spectral approach

[116–118] eliminates all singularities appearing in the KEO. The same is true for non-

orthogonal coordinates. In other words, equations such as Eq. (99) can be applied to

evaluate the action of the BF-components appearing in Eqs. (B5,B6,B7). In addition, for

orthogonal coordinates, the number of terms in the KEO always remains moderate. The

only disadvantage of this formulation is that, in the grid representation, one has to deal

with complicated multi-dimensional Discrete Variable Representations (DVRs) for the an-

gles [118–120].

2. Matrix expression of the KEO

As above-mentioned, the conjugate momenta are only intermediates in the polyspherical

approach. There is no obligation to utilize them, except in the case of the presence of

singularities. If the potential prevents the system from reaching such singular geometries,

one can express the KEO explicitly in differential operators, ∂
∂qi

, where qi denote the 3N−6

polyspherical coordinates as in the original formulation of Podolsky (Eq. (2)). As we will

see, the number of terms in the KEO increases, but only simple one-dimensional DVRs are

required in a numerical calculation. The present section is devoted to the derivation of the

general expression of the KEO in terms of differential operators for the family of standard

polyspherical coordinates.

In Section IIC 1, we have established a general expression of the KEO in polyspherical

coordinates. The operator is available for orthogonal vectors (Eq. 92) and for non-orthogonal

vectors (Eqs. (B5,B6,B7)). As we also know the explicit expressions of the projections onto

the BF-axes of all the angular momenta (Eqs. (75,77,82)), we are thus in a position to provide

a general expression of the KEO in the following form, similar to Eq. (27) of Section IIA,

whatever the set of vectors (orthogonal or non-orthogonal):

T̂ =
3N−6
∑

l,m=1

P̂ †
ql
Σqlqm

P̂qm

2
+

3N−6
∑

l=1

∑

α=x,y,z

P̂ †
ql
σqlαĴαBF + ĴαBF σαql

P̂ql

2

+
∑

α=x,y,z

∑

β=x,y,z

ĴαBF ΓαβĴβBF + ĴβBF ΓβαĴαBF

2
.

(102)
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In contrast with the matrix M, the matrices Σ, σ and Γ do not depend on the masses of the

atoms only. They also depend on the 3N -6 internal polyspherical coordinates. In addition,

they are all symmetrical, i.e. Σqlqm
= Σqmql

, Γλλ′ = Γλ′λ, and σλql
= σqlλ. ĴxBF , ĴyBF , and

ĴzBF are the self-adjoint BF-projections of the total angular momentum, the expressions of

which are given by Eq. (77). P̂qi
= 1

i
∂

∂qi
are the (3N -6) momentum operators associated

with the (3N -6) spherical coordinates {qi; i = 1, . . . , 3N − 6} = {(Ri; i = 1, . . . , N − 1),

(θBF
i ; i = 1, . . . , N − 2), (ϕBF

i ; i = 1, . . . , N − 3)}. Thus, q collectively denotes the (3N -6)

spherical coordinates.

(i) New convention of normalization of the wave-function:

Before providing all the matrix elements, let us point out that all the operators introduced

so far are correct only for the case in which the wave functions are normalized with an

Euclidean convention of normalization, i.e. with the volume element given by Eq. (73).

Next, in view of Eqs. (73) and (10), it appears that P̂θBF
i

(i = 1, . . . , N − 2) and P̂Rj

(j = 1, . . . , N − 3) are not self-adjoint, i.e. P̂ †
qi
6= P̂qi

for these coordinates. For the sake of

simplicity, we shall prefer to work with momentum operators that are Hermitian. First, we

replace the coordinates θi by ui = cos(θBF
i ); (i = 1, . . . , N − 2). Indeed, since

dui = − sin θBF
i dθBF

i , (103)

after this transformation, the Euclidean volume element now reads [121]

dτ = R2
N−1 sin β dRN−1dα dβ R2

N−2 dRN−2 dγ duN−2

N−3
∏

i=1

R2
i dRi dϕBF

i dui , (104)

so that, in view of (10), P̂ †
ui

= P̂ui
with (i = 1, . . . , N −2). Eq. (104) can be formally written

as

dτ = J ′
e dRN−1 dα dβ dRN−2 dγ duN−2

N−3
∏

i=1

dui , (105)

with J ′
e = sin β

∏N−1
i=1 R2

i , the absolute value of the Jacobian (see Eq. (3)) correspond-

ing to the coordinate transformation from the Cartesian coordinates to the polyspherical

coordinates, taking into account the fact that we use ui = cos(θBF
i ) instead of θBF

i for
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(i = 1, . . . , N − 2). The KEO now reads

T̂ =

3N−6
∑

l,m=1

P̂ †
ql
Gqlqm

P̂qm

2
+

3N−6
∑

l=1

∑

α=x,y,z

P̂ †
ql
CqlαĴαBF + ĴαBF Cαql

P̂ql

2

+
∑

α=x,y,z

∑

β=x,y,z

ĴαBF Γαβ ĴβBF + ĴβBF ΓβαĴαBF

2
.

(106)

The relation between Σ, and G, on one hand, and between σ and C, on the other hand, is

rather simple. When qm = θBF
i in Eq. (106), one has to multiply the corresponding matrix

element by − sin θBF
i . Let us give two examples:

Gu1R2 = − sin θBF
1 × ΣθBF

1 R2
,

Gu1u2 = sin θBF
1 × ΣθBF

1 θBF
2

× sin θBF
2 .

(107)

Second, we also change the convention of normalization of the wave-function, i.e. we now

use the following volume element in normalizing wave-functions:

dτ ′ = sin β dRN−1dα dβ dRN−2 dγ duN−2

N−3
∏

i=1

dRi dϕBF
i dui . (108)

Let us also take

dτ ′ = ρ dRN−1 dα dβ dRN−2 dγduN−2

N−3
∏

i=1

dRi dϕBF
i dui , (109)

with ρ = sin β. This new convention of normalization entails that the operators P̂Ri
(i =

1, . . . , N − 1) are now self-adjoint (see Eq. (18)). However, the KEO, T̂ , has to be replaced

by

T̂ ′ = J ′ 12
e ρ− 1

2 T̂ ρ
1
2 J ′− 1

2
e =

N−1
∏

i

(Ri) T̂
N−1
∏

i

(R−1
i ) , (110)

so as to preserve the normalization of the wave-functions (see Eq. (17)). The explicit

calculation yields:
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T̂ ′ =
3N−6
∑

l,m=1

P̂ql
Gqlqm

P̂qm

2
+

3N−6
∑

l=1

∑

α=x,y,z

P̂ql
CqlαĴαBF + ĴαBF Cαql

P̂ql

2

+
∑

α=x,y,z

∑

β=x,y,z

ĴαBF Γαβ ĴβBF + ĴβBF ΓβαĴαBF

2
+ Vextra ,

(111)

with Vextra a purely multiplicative operator called ’extra potential term’ (see Eqs. (19,20)),

which, in our particular case, reads

Vextra = −
N−1
∑

i6=j

GRiRj

2RiRj

. (112)

Interestingly enough, in the case of orthogonal coordinates Vextra = 0 . For non-orthogonal

coordinates, Vextra 6= 0 (see Appendix B: in Eq. (B7), there is a coupling between Ri and

Rj . Consequently, GRiRj
6= 0 ).

Inserting Eqs. (75,77,82) into Eq. (92) provides all the matrix elements appearing in G, C

and Γ, which are given in Appendix C. We have used the notation G for the vibrational part

of the KEO to keep the notation of Wilson et al [98] but it should be emphasized that the

G-matrix elements in Appendix C are different from those in Ref. [98] since they correspond

to a different family of coordinates.

Let us consider only one term in Eq. (111), the first appearing for Gϕiϕj
in Eq. (C4):

Gϕiϕj
= Mij

cos(ϕi − ϕj)

RiRj sin θi sin θj
, (113)

Hence, the following terms crop up in the KEO

Mij(P̂ϕi

cos(ϕi − ϕj)

RiRj sin θi sin θj
P̂ϕj

+ P̂ϕj

cos(ϕi − ϕj)

RiRj sin θi sin θj
P̂ϕi

)

= Mij(P̂ϕi

cos ϕi cos ϕj

RiRj sin θi sin θj

P̂ϕj
+ P̂ϕj

cos ϕi cos ϕj

RiRj sin θi sin θj

P̂ϕi
)

+ Mij(P̂ϕi

sin ϕi sin ϕj

RiRj sin θi sin θj
P̂ϕj

+ P̂ϕj

sin ϕi sin ϕj

RiRj sin θi sin θj
P̂ϕi

) .

(114)

Two points must be addressed here: (1) as long as the singular geometries (for instance

for θBF
i = 0 or π) are not physically accessible, the action of all the terms in the KEO
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(such as those in Eq. (114)) can be evaluated with a simple one-dimensional primitive

basis set (DVR or Finite Basis Representation (FBR)) for each degree of freedom. (2) The

last two lines of Eq. (114) clearly show that the terms are products of one-dimensional

functions. This property is true for all the terms in the KEO in Eq. (111) and can be

very useful for many numerical methods used in dynamics to solve the Schrödinger equation.

(ii) Connection between polyspherical coordinates and normal modes:

The previous formulation allows a simple correspondence between normal and polyspherical

coordinates. This may turn out to be very helpful since it permits to analyze the results

of the dynamics in the normal mode picture. The method is as follows [122]: we define

curvilinear normal modes from a zero order harmonic Hamiltonian, Ĥo, expressed as

Ĥo =
1

2

3N−6
∑

l,m=1

(ql − qeq
l )Fqlqm

(qm − qeq
m ) + P̂ql

Go
qlqm

P̂qm
, (115)

where Go represents the G matrix of Eq. (111) but evaluated at the equilibrium geometry

qeq. Here, ql and qm denote the 3N -6 polyspherical coordinates and the F matrix corre-

sponds to the harmonic approximation for the potential (including the extra potential term):

Fqlqm
= ∂2V ′/∂ql∂qm|qeq

; V ′ is the potential V plus Vextra. One can then proceed with the

Wilson G matrix formulation [98, 123], and define curvilinear normal modes {Qα} in terms

of the polyspherical coordinates. In this, one diagonalizes the matrix FGo

FGo L = Lω2 , (116)

where ω2 denotes the diagonal eigenvalue matrix with diagonal elements ω2
α and L is the

eigenvector matrix subject to the normalization

LT Go L = 1 . (117)

AT denotes the transpose of A, A being a matrix or a vector. The mass and frequency

weighted normal coordinates Qα are related to the polyspherical coordinates as

Qα = ω1/2
α

3N−6
∑

l=1

(ql − qeq
l )Lqlα . (118)

These dimensionless normal coordinates let Ĥo become separable,

Ĥo =

3N−6
∑

α=1

ĥo
α, (119)
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and the one-dimensional operators ĥo
α read

ĥo
α =

ωα

2
(Q2

α − ∂2

∂Q2
α

) . (120)

Note that these operators depend on all 3N -6 polyspherical coordinates because of Eq. (118).

Finally, it should be emphasized that the curvilinear normal mode frequencies, ωα, are

identical to the usual normal mode frequencies.

D. Separation into subsystems

The general approach outlined in sections IIB and IIC can be generalized to derive

kinetic energy operators in terms of other kinds of coordinates than the standard poly-

spherical coordinates. The latter are defined with respect to two vectors only: ~RN−1 and

~RN−2. For large systems, this can introduce artificial couplings between motions that are

physically decoupled, e. g. between atoms that are located in very different parts of the

molecule. A simple solution is to integrate atoms into subsystems and to define for each

subsystem an intermediate BF frame. In each subsystem, the angles are defined with

respect to the intermediate frame, which decouples the motions between atoms belonging

to different subsystems.

(i) Vector parametrization and separation into subsystems:

Let an N -atom system be separated into n subsystems. Let N (j) be the number of atoms

of the j-th subsystem, (j = 1, . . . , n). The system thus obtained is parametrized by
∑n

j=1(N
(j) − 1) + n− 1 = N − 1 vectors. The vectors are divided into two groups: first, the

∑n
j=1(N

(j) − 1) vectors ~R
(j)
k with (k = 1, . . . , N (j) − 1) parametrizing the subsystems and,

second, the n-1 ’remaining’ vectors ~Ri with (i = 1, . . . , n − 1) that parametrize the relative

positions of the subsystems. Let ~̂J (j) be the total angular momentum of the j-th subsystem.

This definition entails that

~̂J (j) =
∑

k=1,...,N(j)−1

~̂L
(j)
k , (121)

~̂L
(j)
k being the angular momentum associated with ~R

(j)
k .
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FIG. 8: Definition of the eight Jacobi vectors for the water trimer. Here, Gj is the center of mass

of the j-th monomer. ~R
(j)
1 is the vector joining the two H atoms, ~R

(j)
2 is the vector joining the

center of mass of H2 to the O atom. ~R2 joins G3 to G2 and ~R2 joins the center of mass of (G3G2)

to G1.

To illustrate our ideas, let us consider an example: the water trimer using eight Jacobi

vectors, which are shown in Figure 8. In the present case, n = 3, N (j) − 1 = 2 with

j = 1, 2, 3, and each subsystem is described by two Jacobi vectors. ~R1 and ~R2 are the two

’remaining’ vectors.

For the definition of the BF frame, we choose ~Rn−1 as the vector that defines the zBF

axis and, if n > 2, ~Rn−2 as the vector that defines the ((xBF , zBF ); xBF > 0) half-plane (as

in Figure 6). If n = 2, i.e. for a separation into two subsystems, or if, for any physical

reasons, it is not judicious to choose one vector ~Rj to define the ((xBF , zBF ); xBF > 0)

half-plane, this half-plane must be defined by a vector belonging to one of the subsystems.

The latter case is slightly more complicated and is addressed in Section IIIC 1 (i).

In the standard polyspherical parametrization, the system is described by 3N -3 coordinates:

(1) the three Euler angles α, β, and γ;
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(2) N -1 vector lengths {Ri, (i = 1, . . . , n − 1); R
(j)
k , (k = 1, . . . , N (j) − 1; j = 1, . . . , n)};

(3) N -2 planar angles {θBF
i , (i = 1, . . . , n − 2); θ

(j, BF )
k , (k = 1, . . . , N (j) − 1; j = 1, . . . , n)};

(4) N -3 dihedral angles {ϕBF
i , (i = 1, . . . , n− 3); ϕ

(j,BF )
k , (k = 1, . . . , N (j) − 1; j = 1, . . . , n)}.

(ii) New polyspherical parametrization:

Let us now perform a new coordinate transformation from the 3N -3 standard polyspherical

coordinates to the new 3N -3 coordinates defined as follows.

Let BF(j) be an intermediate frame associated with the j-th subsystem such as ~e
zBF (j) is

parallel to the vector ~R
(j)

N(j)−1
and ~R

(j)

N(j)−2
, ~e

xBF (j) and ~e
zBF (j) lie in the same half-plane (as

in Fig. 6). The orientation of the BF(j) frame with respect to the BF frame is determined

by three Euler angles: α(j), β(j), γ(j). With our definition of the BF(j) frame, it is clear

that the first two Euler angles simply are the two spherical angles of ~R
(j)

N(j)−1
in the BF

frame, α(j) = ϕ
(j,BF )

N(j)−1
and β(j) = θ

(j,BF )

N(j)−1
. The third Euler angle is given by γ(j) = ϕ

(j,E
(j)
2 )

N(j)−2
,

where the E
(j)
2 frame is the frame resulting from the first two Euler rotations α(j), β(j)

only (starting from the BF frame). Next, the N (j) − 1 vectors are parametrized by their

spherical angles in the BF(j) frame: θBF (j)

k and ϕBF (j)

k .

The new polyspherical parametrization thus obtained consists of 3N -3 coordinates that

are:

(1) the three Euler angles α, β, and γ;

(2) N -1 vector lengths {Ri, (i = 1, . . . , n − 1); R
(j)
k , (k = 1, . . . , N (j) − 1; j = 1, . . . , n)};

(3) n-2 planar angles {θBF
i , (i = 1, . . . , n − 2)};

(4) n-3 dihedral angles {ϕBF
i , (i = 1, . . . , n − 3)};

(5) and for each subsystem : three Euler angles α(j), β(j), γ(j);

N (j) − 2 planar angles θBF (j)

k (k = 1, . . . , N (j) − 2);

N (j) − 3 dihedral angles ϕBF (j)

k (k = 1, . . . , N (j) − 3) .

(iii) Expression of the KEO:

Using the properties of the angular momenta highlighted in Sec. II B 2 (iii) allows the

expression of the KEO to be derived without resorting to differential calculus.

Indeed, suffice it to note for our present purpose that:

(1) since the vectors in the different subsystems are not involved in the definition of the
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BF frame, the expression of the BF-components of their angular momenta in terms of the

BF coordinates is identical to the expression of the SF-projections of any arbitrary angular

momentum in terms of SF coordinates.

(2) For each subsystem, the coordinate transformation from

{θ(j, BF )
k , (k = 1, . . . , N (j) − 1); ϕ

(j,BF )
k , (k = 1, . . . , N (j) − 1)} to {α(j), β(j), γ(j); θBF (j)

k (k =

1, . . . , N (j)−2); ϕBF (j)

k (k = 1, . . . , N (j)−3)} only affects the coordinates of the j-th subsystem

and not the other coordinates.

From this, we can deduce that the previous coordinate transformation for the j-th subsystem

alone is mathematically identical to the coordinate transformation from the SF to the BF

coordinates thoroughly studied in Sec. II B 2 and IIC1. Therefore, the BF(j)-components

of the angular momenta can be readily obtained from the formulae derived in Sec. IIC 1.

In view of Eq. (77)
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, (122)

or still in view of (75) for k < N (j) − 2
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



















L̂
k xBF (j)

L̂
k yBF (j)

L̂
k zBF (j)























=























− sin ϕBF (j)

k −cos ϕBF (j)

k cot θBF (j)

k

cos ϕBF (j)

k −sin ϕBF (j)

k cot θBF (j)

k

0 1



































1
i

∂

∂θBF (j)

k

1
i

∂

∂ϕBF (j)

k













, (123)

and, from (83)
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





















L̂
(N(j)−2) xBF (j)

L̂
(N(j)−2) yBF (j)

L̂
(N(j)−2) zBF (j)























=



























− cot θBF (j)

N(j)−2
(Ĵ

(j)

zBF (j) −
∑N(j)−3

k=1 L̂
kzBF (j) )

−i ∂

∂θBF (j)

N(j)−2

Ĵ
(j)

zBF (j) −
∑N(j)−3

k=1 L̂
kzBF (j)



























. (124)

In order to obtain the KEO in terms of the new set of polyspherical coordinates, let us first

confine ourselves to studying the case of orthogonal vectors. Eq. (76) can be recast as

2T̂ =
n−1
∑

i=1

P̂ †
Ri

P̂Ri

µi
+

n−2
∑

i=1

~̂L†
i
~̂Li

µiR2
i

+ 2
n
∑

j=1

T̂ (j)

+
( ~̂J† − (

∑n−2
i=1

~̂L†
i +
∑n

j=1
~̂J (j)

†
) · ( ~̂J − (

∑n−2
i=1

~̂Li +
∑n

j=1
~̂J (j)))

µn−1R2
n−1

, (125)

with

2T̂ (j) =
N(j)−1
∑

k=1

P̂ †
R

(j)
k

P̂
R

(j)
k

µ
(j)
k

+
N(j)−1
∑

k=1

~̂L
(j)
k

†
~̂L

(j)
k

µ
(j)
k R

(j)
k

2 , (126)

where µi denotes the reduced mass associated with ~Ri and µ
(j)
k , the reduced mass associated

with ~R
(j)
k . Taking into account that ~̂Ln−2 has a particular behavior, we obtain from Eq.

(125) (the key point is the fact that the BF-components of ~̂Ln−2 must remain on the right

hand side of all the scalar products):

T̂ =
n−1
∑

i=1

(

− 1

2µi

1

Ri

∂2

∂R2
i

Ri

)

+
n−2
∑

i=1

(

1

2µn−1R
2
n−1

+
1

2µiR
2
i

)

~̂L
†
i
~̂Li +

n
∑

j=1

T̂ (j)

+
n−2
∑

i,j=1 i<j

(~̂Li
~̂Lj)BF

µn−1R
2
n−1

−
n−2
∑

i=1

( ~̂J ~̂Li)BF

µn−1R
2
n−1

+
~̂J2
BF

2µn−1R
2
n−1

+

j=1,...,n
∑

i=1,...,n−2

( ~̂J (j) ~̂Li)BF

µn−1R2
n−1

+

n
∑

l,m=1 l<m

( ~̂J (l) ~̂J (m))BF

µn−1R2
n−1

−
n
∑

j=1

( ~̂J ~̂J (j))BF

µn−1R2
n−1

. (127)

Eq. (127) is strictly equivalent to Eq. (90) except that (1) N has been replaced by n,

(2) ~̂J has been replaced by ~̂J −∑j=1,...,n
~̂J (j), and (3)

∑n
j=1 T̂ (j) has been added to the
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KEO. The BF-components of ~̂J and ~̂Li, (i = 1, . . . , n − 1) are given by Eq. (77) and Eq.

(75), respectively. In the last two lines of Eq. (127), only the BF-projections of ~̂J (j) with

(j = 1, . . . , n) appear. They can be obtained from Eqs. (122,69,70) (they are similar to the

SF-projections of a total angular momentum [109]):























Ĵ
(j)

xBF

Ĵ
(j)

yBF

Ĵ
(j)

zBF























=























−cos α(j)cot β(j) − sin α(j) cos α(j)

sinβ(j)

−sin α(j)cotβ(j) cos α(j) sinα(j)

sinβ(j)

1 0 0



















































1
i

∂
∂α(j)

1
i

∂
∂β(j)

1
i

∂
∂γ(j)





























. (128)

Finally, Eq. (92) or Eq. (76) can be applied to express T̂ (j):

T̂ (j) =

N(j)−1
∑

k=1

(

− 1

2µ
(j)
k

1

R
(j)
k

∂2

∂R
(j)
k

2R
(j)
k

)

+

N(j)−2
∑

k=1





1

2µ
(j)

N(j)−1
(R

(j)

N(j)−1
)
2 +

1

2µ
(j)
k R

(j)
k

2




~̂L

(j)
k

†
~̂L

(j)

k

−
2Ĵ

(j)

zBF (j) (Ĵ
(j)

zBF (j) −
∑N(j)−3

k=1 L̂
(j)

kzBF (j) ) +
∑N(j)−3

k=1 L̂
(j)

kzBF (j) (2L̂
(j)

kzBF (j) +
∑N(j)−3

k′=1,k′ 6=k L̂
(j)

k′zBF (j) )

2µ
(j)

N(j)−1
(R

(j)

N(j)−1
)
2

+

∑N(j)−3
k=1

∑N(j)−2
k′=1,k′>k(L̂

(j)

k +BF (j) L̂
(j)

k′ −BF (j) + L̂
(j)

k−BF (j) L̂
(j)

k′ +BF (j) )

2µ
(j)

N(j)−1
(R

(j)

N(j)−1
)
2

−
∑N(j)−2

k=1 (Ĵ
(j)

+BF (j) L̂
(j)

k −BF (j) + Ĵ
(j)

−BF (j) L̂
(j)

k +BF (j) )

2µ
(j)

N(j)−1
(R

(j)

N(j)−1
)
2 +

~̂J
(j)

BF (j)

2

2µ
(j)

N(j)−1
(R

(j)

N(j)−1)
2 .

(129)

To be more specific, let us consider various parametrizations of the water trimer. In the case

of the set of orthogonal vectors depicted in Figure 8, the matrix M of Eq. (54) becomes
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M =



















































2

mH
0 0 0 0 0 0 0

0 2mH+mO

2mHmO
0 0 0 0 0 0

0 0 2

mH
0 0 0 0 0

0 0 0 2mH+mO

2mHmO
0 0 0 0

0 0 0 0 2

mH
0 0 0

0 0 0 0 0 2mH+mO

2mHmO
0 0

0 0 0 0 0 0 2

2mH+mO
0

0 0 0 0 0 0 0 3

4mH+2mO



















































. (130)

In the matrix of Eq. (130), eight reduced masses appear. They are associated with ~R1

(1)
,

~R2

(1)
, ~R1

(2)
, ~R2

(2)
, ~R1

(3)
, ~R2

(3)
, ~R1, ~R2 (see Figure 8). The KEO is given by Eqs. (127) and

(129) with n=3, N (j) = 2, (j =1, 2, 3).

Now, what happens if non-orthogonal coordinates are introduced?

Several cases must be distinguished depending on the structure of the matrix M from Eq.

(54).

(1) If the subsystems are described by non-orthogonal vectors and if there is no coupling in

the matrix M between one subsystem and the rest of the molecular system, then Eq. (111)

or Eqs. (B5,B6,B7) can be used for T̂ (j). In Eqs. (111) or (B5,B6,B7) N must be replaced

by N (j) and ~̂J by ~̂J (j).

Let us give a new example: the mixed Jacobi/valence parametrization for the water

trimer depicted in Figure 9. As far as the matrix M is concerned, one obtains
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FIG. 9: Definition of the second set of vectors for the water trimer. ~R
(j)
1 and ~R

(j)
2 are the two

valence vectors joining one H atom to the O atom.

M =



















































mH+mO

mHmO

1

mO
0 0 0 0 0 0

1

mO

mH+mO

mHmO
0 0 0 0 0 0

0 0 mH+mO

mHmO

1

mO
0 0 0 0

0 0 1

mO

1

mH
+ 1

mO
0 0 0 0

0 0 0 0 mH+mO

mHmO

1

mO
0 0

0 0 0 0 1

mO

mH+mO

mHmO
0 0

0 0 0 0 0 0 2

2mH+mO
0

0 0 0 0 0 0 0 3

4mH+2mO



















































. (131)

The KEO is given by Eq. (127), T̂ (j) is given by Eq. (111) or Eqs. (B5,B6,B7) with n=3,

N (j) = 2, (j =1, 2, 3). In Eqs. (111) or (B5,B6,B7) N must be replaced by N (j) = 2 and ~̂J

by ~̂J (j).

(2) If the n-1 vectors ~̂Ri are non-orthogonal vectors and if there is no coupling in the

matrix M between the n-1 vectors ~̂Ri and all the subsystems, then Eq. (111) or Eqs.
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FIG. 10: Definition of the third set of vectors for the water trimer. Here, Gj is the center of mass

of the j-th monomer.

(B5,B6,B7) can be used for T̂ −
∑

i=1,...,n T̂ (j) with two changes : N must be replaced by n

and ~̂J by ~̂J −
∑

j=1,...,n
~̂J (j).

Let us consider the third parametrization of the water trimer depicted in Figure 10. The

new matrix M reads (note its block-diagonal form)

M =



















































mH+mO

mHmO

1

mO
0 0 0 0 0 0

1

mO

mH+mO

mHmO
0 0 0 0 0 0

0 0 mH+mO

mHmO

1

mO
0 0 0 0

0 0 1

mO

mH+mO

mHmO
0 0 0 0

0 0 0 0 mH+mO

mHmO

1

mO
0 0

0 0 0 0 1

mO

mH+mO

mHmO
0 0

0 0 0 0 0 0 2

2mH+mO
− 1

2mH+mO

0 0 0 0 0 0 − 1

2mH+mO

2

2mH+mO



















































. (132)

The KEO is given by Eq. (111) or Eqs. (B5,B6,B7) for T̂ −
∑

j=1,...,n T̂ (j) (with N (j)

instead of N and ~̂J (j) instead of ~̂J) and T̂ (j) is given by Eq. (111) or Eqs. (B5,B6,B7) with
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FIG. 11: Definition of the fourth set of vectors for the water trimer. Here, only valence vectors are

used.

n=3, N (j) = 2, (j =1, 2, 3).

(3) The situation becomes more complex otherwise.

Let the water trimer be parametrized by the valence vectors depicted in Figure 11. Here,

the matrix M becomes (note that the matrix is no longer block-diagonal)

M =



















































mH+mO

mHmO

1

mO
0 0 0 0 0 − 1

mO

1

mO

mH+mO

mHmO
0 0 0 0 0 − 1

mO

0 0 mH+mO

mHmO

1

mO
0 0 − 1

mO

1

mO

0 0 1

mO

mH+mO

mHmO
0 0 − 1

mO

1

mO

0 0 0 0 mH+mO

mHmO

1

mO

1

mO
0

0 0 0 0 1

mO

mH+mO

mHmO

1

mO
0

0 0 − 1

mO
− 1

mO

1

mO

1

mO

2

mO
− 1

mO

− 1

mO
− 1

mO

1

mO

1

mO
0 0 − 1

mO

2

mO



















































. (133)

The situation becomes more intricate since scalar products such as 1
mO

~L2
~̂L

(1)
1 appear in the
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KEO (see the second line of Eq. (176) in Section IIIC 1 (ii) and Eq. (133) to understand

the origin of this term). These scalar products raise a new technical problem as, on one

hand, the expression of the BF-projections of ~̂L
(1)
1 are very complicated and, on the other

hand, the BF (1)-projections of ~L2 are complicated. Obviously, one of these two frames

has to be chosen to calculate the scalar product. If the scalar product is calculated in the

BF frame for instance, Eq. (75) provides the BF-projections of ~L2. Unfortunately, the

BF-projections of ~̂L
(1)
1 are more complicated. They can be obtained from (123) combined

with Eqs. (69) and (70): the result is more complicated than in the case of standard

polyspherical coordinates because of the presence of the three Euler angles α(1), β(1), γ(1).

One example is given in Section IIIC 1 (ii).

However, it should be emphasized that, whatever the situation, all the terms can be

calculated in a systematic way. Therefore, it is possible, in principle, to derive a general

expression of the KEO whatever the set of vectors, whatever the number of atoms, and

whatever the choice of the subsystems. It is also possible to separate each subsystem into a

new group of subsystems: see Sec. IVC3 (i) for an example.

E. Checking the correctness of the operators

It is not enough to derive the kinetic energy operator, it is also important to check

its correctness. For this purpose, two strategies have been adopted. First, for several

particular cases, we have compared the operators obtained from Eqs. (111,C4,C5,C6) with

those obtained using the expression of Podolsky from Eq. (2) derived with Mathematica or

Maple [67]. We have checked, for instance, that Eq. (C4) gives the same matrix elements

as those previously calculated with Maple and published in Ref. [124] for an (AB)CD(EF)

system in valence coordinates (Figure 3). We have also verified that Eqs. (111,C4,C5,C6)

can reproduce the KEOs (including the rotation and the Coriolis coupling) published in

Ref. [59]. In Ref. [87], the KEOs for tetra-atomic systems parametrized by Jacobi, valence,

and satellite coordinates were given. They were first calculated ’by hand’ and later checked

using Mathematica [125].

Second, for several systems, the correctness of the derivation of the KEO was checked
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by comparing it with numerical results provided by the program TNUM of Lauvergnat and

Nauts [68]. TNUM computes G, Γ, and C of Eqs. (111,C4) numerically. We have verified

that the numerical values of all the functions Gij(q) at several non-symmetrical grid points

q agree with those provided by the program TNUM for systems such as C2H4 [126], HCF3 in

valence coordinates [127] or the Zundel cation, H5O
+
2 , in Jacobi coordinates [128] or in mixed

Jacobi/valence coordinates (in all cases for J = 0). The latter test does not only guarantee

that the KEO is correct but also that the operator is correctly implemented in the code used

to solve the Schrödinger equation, in this case the Heidelberg MCTDH package [129].
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III. EXPLICIT EXPRESSIONS FOR PARTICULAR CASES AND APPLICA-

TIONS

In Part II, we have described the configuration of an N -particle system, in the SF frame,

by N -1 relative position vectors. We have considered only isolated molecular systems but

it is straightforward to generalize the expressions presented above to molecules that are

not isolated. We have presented several vector parametrizations of an N -particle system,

for instance, parametrizations based on Jacobi or valence vectors (see, e.g., Figures 1,2,3).

We have expressed the kinetic energy in terms of quasi-momenta (see Section IIA (iii) for

a definition of the quasi-momenta): the angular momenta associated with the vectors. We

have explained how to switch from one set of vectors to another one and how to calculate

the matrix M that appears in the kinetic energy. In Section IIB 2 (ii), we have shown

that the quantization of the kinetic energy is straightforward. In order to separate the

overall rotation from the internal vibration, we have introduced, in Section IIB 2 (iii), the

Body-Fixed (BF) frame of the molecular system and highlighted some general properties

regarding the projections of the angular momenta onto the BF axes. In Section IIC 1 (i),

we have chosen a very particular definition of the BF frame (see Figure 6), and, in Section

IIC 1 (ii), we have parametrized the vectors, in turn, by (poly)spherical coordinates. We

have then provided the general expression of the KEO for orthogonal vectors (Section IIC 1

(iv)) and for non-orthogonal vectors (Appendix B) in terms of the angular momenta. From

these general expressions, we have deduced, in Section IIC 2, another general expression of

the KEO in terms of the conjugate momenta of the 3N -6 internal polyspherical coordinates.

Finally, we have explained how to combine the polyspherical approach with the separation

into subsystems. The present Part of this review is devoted to the presentation of different

applications treated in full dimensionality, using the results obtained in Part II.

For concrete applications, two cases must be distinguished:

(1) Geometries corresponding to angular singularities in the KEO are accessible during

the physical process. This is usually true for so-called flexible systems, i.e. systems

presenting motions of large amplitude such as scattering systems. In this case, one should

use the KEO in terms of angular momenta, see Eqs. (92,B5,B6,B7) together with the basis
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set of spherical harmonics of Eq. (98). The action of the KEO is rather simple in this basis

set and the singularities are removed analytically. In a grid representation, however, one

has to deal with complicated multi-dimensional DVRs.

(2) The potential prevents the system from reaching singular geometries. Such a system

is called semi-rigid, although it may exhibit large amplitude motions. For semi-rigid

systems one should utilize the expression of the KEO in derivative operators ∂
∂qi

of

Eqs. (111,C4,C5,C6). The number of terms in the KEO increases, but only simple

one-dimensional primitive functions (DVRs or FBRs) are required.

A. Flexible systems

1. Tri- and tetra-atomic flexible systems

For the explicit expression of the KEOs in angular momenta for tri-atomic systems with

the conventions of Section IIC 1, we refer the reader to Ref. [130] for orthogonal vectors and

to Ref. [131] for non-orthogonal vectors. Let us focus on tetra-atomic systems and consider

an example: the H2+H2 inelastic collision studied in Ref. [132].

In order to describe this process, it is natural to parametrize the system by three Jacobi

vectors as shown in Figure 1. The BF frame is oriented such that ~e zBF is parallel to the

vector ~R3 and that ~R2, ~e xBF and ~e zBF lie in the same half-plane (or, in other words, ~R2

is parallel to the ((xBF GzBF ), xBF > 0) half-plane). Before and after the collision, the two

molecules can freely rotate, and therefore the singularities corresponding to θBF
i = 0 or π

are accessible. Consequently, it is the expression of the KEO in terms of angular momenta

of Eq. (92) that must be applied.

The reduced masses of Eq. (39) become

{µ1 = µ2 =
mH

2
, µ3 = mH}; (134)

and the KEO of Eq. (76) becomes
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2T̂ =
( ~̂J† ~̂J − (~̂L†

1 + ~̂L†
2)

~̂J − ~̂J†(~̂L1 + ~̂L2) + ~̂L†
1
~̂L1 + ~̂L†

2
~̂L2 + ~̂L†

2
~̂L1 + ~̂L†

1
~̂L2)BF

µ3R2
3

+

3
∑

i=1

P̂ †
Ri

P̂Ri

µi
+

(~̂L†
1
~̂L1)BF

µ1R2
1

+
(~̂L†

2
~̂L2)BF

µ2R2
2

.

(135)

Furthermore, in view of (86),

(~̂L†
1 + ~̂L†

2) ~̂J + ~̂J†(~̂L1 + ~̂L2) = (2 ~̂J(~̂L1 + ~̂L2))BF , (136)

and

~̂L†
2
~̂L1 + ~̂L†

1
~̂L2 = 2(~̂L1

~̂L2)BF . (137)

In Eqs. (136,137), the order of the operators in the scalar products is again strictly fixed.

The BF-components of ~̂L2, the angular momentum associated with ~R2, the vector that is

involved in the definition of the BF frame, must remain on the right hand side of the scalar

products. Eq. (92) becomes

T̂ =
3
∑

i=1

(

− 1

2µi

1

Ri

∂2

∂R2
i

Ri

)

+
2
∑

i=1

(

1

2µ3R2
3

+
1

2µiR2
i

)

~̂L
†
i
~̂Li

+
~̂J2
BF

2µ3R
2
3

− ĴzBF (ĴzBF − L̂1zBF ) + L̂1zBF L̂1zBF

µ3R
2
3

+
(L̂1 +BF L̂2−BF + L̂1−BF L̂2+BF ) −

∑2
j=1(Ĵ+BF L̂j −BF + Ĵ−BF L̂j +BF )

2µ3R2
3

.

(138)

The angular basis of Eq. (98) becomes

< angles | J, Ω, ℓ1, Ω1, ℓ2, Ω2 >= (2π)1/2Y Ω
J (β, γ)(−1)ΩY Ω2

ℓ2
(θBF

2 , 0)Y Ω1
ℓ1

(θBF
1 , ϕBF

1 ) , (139)

with Ω = Ω1 +Ω2. The action of the projections of angular momenta appearing in Eq. (138)

onto the angular basis functions of Eq. (139) is the usual one and is given by Eq. (101). In

particular, if we use the volume element

sin β dβ dγ dR1 dR2 dR3 sin θBF
1 dθBF

1 sin θBF
2 dθBF

2 dϕBF
1 , (140)
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Eq. (138) becomes

T̂ =

3
∑

i=1

(

− 1

2µi

∂2

∂R2
i

)

+

2
∑

i=1

(

1

2µ3R2
3

+
1

2µiR2
i

)

~̂L
†
i
~̂Li

+
~̂J2
BF

2µ3R
2
3

− ĴzBF (ĴzBF − L̂1zBF ) + L̂1zBF L̂1zBF

µ3R
2
3

+
(L̂1 +BF L̂2−BF + L̂1−BF L̂2+BF ) −

∑2
j=1(Ĵ+BF L̂j −BF + Ĵ−BF L̂j +BF )

2µ3R2
3

.

(141)

In addition, in view of Eq. (101), we obtain

~̂L
†
1
~̂L1Y

Ω1

ℓ1
(θBF

1 , ϕBF
1 )Y Ω

J (β, γ) = ℓ1(ℓ1 + 1)Y Ω1

ℓ1
(θBF

1 , ϕBF
1 )Y Ω

J (β, γ) ,

~̂L
†
2
~̂L2Y

Ω2
ℓ2

(θBF
2 , 0)Y Ω

J (β, γ) = ℓ2(ℓ2 + 1)Y Ω2
ℓ2

(θBF
2 , 0)Y Ω

J (β, γ) ,

~̂L1 zBF Y Ω1
ℓ1

(θBF
1 , ϕBF

1 )Y Ω
J (β, γ) = Ω1Y

Ω1
ℓ1

(θBF
1 , ϕBF

1 )Y Ω
J (β, γ) ,

~̂L1 zBF Y Ω2

ℓ2
(θBF

2 , 0)Y Ω
J (β, γ) = Ω2Y

Ω2

ℓ2
(θBF

2 , 0)Y Ω
J (β, γ) ,

L̂1+BF L̂2−BF Y Ω1

ℓ1
(θBF

1 , ϕBF
1 )Y Ω2

ℓ2
(θBF

2 , 0)Y Ω
J (β, γ) =

C+(ℓ1, Ω1)C−(ℓ2, Ω2)Y
Ω1+1
ℓ1

(θBF
1 , ϕBF

1 )Y Ω2−1
ℓ2

(θBF
2 , 0)Y Ω

J (β, γ) ,

L̂1−BF L̂2+BF Y Ω1
ℓ1

(θBF
1 , ϕBF

1 )Y Ω2
ℓ1

(θBF
2 , 0)Y Ω

J (β, γ) =

C−(ℓ1, Ω1)C+(ℓ2, Ω2)Y
Ω1−1
ℓ1

(θBF
1 , ϕBF

1 )Y Ω2+1
ℓ2

(θBF
2 , 0)Y Ω

J (β, γ) ,

Ĵ∓BF
~̂L1±BF Y Ω1

ℓ1
(θBF

1 , ϕBF
1 )Y Ω

J (β, γ)(−1)Ω =

C±(J, Ω)C±(ℓ1, Ω1)Y
Ω1±1
ℓ1

(θBF
1 , ϕBF

1 )Y
(Ω±1)
J (β, γ)(−1)(Ω±1) ,

Ĵ∓BF
~̂L2±BF Y Ω2

ℓ2
(θBF

2 , 0)Y Ω
J (β, γ)(−1)Ω =

C±(J, Ω)C±(ℓ2, Ω2)Y
Ω2±1
ℓ2

(θBF
2 , 0)Y

(Ω±1)
J (β, γ)(−1)(Ω±1) .

(142)

The KEO of Eq. (138) was also applied to the study of the photo-dissociation dynamics

of the Ar2HBr van der Waals molecule with MCTDH [133]. Obviously, the reduced masses

are different for Ar2HBr (see Ref. [133] for their actual values). In addition, it goes without

saying that the KEO of Eq. (138) for standard diatom-diatom Jacobi coordinates is not a

new result. Some operators similar to Eq. (138) have already been applied in the past, often

with different conventions (see for instance [134–137]).
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FIG. 12: Definition of the five Jacobi vectors coordinates for the (H2)3 trimer. Here, gi is the

center of mass of the i-th monomer H2, G1 is the center of mass of the (H2)2 subsystem.

2. Weakly bound molecular trimers

Weakly bound molecular systems feature several minimum energy structures and large

amplitude motions between regions connected by low energy barriers. Consequently, they

can easily reach singular geometries. Let us consider an example in molecular spectroscopy,

the calculation of the vibrational energy levels of the hydrogen trimer (H2)3 achieved by

Costa and Clary [138] and Yu [139]. The system is described by five Jacobi vectors as shown

in Figure 12. The five reduced masses read

{µ1 = µ2 = µ3 =
mH

2
, µ4 = mH , µ5 =

4

3
mH}; (143)

and Eq. (92) straightforwardly leads to
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T̂ =

5
∑

i=1

(

− 1

2µi

1

Ri

∂2

∂R2
i

Ri

)

+

4
∑

i=1

(

1

2µ4R2
4

+
1

2µiR2
i

)

~̂L
†
i
~̂Li

+
~̂J2
BF

2µ5R2
5

−
2ĴzBF (ĴzBF −∑3

i=1 L̂izBF ) +
∑3

i=1 L̂izBF (2L̂izBF +
∑3

j=1,j 6=i L̂jzBF )

2µ5R2
5

+

∑3
i=1

∑4
j=1,j>i(L̂i +BF L̂j −BF + L̂i−BF L̂j +BF ) −∑4

j=1(Ĵ+BF L̂j −BF + Ĵ−BF L̂j +BF )

2µ5R
2
5

.

(144)

The angular basis of Eq. (98) becomes

< angles | J, Ω, ℓ1, Ω1, ℓ2, Ω2, ℓ3, Ω3, ℓ4, Ω4 >=

(2π)1/2Y Ω
J (β, γ)(−1)ΩY Ω4

ℓ4
(θBF

4 , 0)Y Ω3
ℓ3

(θBF
3 , ϕBF

3 )Y Ω2
ℓ2

(θBF
2 , ϕBF

2 )Y Ω1
ℓ1

(θBF
1 , ϕBF

1 ) , (145)

with Ω = Ω1 + Ω2 + Ω3 + Ω4. In Ref. [138], as well as in Eq. (38) of Ref. [79], appears the

’sign of (k-K)’ in the matrix elements (K-k corresponds to our ΩN−2). This sign does not

appear in Eq. (101). This difference can be traced back to a slightly different convention in

the angular basis set. Indeed, Ref. [138] and Ref. [79] use P
|Ω4|
ℓ (cos(θBF

4 )) instead of our

P̃Ω4
ℓ (cos(θBF

4 )) = (−1)Ω4PΩ4
ℓ (cos(θBF

4 )) = (2π)1/2Y Ω4
ℓ4

(θBF
4 , 0) (146)

in Eq. (145) (we recall that PΩ4

ℓ (cos(θBF
4 )) is a normalized associated Legendre function).

3. Protonated methane in Radau coordinates

Isolated CH+
5 is a stable but very floppy system, the protons continually hopping between

120 minima [140]. Very recently, Wang and Carrington [140] reported the first vibrational

energy levels including all the 12 internal degrees of freedom. They adopted the polyspherical

approach based on a parametrization of five Radau vectors, as shown in Figure 13. For the

reader who is not familiar with Radau coordinates, let us add that these are often introduced

to replace valence coordinates in describing the vibrational motions of molecules in which

the central atom is much heavier than the end atoms [141]. For this type of molecules, both

systems of coordinates are very similar, the former having the advantage of being orthogonal.

The Radau vectors, ~Ri, are the vectors
−−→
BH i, B being the canonical point of CH+

5 defined

as the geometric mean of CG and GGH5. Here, C is the C atom, G is the center of mass
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FIG. 13: Definition of the five Radau vectors coordinates for the CH5+ system. Here, B is the

canonical point of CH+
5 , G is the center of mass of CH+

5 , GH5 is the center of mass of the H5

subsystem.

of CH+
5 , GH5 is the center of mass of the H5 subsystem. The canonical point is defined by

(BGH5)
2 = GGH5 × CGH5 [141]. Let us also put ~ri =

−−→
GH i. It entails that

~R1 = (1 − αmH)~r1 − αmH~r2 − αmH~r3 − αmH~r4 − αmH~r5 ,

~R2 = −αmH~r1 + (1 − αmH)~r2 − αmH~r3 − αmH~r4 − αmH~r5 ,

~R3 = −αmH~r1 − αmH~r2 + (1 − αmH)~r3 − αmH~r4 − αmH~r5 ,

~R4 = −αmH~r1 − αmH~r2 − αmH~r3 + (1 − αmH)~r4 − αmH~r5 ,

~R5 = −αmH~r1 − αmH~r2 − αmH~r3 − αmH~r4 + (1 − αmH)~r5 ,

(147)

with

α = (1 −
√

M

mC
)/mH5 , (148)
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and M=mC+5mH , mH5 = 5mH . The KEO is formally identical to the operator of Eq. (144)

except that µi = mH , with (i = 1, . . . , 5).

B. Semi-rigid systems

1. Tetra-atomic molecules

(i) Tetra-atomic molecules in orthogonal coordinates:

If the potential prevents the system from reaching singular geometries, the KEO in deriva-

tive operators of Eqs. (111,C4,C5,C6) can be used. Let us detail two examples to explain

how one proceeds. The two examples are the HOOH molecule in Jacobi vectors as shown

in Figure 1, and the NHD2 molecule in Radau vectors as shown in Figure 14. If one aims at

calculating the infra-red spectrum of HOOH as in Ref. [65] or the tunneling dynamics of the

NH chromophore in NHD2 after coherent infrared excitation as in Ref. [142], no singularity

is accessible. The KEO for J = 0 is given by Eqs. (111,C4) for N = 4 and with the following

matrix M:

M =











1
µ1

0 0

0 1
µ2

0

0 0 1
µ3











, (149)

with

{µ1 = µ2 =
mOmH

mO + mH
, µ3 =

mO + mH

2
} (150)

for HOOH in Jacobi coordinates and {µ1 = µ2 = mD, µ3 = mH} for NHD2 in Radau coordi-

nates. The three vectors are in turn parametrized by six internal polyspherical coordinates:

R1, R2, R3, u1, u2, ϕ
BF
1 . Eq. (C7) yields (we use ϕBF

2 = 0)
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FIG. 14: Definition of the three Radau vectors for the NHD2 molecule. Here, B is the canonical

point of NHD2, G is the center of mass of the molecule, GHD2 is the center of mass of the HD2

subsystem. By definition, we have (BGHD2)
2 = GGHD2 × NGHD2 [141].

GRiRi
=

1

µi
; i = 1, 2, 3 ,

Guiui
= (sin θBF

i )
2
(

1

µiR
2
i

+
1

µ3R
2
3

); i = 1, 2 ,

Gu1u2 =
sin θBF

1 sin θBF
2 cos ϕBF

1

µ3R
2
3

,

Gu1ϕBF
1

=
sin θBF

1 sin ϕBF
1 cot θBF

2

µ3R
2
3

,

Gu2ϕBF
1

=
sin θBF

2 sin ϕBF
1 cot θBF

1

µ3R2
3

,

GϕBF
1 ϕBF

1
=

1

µ3R2
3

((cot θBF
1 )

2
+ (cot θBF

2 )
2
) +

1

µ1(sin θBF
1 )

2
R2

1

+
1

µ2(sin θBF
2 )

2
R2

2

− 2

µ3R2
3

cot θBF
2 cos ϕBF

1 cot θBF
1 .

(151)

All the other matrix elements (for instance GRiuj
or GRiϕBF

j
) are equal to zero. Now, the

choice of the following volume element in normalizing wave-functions
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dτ ′ = dR3 dR2 dR1 du2 du1 dϕBF
1 , (152)

entails that the KEO reads

T̂ = −
∑

i=1,2,3

1

2µi

∂2

∂R2
i

−
2
∑

i=1

(
1

2µiR2
i

+
1

2µ3R2
3

)
∂

∂ui
v2

i

∂

∂ui

− cos ϕBF
1

2µ3R2
3

(v1
∂2

∂u1∂u2
v2 + v2

∂2

∂u1∂u2
v1)

− u2

2µ3R
2
3v2

(sin ϕBF
1

∂2

∂u1∂ϕBF
1

v1 + v1
∂2

∂u1∂ϕBF
1

sin ϕBF
1 )

− u1

2µ3R2
3v1

(sin ϕBF
1

∂2

∂u2∂ϕBF
1

v2 + v2
∂2

∂u2∂ϕBF
1

sin ϕBF
1 )

−
2
∑

i=1

(
1

2µiR2
i v

2
i

+
u2

i

2R2
3µ3v2

i

)
∂2

∂ϕBF 2
1

+
u2u1

µ3v2v1R2
3

∂

∂ϕBF
1

cos ϕBF
1

∂

∂ϕBF
1

,

(153)

Here, and in the following, we use the notation:

vi =
√

1 − u2
i = sin θBF

i . (154)

Note that this KEO applies to both HOOH and NHD2, despite the two molecules are

described by different coordinates systems. In fact, Eq. (153) applies to all 4-atom

systems described by orthogonal coordinates, only the masses, µi, have different values.

Furthermore, the KEO of Eq. (153) is identical to the operator given in Eq. (A.5) of

Ref. [65] by Bramley and Carrington (they used Mathematica to calculate the operator).

Note, however, that these authors do not use the same conventions for the coordinates, for

instance their ’r2’ is our R3. In addition, they use θBF
i instead of ui = cos θBF

i : this is why

there is a difference of sign for the terms ∂2

∂θi∂ϕBF
1

(see Eq. (107) to understand the origin of

the change of the sign).

(ii) Tetra-atomic molecules in valence coordinates:
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FIG. 15: Definition of the three valence vectors for the HONO molecule. Here, θnew
2 = π − θBF

2 .

(1) A-B-C-D structure:

Let us now consider a non-orthogonal parametrization of tetra-atomic molecules. For

valence vectors, only two ’clustering’ schemes are possible, denoted as A-B-C-D and A(CBD)

structures. They are shown in Figures 15 and 16, respectively.

In Ref. [143–145], the trans-cis Isomerization of HONO was studied with MCTDH. A

parametrization of three valence vectors as shown in Figure 15 was adopted. This results in

the following matrix M :

M =











1
mH

+ 1
mO

0 1
mO

0 1
mO

+ 1
mN

− 1
mN

1
mO

− 1
mN

1
mO

+ 1
mN











. (155)

In order to be consistent with the conventions used for the potential energy surface calculated

in Ref. [143], we also slightly changed the convention for the angle θBF
2 → θnew

2 = π − θBF
2

(see Figure 15). Because of this, there appears the phase factor Si in Eq. (A.2) of Ref.

[144]. The internal motions are described by six coordinates: R1, R2, R3, u1 = cos θBF
1 ,

u2 = cos θnew
2 , ϕBF

1 . If the following volume element,
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dτ ′ = dR3 dR2 dR1 du2 du1 dϕBF
1 , (156)

is used in normalizing wave-functions, the KEO is obtained from Eqs. (111,C4) and its

explicit expression is given by Eq. (A.2) of Ref. [144].

(2) A(BCD) structure:

Let us consider the second ’clustering’ scheme for a tetra-atomic molecule parametrized

by valence vectors. In Ref. [146–148], the Intra-molecular energy redistribution (IVR) in

HFCO and DFCO with MCTDH was studied. The valence parametrization shown in Figure

16 was adopted.

The matrix M reads

M =











1
mH

+ 1
mC

1
mC

1
mC

1
mC

1
mF

+ 1
mC

1
mC

1
mC

1
mC

1
mO

+ 1
mC











. (157)

If we use the volume element of Eq. (156) in normalizing wave-functions, the KEO can

be obtained from Eqs. (111,C4) and its explicit expression is given by Eq. (15) of Ref. [146].

The KEO of Eq. HFCO shows more terms than those of HONO and NHD2. The two last-

mentioned operators can be derived from the KEO of HFCO just by replacing the matrix

elements of M appearing in Eq. (157) by those of Eq. (149) and (155), respectively. It

is worth noting that the KEO used in Ref. [149] to study the selective population of the

vibrational levels of H2CS with MCTDH is formally identical to the operator of HFCO. The

only difference is that the matrix M, for H2CS, reads

M =











1
mH

+ 1
mC

1
mC

1
mC

1
mC

1
mH

+ 1
mC

1
mC

1
mC

1
mC

1
mC

+ 1
mS











. (158)
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FIG. 16: Valence BF polyspherical coordinates for the HFCO system. ~R2 belongs to the xz plane.
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2. Penta-atomic molecules

(i) Orthogonal coordinates:

In Ref. [150–152], the computation of vibrational levels of methane was reported. A

set of Radau polyspherical coordinates was used. The Radau vectors, for a molecule such

as methane, are identical to those depicted in Figure 13 except that there are only four

Radau vectors for CH4 instead of five for CH+
5 . The internal motions are described by nine

coordinates: R1, R2, R3, R4, u1 = cos θBF
1 , u2 = cos θBF

2 , u3 = cos θBF
3 , ϕBF

1 , and ϕBF
2 . If the

following non-Euclidean volume element,
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dτ ′ = dR4 dR3 dR2 dR1 du3 du2 du1 dϕBF
2 dϕBF

1 , (159)

is used, the KEO of Eqs. (111,C4) becomes (we use again ϕi instead of ϕBF
i to simplify the

notation)

T̂ = −
4
∑

i=1

Mii

2

∂2

∂R2
i

−
3
∑

i=1

(
1

2µiR2
i

+
1

2µ4R2
4

)
∂

∂ui
v2

i

∂

∂ui

− cos ϕ1 cos ϕ2 + sin ϕ1 sin ϕ2

2µ4R2
4

(v2
∂

∂u2

∂

∂u1
v1 + v1

∂

∂u1

∂

∂u2
v2)

− cos ϕ1

2µ4R2
4

(v3
∂

∂u3

∂

∂u1
v1 + v1

∂

∂u1

∂

∂u3
v3) −

cos ϕ2

2µ4R2
4

(v3
∂

∂u3

∂

∂u2
v2 + v2

∂

∂u2

∂

∂u3
v3)

− u3

2v3µ4R2
4

[
∂

∂u1
v1 sin ϕ1

∂

∂ϕ1
+ v1

∂

∂u1

∂

∂ϕ1
sin ϕ1 + (

∂

∂u2
v2 sin ϕ2

∂

∂ϕ2
+ v2

∂

∂u2

∂

∂ϕ2
sin ϕ2)]

+
1

2µ4R2
4

[
∂

∂u1
v1(

u2

v2
(sin ϕ1 cos ϕ2 − cos ϕ1 sin ϕ2) −

u3

v3
sin ϕ1)

∂

∂ϕ2

+ v1
∂

∂u1

∂

∂ϕ2

(
u2

v2

(sin ϕ1 cos ϕ2 − cos ϕ1 sin ϕ2) −
u3

v3

sin ϕ1)]

+
1

2µ4R2
4

[
∂

∂u2
v2(

u1

v1
(sin ϕ2 cos ϕ1 − cos ϕ2 sin ϕ1) −

u3

v3
sin ϕ2)

∂

∂ϕ1

+ v2
∂

∂u2

∂

∂ϕ1

(
u1

v1

(sin ϕ2 cos ϕ1 − cos ϕ2 sin ϕ1) −
u3

v3

sin ϕ2)]

−
2
∑

i=1

{ ∂

∂u3

v3
sin ϕi cot θi

2µ4R
2
4

∂

∂ϕi

+
∂

∂ϕi
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2
4
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u2

3
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3

)
∂2

∂ϕ2
1
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u3u1

v3v1

∂

∂ϕ1
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∂

∂ϕ1
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− 1

2µ4R2
4
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2

v2
2

+
u2

3

v2
3

)
∂2

∂ϕ2
2

− 2
u3u2

v3v2

∂

∂ϕ2
cos ϕ2

∂

∂ϕ2
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∑
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(
1

2µiR2
i v

2
i

+
1

2µ3R2
3v

2
3

)
∂2

∂ϕ2
i

− u2
3

µ4R2
4v

2
3

∂2

∂ϕ1∂ϕ2
− 1

µ3R2
3v

2
3

∂2

∂ϕ1∂ϕ2

− 1

2µ4R2
4

∂

∂ϕ1
[
u1u2

v1v2
(cos ϕ1 cos ϕ2 + sin ϕ1 sin ϕ2) −

u3

v3
(cos ϕ1

u1

v1
+ cos ϕ2

u2

v2
)]

∂

∂ϕ2

− ∂

∂ϕ2

[
u1u2

v1v2

(cos ϕ1 cos ϕ2 + sin ϕ1 sin ϕ2) −
u3

v3

(cos ϕ1
u1

v1

+ cos ϕ2
u2

v2

)]
∂

∂ϕ1

,

(160)

with µi = mH , and (i = 1, . . . , 4). Of course, the operator of Eq. (160) could be applied to

any set of orthogonal vectors for a penta-atomic system. One simply has to change the four
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FIG. 17: Definition of the four valence vectors for the CHF3 molecule.

reduced masses.

(ii) Non-orthogonal coordinates:

For the study of the vibrations of a molecule such as fluoroform, CHF3, the previous

Radau parametrization is no longer adapted since the F atoms are rather heavy. Hence,

the canonical point, used to define the Radau vectors, is located far from the C atom. The

resulting Radau vectors are therefore very different from the valence vectors and cannot

correctly describe the vibrations in the normal or local mode domains. It is more pertinent

to parametrize CHF3 by four valence vectors, which are shown in Figure 17.

This results in a full matrix M that reads

M =















1
mC

+ 1
mH

1
mC

1
mC

1
mC

1
mC

1
mC

+ 1
mF

1
mC

1
mC

1
mC

1
mC

1
mC

+ 1
mF

1
mC

1
mC

1
mC

1
mC

1
mC

+ 1
mF















. (161)

If one uses the volume element of Eq. (159), the KEO is given by Eqs. (111,C4), as usual.
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Its explicit expression can be found in Appendix D. Let us only point out that we have

recently implemented this nine-dimensional operator in the Heidelberg MCTDH package

[11–15, 129]. In addition, we have used the program TNUM of Lauvergnat and Nauts [68]

to check the correctness of the operator [127]. As already mentioned, the test does not only

guarantee that the KEO is correct but also that the operator is correctly implemented in

the code.

C. Separation into subsystems

Until now, we have confined ourselves to considering only particular cases of the stan-

dard polyspherical approach. For clusters involving molecules of water, the separation into

subsystems is more appropriate than the standard parametrization since the separation

into subsystems allows to have purely intramolecular angles instead of angles mixing the

intra-monomer and inter-monomer motions. The present section aims at giving the explicit

expression of the KEO for several protonated water clusters.

1. Protonated water dimer (Zundel cation)

(i) Jacobi description:

In Ref. [153, 154], the simulation of the IR linear absorption spectrum of H5O
+
2 was

reported. A set of six Jacobi vectors was chosen [128], as depicted in Figure 18. The

system is separated into three subsystems: the two molecules of water and the proton. Each

molecule of water is parametrized by two Jacobi vectors: ~R
(j)
1 , the vector connecting the

center of mass of the H2 subsystem to the O atom, and ~R
(j)
2 , the vector joining one H atom

to the other one (here, j = 1, 2). The two ’remaining’ vectors are the vector ~R2, which

connects the center of mass of one monomer to the center of mass of the other monomer,

and ~R1, the Jacobi vector from the center of mass of the water dimer to the proton. Let

~̂J (j) be the total angular momentum of the j-th molecule of water. This definition entails

that ~̂J (j) =
∑

k=1,2
~̂L

(j)
k , ~̂L

(j)
k being the angular momentum associated with ~R

(j)
k .

According to the general strategy adopted in Section IID, the zBF axis should be parallel

to ~R2 and ~R1 should be parallel to the ((xBF , zBF ); xBF > 0) half-plane. However, for the
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FIG. 18: Jacobi description of the H5O
+
2 system. G1 is the center of mass of the first monomer,

G2 is the center of mass of the second monomer. GH4O2 is the center of the dimer, H4O2.

definition of the ((xBF , zBF ); xBF > 0) half-plane in H5O
+
2 , it is more natural to choose a

vector belonging to one monomer, let say ~R
(2)
2 (it is, indeed, more appropriate to link the

overall rotation of the Zundel cation to the molecules of water than to the proton alone since

the mass of the latter is much smaller). Therefore, as already mentioned in Section IID (i),

we have to face a particular case which is slightly more complicated than the general case

thoroughly treated in Section IID. Using the properties of the angular momenta highlighted

in Sec. II B 2 (iii), we can already predict that the BF-projections of the total angular

momenta of the second monomer have a non-regular behavior. As in Section IIC 1 (iii)

for the BF-components of ~̂LN−2, one needs to introduce an intermediate frame, the E2 frame.

But, prior to the introduction of the E2 frame, let us define a BF frame for each molecule

of water, as in Section IID (ii). Let BF(j) be the intermediate frame associated with the

j-th molecule of water (j = 1 or 2) such as ~e
zBF (j) is parallel to the vector ~R

(j)
2 and ~R

(j)
1 ,

~e
xBF (j) and ~e

zBF (j) lie in the same half-plane (as in Fig. 6). Clearly, for the molecule of

water, the vector ~R
(j)
1 would have been a better choice for the definition of the zBF (j)

axis

since the reduced mass of ~R
(j)
1 is larger than that of ~R

(j)
2 . However, in Ref. [128], we

preferred to use ~R
(j)
2 in order to avoid the singularity which appears in the KEO when ~R2

74



and the zBF (j)
axis are parallel. The orientation of the BF(j) frame with respect to the

E2 frame is determined by three Euler angles: α(j), β(j), γ(j). However, α(2) = 0 since the

((xBF , zBF ); xBF > 0) half-plane is parallel to ~R
(2)
2 .

For the KEO, one obtains in view of Eqs. (125,126)

2T̂ =
2
∑

i=1

P̂ †
Ri

P̂Ri

µi

+
~̂L†

1
~̂L1

µ1R2
1

+ 2
2
∑

j=1

T̂ (j)

+
( ~̂J† − (~̂L†

1 +
∑2

j=1
~̂J (j)

†
)) · ( ~̂J − (~̂L1 +

∑2
j=1

~̂J (j)))

µ2R2
2

, (162)

with

2T̂ (j) =
2
∑

k=1

P̂ †
R

(j)
k

P̂
R

(j)
k

µ
(j)
k

+
2
∑

k=1

~̂L
(j)
k

†
~̂L

(j)
k

µ
(j)
k R

(j)
k

2 , (163)

where µi denotes the reduced mass associated with ~Ri and µ
(j)
k , the reduced mass associated

with ~R
(j)
k . They read

µ
(j)
1 =

2mHmO

2mH + mO
, j = 1, 2 ;

µ
(j)
2 = mH/2, j = 1, 2 ;

µ1 =
mH(4mH + 2mO)

5mH + 2mO

;

µ2 =
2mH + mO

2
. (164)

Next, since it is ~R
(2)
2 that plays a role in the definition of the BF frame, Eq. (127) is no

longer valid. In fact, it is easy to derive an expression similar to Eq. (127) for our particular

case: we would obtain something similar to Eq. (127) except that it is ~̂L
(2)
2 which would

appear on the right hand side of the scalar products instead of ~̂Ln−2 (= ~̂L1 for the Zundel

cation). But, here, let us simply put ~̂J = 0 and recast Eq. (162) as
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2T̂ =

2
∑

i=1

P̂ †
Ri

P̂Ri

µi
+

(~̂L†
1
~̂L1)BF

µ1R2
1

+
2
∑

j=1

[
2
∑

k=1

P̂ †
R

(j)
k

P̂
R

(j)
k

µ
(j)
k

+
(( ~̂J (j)

†
− ~̂L

(j)
1

†
)( ~̂J (j) − ~̂L

(j)
1 ))BF (j)

µ
(j)
k R

(j)
k

2 +
(~̂L

(j)
1

†
~̂L

(j)
1 )BF (j)

µ
(j)
k R

(j)
k

2 ]

+
((~̂L†

1 +
∑2

j=1
~̂J (j)

†
) · (~̂L1 +

∑2
j=1

~̂J (j)))BF

µ2R2
2

. (165)

The BF-components of ~̂L1 are given by Eq. (75) and BFBF (j)
-components of ~̂L

(j)
1 , with

(j = 1, 2), and ~̂J (1) by Eqs. (122) and (124), respectively. But what about the BF- and

BFBF (2)-components of ~̂J (2)? As in Section IIC 1 (iii), we start from another frame, the E2

frame (we recall that the E2 frame is the frame resulting from the first two Euler rotations

only). Since the proton and the two molecules of water are not involved in the definition of

the E2 frame, the expressions of the E2-components in terms of the E2 coordinates of all the

angular momenta appearing in Eq. (165) have a regular form. In particular, one obtains























Ĵ
(2)

xE2

Ĵ
(2)

yE2

Ĵ
(2)

zE2























=



























−cos α
(2)
E2

cotβ
(2)
E2

− sin α
(2)
E2

cos α
(2)
E2

sinβ
(2)
E2

−sin α
(2)
E2

cot β
(2)
E2

cos α
(2)
E2
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(2)
E2
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(2)
E2

1 0 0
























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




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


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








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i

∂
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1
i

∂
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1
i

∂
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(2)
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































, (166)

where α
(2)
E2

, β
(2)
E2

, and γ
(2)
E2

are the three Euler angles of the second molecule of water in the

E2 frame.

The BF-projections of ~̂J (2) are obtained by rotating the E2-projections of ~̂J (2) through

the angle α
(2)
E2

= γ around the zE2 axis






















Ĵ
(2)
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




















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






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






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cos α
(2)
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sin α
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E2

0

− sin α
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cos α
(2)
E2

0
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


















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
















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




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




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



. (167)
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A final change of coordinates from the E2 to the BF coordinates is then performed

γ = α
(2)
E2

, (168)

θBF
1 = θE2

1 ,

ϕBF
1 = ϕE2

1 − α
(2)
E2

,

α
(1)
BF = α

(1)
E2

− α
(2)
E2

,

β
(j)
BF = β

(j)
E2

, (j = 1, 2) ,

γ
(j)
BF = γ

(j)
E2

, (j = 1, 2) ,

θBF (j)

1 = θBF (j)

1 , (j = 1, 2) .

Applying the chain rule to the partial derivatives, gives

∂

∂α
(2)
E2

=
∂

∂γ
− ∂

∂α
(1)
BF

− ∂

∂ϕBF
1

, (169)

∂

∂θE2
1

=
∂

∂θBF
1

,

∂

∂ϕE2
1

=
∂

∂ϕBF
1

,

∂

∂α
(1)
E2

=
∂

∂α
(1)
BF

,

∂

∂β
(j)
E2

=
∂

∂β
(j)
BF

, (j = 1, 2) ,

∂

∂γ
(j)
E2

=
∂

∂γ
(j)
BF

, (j = 1, 2) ,

∂

∂θBF (j)

1

=
∂

∂θBF (j)

1

.

It is important not to forget the term − ∂
∂ϕBF

1
in the first line of Eq. (169). Inserting Eq.

(169) into Eq. (167), we obtain
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. (170)

In addition, in view of Eqs. (69,70)
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Consequently, we explicitly have all the components of the angular momenta appearing

in Eq. (165). It results in a KEO with 95 terms whose explicit expression is given in

the Appendix of Ref. [128]. As already explained in Section II E, the correctness of the

derivation of the KEO was checked by comparing it with numerical results provided by the

program TNUM of Lauvergnat and Nauts [68].

(ii) Mixed Jacobi/valence description:

In Ref. [155], the computation of the Infra-red spectra of the isotopically substituted

forms of the Zundel cation D(D2O)+
2 , H(D2O)+

2 , and D(H2O)+
2 was reported. For technical

reasons (the cluster expansion of the potential failed to converge), it was necessary to switch

from the previous Jacobi parametrization to a mixed valence/Jacobi parametrization which

is depicted in Figure 19. The vectors ~R2 is no longer the Jacobi vector joining the center

of mass of one monomer to the center of mass of the second monomer but a valence vector

joining the two O atoms. The vector ~R1 joins the center of mass of the O2 subsystem to the

proton. The matrix M is no longer diagonal and now reads
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FIG. 19: Mixed Jacobi/valence description of the H5O
+
2 system. GO2 is the center of mass of the

O2 subsystem, or, in other words, the middle of ~R2, the valence vector joining one O atom to the

other one.
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The part of the KEO coming from the diagonal part of the matrix M of Eq. (172) is

identical to the operator for the Jacobi description given in the Appendix of Ref. [128]

except that the reduced masses are different. With the new description, four more terms

crop up in the KEO. They read
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(173)

Let us recast only the first term. Since the conjugate momentum can be written as:

~̂Pi = P̂Ri
~ei −

~ei × ~̂Li

Ri
, (174)

with ~ei = ~Ri/Ri a unit vector along ~Ri; P̂Ri
, the radial momentum and ~̂Li, the angular

momentum; and its adjoint as

(~Pi)
†
= P̂ †

Ri
~ei +

~̂L
†
i × ~ei

Ri

, (175)

T̂~R
(1)
1

~R2
can be rewritten as
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(176)

As already mentioned at the end of Section IID, these terms raise a new technical problem

since the expression of the BF projections of ~̂L
(1)
1 and of the BF(1) projections of ~L2 are
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complicated. Obviously, one of these two frames must be chosen to calculate the scalar

products appearing in Eq. (176), − ~̂L
(1)
1

†

×~e
(1)
1

R
(1)
1

· ~e2×~̂L2

R2
, for instance. If one chooses the BF

frame, equations similar (with α(1), β(1), and γ(1) instead of α, β, and γ) to Eqs. (69,70)

along with (123) must be used to obtain the BF components of ~̂L
(1)
1 . The appearance of

the three Euler matrices of α(1), β(1), and γ(1) complicates the final expression. However, all

these terms can be calculated.

2. Protonated water tetramer (Eigen cation)

For H9O
+
4 , the Eigen cation, a judicious vector parametrization is the mixed Ja-

cobi/Radau one as shown in Figure 20. In Figure 20, the system is separated into four

subsystems: the three molecules of water and the H3O
+ ion. Each molecule of water is

parametrized by two Jacobi vectors: ~R
(j)
1 , the vector connecting the center of mass of the H2

subsystem to the O atom, and ~R
(j)
2 , the vector joining one H atom to the other one (here,

j = 1, 2, 3). The H3O
+ system is parametrized by three Radau vectors, joining BOH3, the

canonical point of H3O
+, to the H atoms. These three Radau are denoted ~R

(4)
i , with (i =

1, 2, 3), in Figure 20.

By definition, (BOH3GH3)
2 = GOH3GH3 × OGOH3, with GH3, the center of mass of the

H3 subsystem; GOH3, the center of mass of H3O
+. Now, the three ’remaining’ atoms are

the three ’Radau’ vectors
−−→
BGj , with (j = 1, 2, 3). Here, B is the canonical point of

the Eigen cation and Gj is the center of mass of the j-th molecule of water. By definition,

(BGH6O3)
2 = GGH6O3×GH3OGH6O3, with G, the center of mass of the Eigen cation; GH6O3,

the center of mass of the water trimer, i.e. the Eigen cation without the H3O
+ ion. The

KEO can be straightforwardly obtained from the formulation of Section IID with n=4, N (j)

= 3 with j = 1, 2, and 3 and N (4) = 4. To be more specific, in view of Eqs. (127,129) this

reads
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FIG. 20: Mixed Jacobi/Radau description of the H9O
+
4 system (see the text).

T̂ =
3
∑

i=1

(

− 1

2µi

1

Ri

∂2

∂R2
i

Ri

)

+
2
∑

i=1

(

1

2µ3R
2
3

+
1

2µiR
2
i

)

~̂L
†
i
~̂Li +

4
∑

j=1

T̂ (j)

+

2
∑

i,j=1 i<j

(~̂Li
~̂Lj)BF

µ3R2
3

−
2
∑

i=1

( ~̂J ~̂Li)BF

µ3R2
3

+
~̂J2
BF

2µ3R2
3

+

j=1,...,4
∑

i=1,...,2

( ~̂J (j) ~̂Li)BF

µ3R2
3

+

4
∑

l,m=1 l<m

( ~̂J (l) ~̂J (m))BF

µ3R2
3

−
4
∑

j=1

( ~̂J ~̂J (j))BF

µ3R2
3

, (177)

and
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T̂ (j) =
2
∑

k=1

(

− 1

2µ
(j)
k

1

R
(j)
k

∂2

∂R
(j)
k

2 R
(j)
k

)

+

(

1

2µ
(j)
2 R

(j)
2

2 +
1

2µ
(j)
1 R

(j)
1

2

)

~̂L
(j)
1

†
~̂L

(j)

1

−
Ĵ

(j) 2

zBF (j)

µ
(j)
2 R

(j)
2

2 −
(Ĵ

(j)

+BF (j) L̂
(j)

1−BF (j) + Ĵ
(j)

−BF (j) L̂
(j)

1 +BF (j) )

2µ
(j)
2 R

(j)
2

2 +
~̂J

(j)

BF (j)

2

2µ
(j)
2 R

(j)
2

2 ,
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and

T̂ (4) =
3
∑

k=1

(

− 1

2µ
(4)
k

1

R
(4)
k

∂2

∂R
(4)
k

2 R
(4)
k

)

+
2
∑

k=1

(

1

2µ
(4)
3 R

(4)
3

2 +
1

2µ
(4)
k R

(4)
k

2

)

~̂L
(4)
k

†
~̂L

(4)

k

−
Ĵ

(4)

zBF (4) (Ĵ
(4)

zBF (4) − L̂
(4)

1zBF (4) ) + (L̂
(4)

1zBF (4) )
2

µ
(4)
3 R

(4)
3

2

+
(L̂

(4)

1 +BF (4) L̂
(4)

2−BF (4) + L̂
(4)

1−BF (4) L̂
(4)

2 +BF (4) )

2µ
(4)
3 R

(4)
3

2

−
∑2

k=1(Ĵ
(4)

+BF (4) L̂
(4)

k −BF (4) + Ĵ
(4)

−BF (4) L̂
(4)

k +BF (4) )

2µ
(4)
3 R

(4)
3

2 +
~̂J
(4)

BF (4)

2

2µ
(4)
3 R

(4)
3

2 ,

(179)

with the corresponding reduced masses:

µ
(j)
1 =

2mHmO

2mH + mO
, j = 1, 2, 3 ;

µ
(j)
2 = mH/2, j = 1, 2, 3 ;

µ
(4)
i = mH , i = 1, 2, 3 ;

µi = 2mH + mO, i = 1, 2, 3 .

(180)
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IV. DESCRIPTION OF LARGE SYSTEMS WITH ACTIVE POLYSPHERICAL

COORDINATES

The rigorous quantum mechanical description of the dynamics of polyatomic molecular

systems remains a formidable challenge for the theoretical chemists [156, 157]. Indeed, the

cost of quantum dynamics simulations grows very rapidly with the number of degrees of

freedom involved. For the numerical solution of the Schrödinger equation of the nuclei,

very important developments have been recently introduced to describe the motion of

molecular systems with 10-30 degrees of freedom: for instance, the MCTDH, CI-VSCF,

WOSA approaches already mentioned in the introduction. More recently, the multilayer

formulation of the MCTDH algorithm [11, 12, 158–161] seems promising for the treatment

of hundreds of particles. However, the solution of the Schrödinger equation of the nuclei will

still be a challenging task, in particular due to the complexity of the Hamiltonian operator.

Another bottleneck in the future treatment of large systems will be the need for potential

energy surfaces (the potential energy surfaces of the ground and of the excited states).

In principle, since the potential energy surfaces for an N -atom system depend on 3N -6

coordinates and about 10 points are needed on the surfaces for each degree of freedom in

order to characterize them, about 103N−6 ab initio quantum chemistry calculations should

be required for each electronic state. However, important progress have been made in the

surface-fitting procedures as well, which allows to describe PESs with a limited number of

ab initio calculations. For instance, we mention the Sheppard interpolation scheme and

the fitting with redundant coordinates [162–171]. However, the generation of an accurate

multi-dimensional PES remains a difficult task.

Fortunately, dynamical processes in complex molecular systems often evolve around

a ’system’ or ’reactive core’ composed of relatively few ’active’ degrees of freedom that

carry the dominant part of the dynamics. The latter are generally coupled to a ’bath’

composed of a much larger set of degrees of freedom that act as an environment. Under

these conditions, it is reasonable to invoke simplifying approximations for the other degrees

of freedom when calculating the potential and simulating dynamics. These approximations

permit the construction of simple model Hamiltonians with a relatively small number of
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calculations for the electronic energy. A widely used approach is the rigid-constraint one,

which consists in freezing some bond lengths, angles or entire atomic groups: the dynamics

simulations are performed within a subspace of ’active’ coordinates only and, for each

set of active coordinates, the potential is calculated by relaxing all remaining coordinates

according to a local potential minimization (see Refs. [68, 69], and references therein for

applications).

An improvement of the previous model can also be envisioned by means of the reaction

path Hamiltonian approach [42, 43] that makes use of a harmonic approximation locally

defined along one or several reaction or ’active’ coordinates (see also [21, 69, 172] for

other models related to reaction path Hamiltonian). In its simplest version, this approach

becomes a model composed of one or several active coordinates simply coupled to a bath

[43]. With the reaction path Hamiltonian approach, many degrees of freedom can be taken

into account in the dynamics, using MCTDH or its multilayer formulation for instance,

whereas the number of ab initio quantum chemistry calculations does not dramatically

increase (see for instance [173–175] for applications).

Another fruitful model has been formulated [46–48] to describe multimode vibronic

coupling effects. This model provides the first terms in a Taylor expansion of a diabatic

representation of the potential surfaces around the Franck-Condon point and can correctly

reproduce the nonadiabatic effects in its vicinity. Thanks to this model, even though the

number of degrees of freedom in the dynamics can be relatively large, the number of ab

initio quantum chemistry calculations and the number of parameters in the analytical

expression of the potential are rather limited [176–178]. More recently [179, 180], the model

has been generalized to study the quantum dynamics through a conical intersection in a

macro-system. The system is also split into a ’system’ that collects the most important

’active’ coordinates and a ’bath’. The bath modes are transformed to three ’effective’ modes

only, and it has been shown that the effective modes reproduce the short-time dynamics of

the macro-system correctly.

These two models, the reaction path Hamiltonian and the vibronic coupling model,

demonstrate that it is possible to correctly reproduce elementary processes in chemical

dynamics with a relatively modest number of calculations for the electronic energy and for
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dynamics. Obviously, the choice of the active coordinates is crucial. More precisely, only a

judicious choice of active coordinates allows to carry out the dominant part of the dynamics

using a small number of degrees of freedom.

Now, rectilinear coordinates, such as the Cartesian or normal-mode coordinates, may be

unsuitable since a huge number of them is necessary to describe chemical processes when

motions of large amplitude are involved. Consequently, curvilinear coordinates are some-

times the only coordinates that can correctly describe these chemical processes with a limited

number of degrees of freedom. The importance of curvilinear coordinates to describe elemen-

tary processes in chemistry is well known and has already been highlighted by numerous

publications: see, for instance, Ref. [51, 52] for the calculation of thermal rate constants of

chemical reactions or Ref. [55, 56] for photochemical reactivity involving conical intersec-

tions. The number of quantum mechanical simulations with curvilinear coordinates for these

processes is however rather limited. This difficulty probably lies in obtaining the correct ki-

netic energy operator in a form that is not too involved and well-adapted to the numerical

methods used to solve the Schrödinger equation. The goal of the present Part of the present

review is (i) to present a rigorous theoretical background to derive kinetic energy operators

when only a limited set of ’active’ coordinates is considered to simulate the dynamics and,

(ii) to show that the polyspherical approach provides an ideal framework to obtain these

operators in a form that is suitable to numerical applications.

A. Kinetic energy operators for rigidly and adiabatically constrained molecular

systems

Let the N -atom system be subject to constraints, so that its motion is no longer

free. The purpose of the additional constraints is to reduce the dimensionality of the

problem, from 3N -6 (free system) internal degrees of freedom to n < 3N -6 internal degrees

of freedom by means of m = 3N -n-6 additional constraints. Two cases must be distinguished:

(1) The rigid-constraint approach: it consists in freezing some bond lengths or angles.

(2) The adiabatic-constraint approach: it consists in adjusting the variations of the

inactive coordinates to those of the active coordinates.
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The rigorous derivation of the corresponding constrained kinetic energy operators is a

rather delicate task [68–70, 72, 98, 181–187] and is reviewed in the present Section. The

results presented below (for instance Eqs. (190,211)) do not depend on the choice of the

internal coordinates, and, consequently, they are not just valid for polyspherical coordinates.

Let the 3N -6 internal degrees of freedom {qi; i = 1, . . . , 3N−6} be collectively denoted q.

The starting point in applying constraints to a molecular system to constraints consists in

partitioning the set of internal degrees of freedom into two subsets: q′ and q′′. q′ corresponds

to the set of ’active’ coordinates, {q′i; i = 1, . . . , n}, and q′′ corresponds to the set of ’inactive’

coordinates, {q′′i ; i = 1, . . . , m}, with n+m = 3N − 6. In addition, P̂ ′, P̂ ′′, Ĵ correspond to

{P̂q′i
= 1

i
∂

∂q′i
; i = 1, . . . , n}, {P̂q′′i

= 1
i

∂
∂q′′i

; i = 1, . . . , m}, and {ĴxBF , ĴyBF , ĴzBF }, respectively

(see Eq. (77) for the expression of ĴxBF , ĴyBF , and ĴzBF in terms of the conjugate momenta

associated with the Euler angles). After this separation into active and inactive coordinates,

the KEO can be written as follows

2T̂ =
[

P̂ ′† P̂ ′′† Ĵ
]

Ξ











P̂ ′T

P̂ ′′T

ĴT











=
[

P̂ ′† P̂ ′′† Ĵ
]











Σ′ ΩT σ′T

Ω Σ′′ σ′′T

σ′ σ′′ Γ





















P̂ ′T

P̂ ′′T

ĴT











.

(181)

The matrix Ω, appearing in Eq. (181), corresponds to the coupling between active and

inactive coordinates. In the particular case of standard polyspherical coordinates, all the

matrix elements of Eq. (181) could be obtained from the matrices G, Γ, and C, which are

given by Eqs. (C4,C5,C6), along with equations similar to Eq. (107). However, it should be

made clear that the KEO in Eq. (181) can be expressed in terms of any set of coordinates

and the results presented below are valid whatever the set of coordinates.
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1. Rigid-constraint approach

If the inactive coordinates are fixed once and for all, the m = 3N −6−n rigid constraints

can be expressed as

q′′i = q′′i|o; i = 1, . . . , m ; (182)

or equivalently

q̇′′i = 0; i = 1, . . . , m ; (183)

where the dots denote the time-derivatives.

Two important points must be addressed at this level:

(1) Eq. (183) is not equivalent to

P̂q′′i
= 0; i = 1, . . . , m ; (184)

In other words, starting from the constraint-free KEO of Eq. (181) and applying the rules

(P̂q′′i
= 0; i = 1, . . . , m) does not lead to the correct constrained KEO.

(2) Regarding the overall rotation of the system, two cases must be distinguished. These

two cases correspond to two different kinetic energy operators and to two different experi-

mental conditions:

(i) the total angular momentum J is constant. It is the subject of the present section to

derive the constrained KEOs for this case.

(ii) The molecule is in a fixed orientation or, more precisely, the BF frame is in a fixed

orientation, that corresponds to

α̇ = β̇ = γ̇ = 0 , (185)

with α, β, γ, the three Euler angles introduced in Section IIB 2. Here also Eq. (185) is not

equivalent to P̂α = P̂β = P̂γ = 0 , and thus, is not equivalent to J = 0. The derivation of the

constrained KEOs corresponding to this second case is not explicitly treated in this section.

However, using the results presented below (Eqs. (190,211)), its derivation is almost trivial.

Indeed, if the case of a molecule oriented in space is considered, the three Euler angles

play the role of inactive coordinates. The corresponding KEO could be obtained simply by
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recasting Eq. (181) in terms of the three conjugate momenta associated with the Euler angles

(P̂α = 1
i

∂
∂α

, P̂β = 1
i

∂
∂β

, and P̂γ = 1
i

∂
∂γ

) instead of {ĴxBF , ĴyBF , ĴzBF }. The transformation is

straightforward and given by Eq. (77) of Section IIC 1. After this transformation, the three

Euler angles can then simply be added to the group of the inactive coordinates q′′, which

now contains m+3 coordinates and the new KEO reads

2T̂ =
[

P̂ ′† P̂ ′′†
]





Σ′ ΩT

Ω Σ′′









P̂ ′T

P̂ ′′T



 .

(186)

From now on, we restrict ourselves to considering the case (i) only, i.e. the Euler angles

never play the role of inactive coordinates and we start from the KEO given by Eq. (181).

In order to derive the constrained kinetic energy operator, it is necessary to come back to the

general definition of the conjugate momenta and angular momentum components without

constraints [98]:











q̇′T

q̇′′T

ωT











=











Σ′ ΩT σ′T

Ω Σ′′ σ′′T

σ′ σ′′ Γ





















P̂ ′T

P̂ ′′T

ĴT











,

(187)

where ω denotes {ωxBF , ωyBF , ωzBF }, i.e. the angular velocity vector that specifies the angu-

lar speed and axis about which a framework is rotating. Let P̂ ′|o, P̂ ′′|o, Ĵ |o be the (conjugate

and angular) momenta with the extra constraints of Eq. (182): the mark |o indicates that

the system being subject to rigid constraints. It is important to point out that, in general,

P̂ ′|o 6= P̂ ′ and P̂ ′′|o 6= 0. Imposing the constraints of Eq. (182), i.e. q̇′′ = 0, in Eq. (187)

results in [181]

Ω|oP̂ ′|o
T

+ Σ′′|oP̂ ′′|o
T

+ σ′′|oT
Ĵ |o

T
= 0 , (188)

where for instance: Σ′′|o = Σ′′(q′; q′′|o) = Σ′′(q′i, i = 1, . . . , n; q′′j = q′′j |o, j = 1, . . . , m). In

other words, the inactive coordinates are fixed in Σ′′|o. The same notation holds, of course,

for all the matrices. Eq. (188) yields

P̂ ′′|o
T

= −Σ′′|o−1
(Ω|oP̂ ′|o

T
+ σ′′|oT

Ĵ |o
T
) . (189)
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In view of Eq. (189), it appears that Eq. (183) is not equivalent to Eq. (184). Finally,

inserting Eq. (189) into Eq. (181) gives

2T̂ |o =
[

P̂ ′|o
†
Ĵ |o

]

ξ|o





P̂ ′|o
T

Ĵ |o
T





=
[

P̂ ′|o
†
Ĵ |o

]





(Σ′|o − Ω|oT
Σ′′|o−1

Ω|o) (σ′|oT − Ω|oT
Σ′′|o−1

σ′′|oT )

(σ′|o − σ′′|o Σ′′|o−1
Ω|o) (Γ|o − σ′′|o Σ′′|o−1

σ′′|oT )









P̂ ′|o
T

Ĵ |o
T



 .

(190)

In order to complete the derivation of the quantum-mechanical kinetic energy operator

T̂ |o, we also have to calculate the Jacobian of the transformation from the constrained

coordinates {q′; q′′|o} to the Cartesian coordinates. The Jacobian is equal by construction,

to |Det[ξ|o]|−
1
2 , where ξ|o is the matrix appearing in Eq. (190). It is useful to express this

Jacobian in terms of the Jacobian of the ’free’ system:

Jfree
e = |Det[Ξ]|−

1
2 , (191)

i.e. the Jacobian of the transformation from the coordinates {q′; q′′} to the Cartesian co-

ordinates (Ξ is the matrix appearing in Eq. (181)). It can be shown (see Section 2 in Ref.

[72]) that

Det[Ξ] = Det[Σ′′] Det[ξ] , (192)

where

ξ =





(Σ′ −ΩT Σ′′−1
Ω) (σ′T −ΩT Σ′′−1

σ′′T )

(σ′ − σ′′ Σ′′−1
Ω) (Γ − σ′′ Σ′′−1

σ′′T )



 . (193)

By introducing the constraints (q′′i = q′′i|o; i = 1, . . . , m), one obtains

Det[ξ|o] = Det[Ξ|o] Det[Σ′′|o]−1 , (194)

so that, for the Jacobian

Jcon
e |o(q′) = Jfree

e |o(q′)
√

|Det[Σ′′|o]| . (195)
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In other words, the kinetic energy operator of Eq. (190) is correct only for the case in which

the wave functions are normalized as follows:

∫

Ψ∗Ψdτ = 1 ,

(196)

where

dτ = Jcon
e |o(q′) dq′ dα sin β dβ dγ ,

(197)

with dq′ = dq′1 . . . dq′n and α, β, and γ denote the three Euler angles. However, since
√

|Det[Σ′′|o]| is, in general, complicated, it is often profitable to normalize the wave functions

as follows:

∫

Ψ∗Ψdτ ′ = 1 ,

(198)

where

dτ ′ = dq′ dα sin βdβdγ ,

(199)

then an extra-potential (i.e. purely multiplicative) term pops up (see Eq. (17)):

V con = (Jcon
e |

1
2
o T̂ |oJcon

e |−
1
2

o ) . (200)

In Eq. (200) T̂ |o does not operate beyond the parentheses. In other words, the KEO

T̂ |o + V con, with T̂ |o coming from Eq. (190), V con coming from Eq. (200), must be used

along with Eqs. (198,199). Note also that, with the volume element of Eq. (199), P̂ ′|o
†

=

P̂ ′|o.

91



2. Adiabatic-constraint approach

An improvement on the rigid-constraint approach consists in adjusting the inactive co-

ordinates to the active coordinates, i.e. Eq. (182) is replaced by

q′′i = q′′i|ad(q
′); i = 1, . . . , m ; (201)

which can be collectively rewritten as q′′ = q′′|ad(q
′) (see Eq. (236) for example). Let us

first perform a new change of coordinates from {q′; q′′} to {q′; f}, with

f = q′′ − q′′|ad(q
′) . (202)

It is clear that Eq. (201) is equivalent to

f = 0 , (203)

i.e. the adiabatic constraints of Eq. (201) are equivalent to rigid constraints on the ’new’

set of coordinates, {q′; f}: we can thus apply the results of Section IVA1. However, we

first have to perform the change of coordinates from {q′; q′′} to {q′; f}. Let {P̂fi
= 1

i
∂

∂fi
; i =

1, . . . , m} be collectively denoted P̂f . The KEO of Eq. (181) can be rewritten as

2T̂ =
[

P̂ ′† P̂
†
f Ĵ

]

Ξ′











P̂ ′T

P̂ T
f

ĴT











=
[

P̂ ′† P̂
†
f Ĵ

]











Σ′
new Ωnew

T σ′
new

T

Ωnew Σ′′
new σ′′

new
T

σ′
new σ′′

new Γnew





















P̂ ′T

P̂ T
f

ĴT











,

(204)

with

92













Σ′
new Ωnew

T σ′
new

T

Ωnew Σ′′
new σ′′

new
T

σ′
new σ′′

new Γnew











=











1 0 0

D 1 0

0 0 1











×











Σ′ ΩT σ′T

Ω Σ′′ σ′′T

σ′ σ′′ Γ





















1 DT 0

0 1 0

0 0 1











,

(205)

where 1 and 0 denote the identity matrix and the zero matrix, respectively. Moreover,

Dij = −
∂q′′j |eq(q′)

∂q′i
. (206)

In other words, the matrix

d =











1 0 0

D 1 0

0 0 1











(207)

is the Jacobian matrix of the transformation from {q′; q′′; α, β, γ} to {q′; f ; α, β, γ}. If the

motion of the inactive coordinates is decoupled from the active coordinates, all the terms

−∂q′′j |ad(q′)

∂q′i
must be very small. This is why, we proposed, in Ref. [185], to assume that, in

Eq. (207),

−
∂q′′j |ad(q

′)

∂q′i
= 0 ; (208)

i.e.

d = 1 , (209)

or

Ξ′ = Ξ , (210)

instead of Ξ′ = d Ξ dT . After this simplification, in order to derive the KEO, we simply

have to apply the results of Section IVA1. It follows that
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2T̂ |ad =
[

P̂ ′|†ad Ĵ |ad

]

ξ|ad





P̂ ′|Tad

Ĵ |Tad





=
[

P̂ ′|†adĴ |ad

]





(Σ′|ad − Ω|Tad Σ′′|−1
ad Ω|ad) (σ′|Tad − Ω|Tad Σ′′|−1

ad σ′′|Tad)

(σ′|ad − σ′′|ad Σ′′|−1
ad Ω|ad) (Γ|ad − σ′′|ad Σ′′|−1

ad σ′′|Tad)









P̂ ′|Tad

Ĵ |Tad



 ,

(211)

where for instance:

Σ′′|ad = Σ′′(q′; q′′|ad(q
′)) = Σ′′(q′i, i = 1, . . . , n; q′′j = q′′j |ad(q

′), j = 1, . . . , m). (212)

The same notation holds, of course, for all the matrices. In Eq. (211), we do not impose

−∂q′′j |ad(q′)

∂q′i
= 0, since it would lead us back to the rigid model. Paradoxically, this

small (numerical) additional approximation (Eq. (210)) allows to keep a much simpler

(analytical) form of the KEO. In this adiabatic model, we do no have to add some new

terms to the rigid KEO (compare Eq. (190) with Eq. (211)): this adiabatic formulation

allows to recast the problem into an equivalent ’flexible’ pseudo-rigid case. We repeat that,

from a physical point of view, this new approximation (Eq. (210)) is justified since it is

well-known [188–191] that the adiabatic approximation is valid provided that there is a

clear decoupling or hierarchy between the inactive coordinates and the active coordinates,

i.e. provided that the functions −∂q′′j |ad(q′)

∂q′i
are close to zero.

The general equations without the additional approximation of Eq. (210) are given in

Section 3 of Ref. [72]: this ’exact’ adiabatic model leads to numerical results that are slightly

better but the corresponding KEOs are considerably more complicated.

Let us add that the operator T̂ |ad of Eq. (211) is correct only in the case that the wave

functions are normalized with an Euclidean convention of normalization, i.e. with the volume

element given by

dτ = Jcon
e |ad(q

′) dq′ dα sin β dβ dγ ,

(213)

with
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Jcon
e |ad(q

′) = Jfree
e |ad(q

′)
√

|Det[Σ′′|ad]| . (214)

(This result is not affected by the use of the additional approximation of Eq. (210)). How-

ever, if the wave functions are normalized according to

∫

Ψ∗Ψdτ ′ = 1 ,

(215)

where

dτ ′ = dq′ dα sin β dβ dγ ,

(216)

then an extra-potential (i.e. purely multiplicative) term defined as (see Eq. (17))

V con = (Jcon
e |

1
2

adT̂ |adJ
con
e |−

1
2

ad ) (217)

must be added to T̂ |ad of Eq. (211).

Finally, it is worth noting that the program TNUM of Lauvergnat and Nauts [68], al-

ready mentioned in Section II E, numerically computes all the functions appearing in the

constrained operators. To be more specific, (i) for the rigid-constraint approach, TNUM

numerically provides the matrix elements in Eq. (190) and the extra-potential term of Eq.

(200); (ii) for the adiabatic-constraint approach, TNUM numerically provides the extra-

potential term of Eq. (217) and the matrix elements appearing in the adiabatic operator

with and without the approximation of Eq. (210).

B. Combination with the polyspherical approach

The constrained operators of Eqs. (190,211) are a sum of two terms. The first term,

called the ’main’ term, reads
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2T̂main|o =
[

P̂ ′|o
†
Ĵ |o

]





Σ′|o σ′|oT

σ′|o Γ|o









P̂ ′|To
Ĵ |To



 ,

(218)

in the rigid model and

2T̂main|ad =
[

P̂ ′|ad

†
Ĵ |ad

]





Σ′|ad σ′|Tad

σ′|ad Γ|ad









P̂ ′|Tad

Ĵ |Tad



 ,

(219)

in the adiabatic model. This ’main’ term is directly obtained from the operator without

constraints (Eq. (181)) simply by removing all terms involving conjugate momenta

associated with the inactive coordinates. If polyspherical coordinates are used, this term

can always be written as a sum of products of mono-mode operators and is directly obtained

from Eq. (C4,C5,C6,107).

The second term

2T̂corr|o = −
[

P̂ ′|o
†
Ĵ |o

]





Ω|oT
Σ′′|o−1

Ω|o Ω|oT
Σ′′|o−1

σ′′|oT

σ′′|o Σ′′|o−1
Ω|o σ′′|o Σ′′|o−1

σ′′|oT









P̂ ′|o
T

Ĵ |o
T



 ,

(220)

for the rigid model, and

2T̂corr|ad = −
[

P̂ ′|†adĴ |ad

]





Ω|Tad Σ′′|−1
ad Ω|ad Ω|Tad Σ′′|−1

ad σ′′|Tad

σ′′|ad Σ′′|−1
ad Ω|ad σ′′|ad Σ′′|−1

ad σ′′|Tad









P̂ ′|Tad

Ĵ |Tad



 ,

(221)

for the adiabatic model, is a ’correction’. This term vanishes if there is no coupling between

the active and the inactive coordinates, i.e. if σ′′ and Ω in Eq. (181) are equal to zero. In

general, if the choice of the ’active’ coordinates is relevant, this ’correction’ is numerically

smaller than the ’main’ term but may play a non-negligible role in the dynamics, as

aforementioned. According to our experience, this correction is very important for accurate
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ro-vibrational spectroscopy (see [4, 183, 192] for instance) but of minor importance for

the calculation of the photo-absorption spectra involving conical intersections (see [126] for

instance), which, in general, are not of high resolution.

The combination of the polyspherical approach and the previously developed rigidly and

adiabatically constrained models presents several advantages. First, the polyspherical ap-

proach straightforwardly provides the ’main’ term in a form adapted to the methods used to

solve the Schrödinger equation. Second, as far as the ’correction’ is concerned, the situation

is a little bit more complex: this correction can be very complicated, and above all, this cor-

rection, even when using polyspherical coordinates, cannot be written as a sum of products

of mono-mode operators, because the inverse of the matrices Σ′′ will in general depend on

the coordinates in a complicated non-separable way (see Eqs. (234,240) of Section IVC for

examples). It is all the more important to exploit the polyspherical coordinates. Indeed, if

one uses the polyspherical coordinates in orthogonal coordinates along with the separation

into subsystems of Section IID, it is easy to almost separate the active coordinates from

the inactive coordinates in the free KEO (see Eq. (228) of Section IVC for an example). In

other words, almost all the terms in the matrices σ′′ and Ω in Eq. (181) are equal to zero

so that the correction almost vanishes. If the correction is neglected, the effect of the latter

approximation is drastically reduced. If it is not neglected, for instance to calculate accurate

infra-red spectra, it is, in general, much easier to derive T̂corr (in polyspherical coordinates

than in another set of curvilinear coordinates): see Section IVC for illustrations.

C. Examples of applications

This Section is devoted to the presentation of different applications using the results

obtained in Section IVA combined with the polyspherical approach.

1. Rigid- and Adiabatic-constraint approaches: the water dimer

(i) Exact operator:

For van der Waals polymers, a decoupling between the intra- and intermolecular modes
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FIG. 21: Jacobi description of the water dimer.

is often very relevant since the intramolecular coordinates move much faster than the inter-

molecular ones. In Ref. [192], the determination of the water dimer potential energy surface

via direct inversion of spectroscopic data was reported. An adiabatic model was adopted.

A set of five Jacobi vectors was chosen. This set is depicted in Figure 21.

The dimer is split into two subsystems that are simply the two molecules of water. As

far as the exact KEO is concerned, one obtains in view of Eqs. (125,126) of Section IID

2T̂ =
P̂ †

R1
P̂R1

µ1
+ 2

2
∑

j=1

T̂ (j)

+
( ~̂J† − (

∑2
j=1

~̂J (j)
†
)) · ( ~̂J − (

∑2
j=1

~̂J (j)))

µ1R2
1

, (222)

with

2T̂ (j) =
2
∑

k=1

P̂ †
R

(j)
k

P̂
R

(j)
k

µ
(j)
k

+
(( ~̂J (j)

†
− ~̂L

(j)
1

†
)( ~̂J (j) − ~̂L

(j)
1 ))BF (j)

µ
(j)
2 R

(j)
2

2 +
(~̂L

(j)
1

†
~̂L

(j)
1 )BF (j)

µ
(j)
1 R

(j)
1

2 , (223)

where µi denotes the reduced mass associated with ~Ri and µ
(j)
k , the reduced mass associated

with ~R
(j)
k . They read
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µ
(j)
1 =

2mHmO

2mH + mO
, j = 1, 2 ;

µ
(j)
2 = mH/2, j = 1, 2 ;

µ1 =
2mH + mO

2
. (224)

Furthermore, we have (see Eq. (124) of Section IID)























L̂
1 xBF (j)

L̂
1 yBF (j)

L̂
1 zBF (j)























=



























− cot θBF (j)

1 Ĵ
(j)

zBF (j)

−i ∂

∂θBF (j)
1

Ĵ
(j)

zBF (j)



























. (225)

The six intramolecular coordinates are the four lengths R
(1)
1 , R

(1)
2 , R

(2)
1 , R

(2)
2 , and the

two angles θBF (1)

1 and θBF (2)

1 (see Section IID (ii) for their precise definition). The six

intermolecular coordinates are R1, and the Euler angles α(1), β(1), γ(1), β(2), γ(2). α(2) = γ,

i.e. α(2) defines the ((xBF , zBF ); xBF > 0) half-plane.

(ii) Rigidly constrained operator (rigid rotor):

Before adopting an adiabatic model, as in Ref. [192], the water dimer was studied by

means of a rigid monomer description for each molecule of water (see Ref. [4, 193], for

instance), following the general formulation of Brocks et al. [60] for van der Waals dimers.

In order to derive the corresponding rigid operator, let us go back to the exact formulation.

Since we have used a polyspherical description of the water dimer with orthogonal vectors

along with the separation into subsystems, it results in an exact KEO, Eqs. (222,223), in

which there is almost no coupling between the active coordinates (the six intermolecular

coordinates) and the inactive coordinates (the six intramolecular coordinates). More pre-

cisely, in view of Eqs. (222,223), we see that R
(1)
1 , R

(1)
2 , R

(2)
1 , R

(2)
2 are not coupled with the

other coordinates; that θBF (1)

1 is coupled with Ĵ
(1)

xBF (1) , Ĵ
(1)

yBF (1) , Ĵ
(1)

zBF (1) , only; and that θBF (2)

1

is coupled with Ĵ
(2)

xBF (2) , Ĵ
(2)

yBF (2) , Ĵ
(2)

zBF (2) , only. It means that freezing the intramolecular co-
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ordinates comes down to freezing the internal coordinates of each molecule of water taken

separately. For each monomer, the KEO can be written as (see Eq. (181))

2T̂ (j) =
[

P̂ ′′(j) † Ĵ (j)
]





Σ′′(j) σ′′(j) T

σ′′(j) Γ(j)









P̂ ′′(j) T

Ĵ (j)T



 ,

(226)

with P̂ ′′(j) = {P̂
R

(j)
1

, P̂
R

(j)
2

, P̂
θBF (j)
1

} and with (we use Eqs. (223,225))

Σ′′(j) =













1

µ
(j)
1

0 0

0 1

µ
(j)
2

0

0 0 1

µ
(j)
1 R

(j)
1

2 + 1

µ
(j)
2 R

(j)
2

2













, (227)

σ′′(j) =











0 0 0

0 0 0

0 1

µ
(j)
2 R

(j)
2

2 0











, (228)

and

Γ(j) =















1

µ
(j)
2 R

(j)
2

2 0
cot θBF (j)

1

µ
(j)
2 R

(j)
2

2

0 1

µ
(j)
2 R

(j)
2

2 0

cot θBF (j)

1

µ
(j)
2 R

(j)
2

2 0 1

sin2 θBF (j)
1 µ

(j)
1 R

(j)
1

2 +
cot2 θBF (j)

1

µ
(j)
2 R

(j)
2

2















. (229)

If we now subject each molecule of water (j = 1, 2) to the following rigid constraints:

R
(j)
1 = R

(j)
1 |eq ,

R
(j)
2 = R

(j)
2 |eq ,

θBF (j)

1 = θBF (j)

1 |eq =
π

2
;

(230)

where |eq means that the coordinate is fixed at its value at the equilibrium geometry. The

’main’ term of the rigidly constrained operator reads (see Eqs. (218,230))
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2T̂
(j)
main|o =

[

Ĵ |(j)o

]













1

µ
(j)
2 R

(j)
2

2 |o 0 0

0 1

µ
(j)
2 R

(j)
2

2 |o 0

0 0 1

µ
(j)
1 R

(j)
1

2 |o













[

Ĵ |(j) T
o

]

,

(231)

and it is worth noting that the resulting coefficients are not the principal values of the inertia

tensor of the water molecule. The ’correction’ reads (see Eq. (220) and Eqs. (227,228))

2T̂ (j)
corr|o = −

[

Ĵ |(j)o

]

σ′′(j)|o Σ′′(j)|−1
o σ′′(j)|To

[

Ĵ |(j) T
o

]

= −
[

Ĵ |(j)o

]











0 0 0

0
µ

(j)
1 R

(j)
1

2

µ
(j)
2 R

(j)
2

2
(µ

(j)
1 R

(j)
1

2
+µ

(j)
2 R

(j)
2

2
)
|o 0

0 0 0











[

Ĵ |(j) T
o

]

.

(232)

The final rigidly constrained operator reads

2T̂ |o =
P̂ †

R1
P̂R1

µ1

+ 2
2
∑

j=1

T̂ (j)|o

+
( ~̂J† − (

∑2
j=1

~̂J (j)
†
)) · ( ~̂J − (

∑2
j=1

~̂J (j)))

µ1R2
1

, (233)

with

2T̂ (j)|o = 2T̂
(j)
main|o + 2T̂ (j)

corr|o

=
[

Ĵ |(j)o

]













1

µ
(j)
2 R

(j)
2

2 |o 0 0

0 1

µ
(j)
1 R

(j)
1

2
+µ

(j)
2 R

(j)
2

2 |o 0

0 0 1

µ
(j)
1 R

(j)
1

2 |o













[

Ĵ |(j) T
o

]

.

(234)

The operator in Eq. (234) is the rigid rotor of the water molecule, i.e. the resulting

coefficients are the principal values of the inertia tensor of the water molecule. The result
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given by Eqs. (233,234) is a particular case of the general formulation of Brocks et al. [60]

for van der Waals dimers.

(iii) Adiabatically constrained operator (flexible rotor):

In Ref. [192], it was shown that the flexibility of each water molecule plays a crucial

role in the description of the hydrogen bond between the two molecules. A very relevant

adiabatic formulation was adopted for the water dimer. Indeed, for the water dimer, a

single quantum of excitation energy in one intramolecular mode of vibration is sufficient

to break the hydrogen bond. This implies that only the ground vibrational state of each

monomer has to be considered to study the rovibrational bound states of the dimer. Another

possibility is to take into account the first excited vibrational state of each monomer alone if

the dissociation of the dimer is to be considered. Such a situation is reminiscent of the Born-

Oppenheimer approximation that allows one to confine the description of a bound molecule

to one electronic state. Consequently, it turns out to be very relevant to define the adiabatic

dependence of the inactive coordinates as follows. We first work out the vibrational equation

for the six inactive coordinates (see Eq. (181) for the definition of Σ′′) :

(
1

2
P̂ ′′† Σ′′ P̂ ′′ + V (q′′; q′)) Φn(q′′;q′) = En(q′) Φn(q′′; q′) , (235)

with q′′ that collectively denotes {R(1)
1 , R

(1)
2 , R

(2)
1 , R

(2)
2 , θBF (1)

1 , θBF (2)

1 } and with q′ that col-

lectively denotes {R1, α
(1), β(1), γ(1), β(2), γ(2)}. The inactive coordinates are then adapted

to the active ones depending on the intramolecular state to be considered (for instance, the

ground state corresponds to n=0). In other words, Eq. (201) becomes

q′′i = q′′i|ad(q
′) =< Φn(q′′; q′) | q′′i | Φn(q′′; q′) > ; i = 1, 2, 3 . (236)

q′′i|ad(q
′) is not known analytically but numerically on a grid. For each monomer, the KEO

is given by Eq. (226) and if we now subject each molecule of water (j = 1, 2) to the adiabatic

constraints of Eq. (236), the ’main’ term of the adiabatically constrained operator for each

water molecule (j = 1, 2) reads (see Eq. (219))
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2T̂
(j)
main|ad =

[

Ĵ |(j)ad

]















1

µ
(j)
2 R

(j)
2

2 |ad 0
cot θBF (j)

1

µ
(j)
2 R

(j)
2

2 |ad

0 1

µ
(j)
2 R

(j)
2

2 |ad 0

cot θBF (j)

1

µ
(j)
2 R

(j)
2

2 |ad 0 1

sin2 θBF (j)
1 µ

(j)
1 R

(j)
1

2 |ad +
cot2 θBF (j)

1

µ
(j)
2 R

(j)
2

2 |ad















[

Ĵ |(j) T
ad

]

.

(237)

The ’correction’ reads (see Eq. (221) and Eqs. (227,228))

2T̂ (j)
corr|ad = −

[

Ĵ |(j)o

]

σ′′(j)|ad Σ′′(j)|−1
ad σ′′(j)|Tad

[

Ĵ |(j)T
ad

]

= −
[

Ĵ |(j)ad

]











0 0 0

0
µ

(j)
1 R

(j)
1

2

µ
(j)
2 R

(j)
2

2
(µ

(j)
1 R

(j)
1

2
+µ

(j)
2 R

(j)
2

2
)
|ad 0

0 0 0











[

Ĵ |(j)T
ad

]

.

(238)

The final adiabatically constrained operator reads

2T̂ |ad =
P̂ †

R1
P̂R1

µ1

+ 2
2
∑

j=1

T̂ (j)|ad

+
( ~̂J† − (

∑2
j=1

~̂J (j)
†
)) · ( ~̂J − (

∑2
j=1

~̂J (j)))

µ1R2
1

, (239)

with the ’flexible’ rotor

2T̂ (j)|ad =
[

Ĵ |(j)ad

]















1

µ
(j)
2 R

(j)
2

2 |ad 0
cot θBF (j)

1

µ
(j)
2 R

(j)
2

2 |ad

0 1

µ
(j)
1 R

(j)
1

2
+µ

(j)
2 R

(j)
2

2 |ad 0

cot θBF (j)

1

µ
(j)
2 R

(j)
2

2 |ad 0 1

sin2 θBF (j)
1 µ

(j)
1 R

(j)
1

2 |ad +
cot2 θBF (j)

1

µ
(j)
2 R

(j)
2

2 |ad















[

Ĵ |(j)T
ad

]

.

(240)

Let us point out that the functions q′′i|ad(q
′), and hence the matrix elements of Eqs

(237,238,240) are not known analytically but are numerically defined on a grid. Interest-

ingly enough, in Ref. [192], the extra-potential term of Eq. (217) was neglected: this term

is, in general, numerically very small (see Ref. [72, 194, 195], for instance). The numerical
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results of Ref. [192] compared to experimental values have proved that the adiabatic model

dramatically improves the rigid one for the water dimer.

2. The photo-induced non-adiabatic dynamics of ethene

In Ref. [196], Krawczyk et al. have computed the three lowest potential energy surfaces

of ethene. Ethene has six atoms and its geometric configuration is, therefore, described by

12 internal coordinates. However, in order to make the investigation feasible, the authors

considered only the six most important or ’active’ coordinates. The determination of the ac-

tive coordinates is achieved by screening many geometric parameters for the most important

geometries (for instance, the stationary points of the potential energy surfaces). The geo-

metric parameters and the corresponding coordinates that change the most must be retained

as active coordinates, whereas the coordinates that remain approximately constant can be

considered as inactive and frozen during the dynamics. In Ref. [196], the six active modes

were torsion, C-C stretching, left and right scissoring and left and right wagging (pyrami-

dalization). The left and right rockings and the four C-H stretches were ignored and their

coordinates were fixed to their equilibrium positions, i.e. we have the case of a rigid con-

straint studied in Section IVA1. The six active modes are parametrized by six coordinates,

which are: ϕ, the torsional angle; r, the C-C distance; αr, the right scissor angle; αl, the

left scissor angle; ϑr, the right pyramidalization angle; ϑl, the left pyramidalization angle.

The PES were transformed to a diabatic representation and dynamical calculations were

performed in Ref. [197] using the multi-configuration time-dependent Hartree (MCTDH)

method. Unfortunately the KEO, obtained by inversion of the 6 × 6 matrix:
∑18

α=1
∂xα

∂qi

∂xα

∂qj
,

where the xα are mass-weighted Cartesian coordinates of the six atoms of the molecule, and

qi ∈ {ϕ, r, αr, ϑr, ϑl} (see Eqs. (2,5,6) of Section IIA), is unsuitable for the MCTDH propa-

gation. Indeed, it cannot be factorised as a sum of products of one-dimensional operators.

Therefore, several simplifications have been added to the KEO.

In Ref. [126], we have revisited the problem and proposed a set of five vectors, which are

depicted in Fig. 22, and the corresponding 12 standard polyspherical coordinates: (R1, R2,
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FIG. 22: Mixed Jacobi/valence description of the C2H4 system (see the text).

R3, R4, R5, θBF
1 , θBF

2 , θBF
3 , θBF

4 , ϕBF
1 , ϕBF

2 , ϕBF
3 ). The corresponding matrix M reads

M =





















1
mC

+ 1
2mH

0 0 0 − 1
mC

0 1
mC

+ 1
2mH

0 0 − 1
mC

0 0 2
mH

0 0

0 0 0 2
mH

0

− 1
mC

− 1
mC

0 0 2
mC





















. (241)

This particular choice of the vectors was motivated by the attempt to obtain coordinates

that are as close as possible to the ones used in Ref. [197] (ϕ, r, αr, αl, ϑr, ϑl). Indeed, since

the potential energy surface is given only in terms of six degrees of freedom, we subject the

system to the following constraints:
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θBF
3 =

π

2
,

θBF
4 =

π

2
,

ϕBF
2 =

π

2
,

ϕBF
1 =

3π

2
+ ϕBF

3 ,

R3 = 2
√

R2
CH − R2

1 ,

R4 = 2
√

R2
CH − R2

2 , (242)

with the distance RCH being fixed to its equilibrium geometry. After a simple change of

coordinates (for instance ϕBF
1

′
= ϕBF

1 − ϕBF
3 ) that does not affect the ’main’ term of the

final KEO, the constraint for ϕBF
1

′
, R3, and R4 can be expressed as a rigid one. The relation

between our polyspherical coordinates and the six degrees of freedom used in Ref. [197] is

then simply given by

r = R5 ,

ϑr = θBF
2 ,

ϑl = θBF
1 ,

αr = 2 arccos(R2/RCH) ,

αl = 2 arccos(R1/RCH) ,

ϕ = ϕBF
3 ,

where RCH denotes the C-H equilibrium distance.

The fact that we use R1 and R2 (see Figure 22 for their definition) instead of the two scis-

sor angles, αr and αl, between the C-H bonds allows us to reformulate the problem in terms

of polyspherical coordinates. The use of polyspherical coordinates allows a direct obtaining

of the main term of the KEO in a form perfectly adapted to MCTDH. For C2H4, when using

the elementary volume element dτ = dR3 dR4 dR5 dθBF
1 dθBF

1 dθBF
2 dϕBF

3 and assuming J =

0, the main term, 1/2
[

P̂ ′|o
† ]

Σ′|o
[

P̂ ′|o
T
]

, is given by Eq. (11) of Ref. [126] (we used

Eqs. (111,C4)). The ’correction’, - 1/2
[

P̂ ′|o
† ]

Ω|oT
Σ′′|o−1

Ω|o
[

P̂ ′|o
T
]

for J = 0, cannot

be written as a sum of products of mono-mode operators. In Ref. [126], this problem was

removed by introducing an additional reasonable approximation. We fix Ω|oT
Σ′′|o−1

Ω|o to

its value at the equilibrium geometry: it is not only the inactive coordinates but also the
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active coordinates that are fixed in the correction. This (approximate) correction term was

provided by TNUM [68] and reads:

Tcorr′ = 0.0000019889
∂2

∂R2
5

− 0.0000138299
∂

∂R2

∂

∂R5

− 0.0000138299
∂

∂R1

∂

∂R5

+ 0.0000480826
∂2

∂θBF 2
2

+ 0.0000480826
∂2

∂θBF 2
1

,

(243)

where atomic units are assumed.

An improvement, in the future, could be to make a Taylor expansion of Ω|oT
Σ′′|o−1

Ω|o
using the numerical values given by TNUM or to calculate this term analytically and to refit

it, with Mathematica for instance, as a sum of products of mono-mode operators. In Ref.

[126], it was shown that the effect of this correction on the dynamics is small. This study

emphasizes that ’the general structure’ of the polyspherical coordinates should be kept in

mind when choosing the active coordinates. In other words, when the active coordinates

are a subset of polyspherical coordinates, it is straightforward to obtain the part of the

KEO that carries the essential part of the physics and in a form that can be very easily

implemented.

3. General strategies for very large systems

(i) The example of the cationic complex [CpRh(PH3)H(C2H4)]
+

In Section IVA, we have presented a rigorous way to derive the KEO of systems

subjected to constraints, i.e. for which the dynamics is performed within a subset of active

coordinates. We have explained, in Section IVB, why it is advantageous to combine the

constraints with the polyspherical approach. Finally, we have given some illustrations in

Section IVC. If we summarize our findings, we can say that:

(1) the constrained operator can be split into two parts: the ’main’ term and the
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’correction’.

(2) If the choice of the coordinates, active and inactive, is judicious, the ’main’ term

carries the dominant part of the physics and the correction is numerically smaller. However,

this correction must be taken into account if one wants to reach high accuracy.

(3) It is advantageous to choose the active coordinates as a subset of polyspherical

coordinates. Indeed, (i) the polyspherical coordinates straightforwardly provide the main

term in a form that can be very easily implemented. (ii) If one chooses a judicious set of

polyspherical coordinates, for instance a parametrization of Jacobi vectors combined with

the separation into subsystems of Section IID, one strongly minimizes the coupling between

the active and the inactive coordinates and, therefore, the effect of the ’correction’ of the

KEO on the dynamics.

The latter point is illustrated in the present Section: if one focuses on the dynamics

within a small part of a very large molecular system, it is judicious to successively divide

the whole molecule into smaller subsystems. In other words, one applies the ’separation

into subsystems’ of Section IID several times so that the subset of the active coordinates

is almost decoupled from the rest of the molecule in the KEO. In Ref. [198], this strat-

egy was adopted to calculate the KEO in order to undertake a first quantum dynamical

study of migratory insertion and hydrogen elimination in a representative metal complex

[CpRh(PH3)H(C2H4)]
+. As for ethene, it was first necessary to identify a set of relevant

coordinates. This is achieved by screening the relevant stationary points of the potential

energy surface. The choice of the active coordinates therefore depends on the potential oper-

ator and not on the KEO, but it is always advantageous to translate them into the ’language

of the polyspherical coordinates’, i.e. to identify a subset of polyspherical coordinates as

active coordinates.

The system is depicted in Figure 23 and separated into two subsystems ’1’ (HRhC2H4)

and ’2’ (PH3C5H5).
−−→
R12 =

−−−→
G1G2 is the Jacobi vector joining G1 the center of mass of the

subsystem ’1’ (HRhC2H4) to G2 the center of mass of the subsystem ’2’ (PH3C5H5).

For the whole system (HRhC2H4PH3C5H5), the exact kinetic energy operator then reads
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FIG. 23: Successive separation into subsystems of the metal complex [CpRh(PH3)H(C2H4)]
+. G2

is the center of mass of the subsystem (PH3C5H5).

2T̂ =
P̂ †

R1 2
P̂R1 2

µ12
+ 2

2
∑

j=1

T̂ (j)

+
( ~̂J† − (

∑2
j=1

~̂J (j)
†
)) · ( ~̂J − (

∑2
j=1

~̂J (j)))

µ12R2
12

, (244)

with

µ12 =
mPC5H8mRhC2H5

mRhPC7H13

. (245)

The subsystem ’1’ can also be separated into two new subsystems: RhH and C2H4 that are

linked by a Jacobi vector ~R joining GC2H4 the center of mass of C2H2 to GRhH the center

of mass of RhH, which can be approximated as GRhH ≃ Rh (see Figure 23). The kinetic

energy T̂ (j) reads

2T̂ (1) =
P̂ †

RP̂R

µ
+

P̂ †
RH

P̂RH

µRH

+
~̂L† ~̂L

µRH
R2

RH

+ 2T̂C2H4

+
( ~̂J† − (~̂L

†
+ ~̂J ′

†
)) · ( ~̂J − (~̂L + ~̂J ′))

µR2
. (246)
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~L is the angular momentum associated with
−−−→
RhH, ~J ′ is the total angular momentum of C2H4,

the vector ~RhH is described by three spherical coordinates: RH , θ, and ϕ. In addition, we

have

µR =
mRhHmC2H4

mRhHC2H4

. (247)

µRH
is the mass of the H atom. The kinetic energy operator of TC2H4 could be directly

derived in terms of polyspherical coordinates from the general expression given by Eqs.

(111,C4). If we keep only six internal polyspherical coordinates, as suggested in Ref. [198],

RH , θ, ϕ, R (the length of
−−−−→
GGRhH), RCC (the distance between the two C atoms in C2H2),

and γ (the third Euler angle of the subsystem C2H2 that is depicted in Figure), the ’main’

term of the final KEO for total J = 0 reads

2T = − ~
2

µH

∂2

∂R2
H

− ~
2

µR

∂2

∂R2
− ~

2

µCC

∂2

∂R2
CC

− ~
2(

1

mHR2
H

+
1

µRR2
)(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin θ2

∂2

∂ϕ2
)

+
(2pγ − i~ cot γ)i~(− cos ϕ ∂

∂θ
+ sin ϕ cot θ ∂

∂ϕ
)

µRR2

− ~
2(

1

µCCR2
CC

+
1

µRR2
)(

1

sin γ

∂

∂γ
sin γ

∂

∂γ
)

+
p2

ϕ

sin2 γ
(

1

µRCC
R2

CC

+
1

µRR2
) − 2

p2
ϕ

µRR2

− cot γpϕ(cos ϕ cot θpϕ + sin ϕpθ) + (cos ϕ cot θpϕ + sin ϕpθ) cot γpϕ

µRR2
,

(248)

with the following volume element:

dτ = dRH dR dRCC dγ dϕ sin θ dθ . (249)

In Ref. [198], the ’correction’ and the extra-potential term were neglected. The successive

separation into subsystems and the use of Jacobi vectors joining the different subsystems

(~R1 2, ~R) allows the active coordinates to strongly decouple the active coordinates from

the rest of the system in the KEO. The use of the polyspherical coordinates yields a final

expression of the ’main’ term that is not too complicated.
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(ii) Large van der Waals clusters

In this last Section, we sketch how it is possible to combine the polyspherical coordinates

with other families of coordinates when the system is separated into subsystems. Under

particular conditions, it is indeed possible to directly make use of KEOs published in the

literature within the polyspherical approach: the KEO in hyperspherical coordinates for

a tri-atomic system and the Watson KEO in normal coordinates. In this Section, the

separation into active and inactive coordinates does not play a major role. However, since

we use almost all the results presented before (the properties of the angular momenta

highlighted in Section IIB 2, the separation into subsystems, the rigid and flexible rotors,

etc...), it is sensible that this Section appears at the end of the review.

(1) Introduction of hyperspherical coordinates in NH3:

Before carrying on, it is important to be made clear that the polyspherical approach

possesses properties that can be (and have been) exploited for other kinds of coordinates

than polyspherical coordinates. One example is the calculation of the vibrational levels

of NH3 reported in Ref. [77]. For ammonia, the system had been separated into two

subsystems: the N atom and the H3 subsystem. If the system is parametrized by the set of

three Jacobi vectors as shown in Figure 24, in view of Eqs. (125,126), the KEO reads

2T̂ =
P̂ †

R1
P̂R1

µ1
+ 2T̂ (1) +

( ~̂J† − ~̂J (1)
†
) · ( ~̂J − ~̂J (1))

µ1R2
1

, (250)

with

2T̂ (1) =

2
∑

k=1

P̂ †
R

(1)
k

P̂
R

(1)
k

µ
(1)
k

+

2
∑

k=1

~̂L
(1)
k

†
~̂L

(1)
k

µ
(1)
k R

(1)
k

2 . (251)

(µ1 = 3mHmN

3mH+mN
, µ

(1)
1 = mH

2
, µ

(1)
2 = 2mH

3
.) However, in Ref. [77, 199], we preferred to

parametrize the H3 subsystem in terms of hyperspherical coordinates [200, 201] instead of

polyspherical coordinates. The hyperspherical coordinates have the advantage that the three

atoms are treated fully equivalently. The KEO in hyperspherical coordinates for a tri-atomic

system is well-known [200, 201] and is given by:
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FIG. 24: Jacobi description of NH3: GH2 is the center of mass of H2, GH3 is the center of mass of

the H3 subsystem.

T̂ (1) = − ~
2

2µ̺5

∂

∂̺
̺5 ∂

∂̺
− ~

2

2µ̺2
[

4

sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+

1

sin2θ

∂2

∂ϕ2
]

+
Ĵ

(1) 2

xPAS

µ̺2(1 − sin θ)
+

Ĵ
(1) 2

yPAS

µ̺2(1 + sin θ)
+

Ĵ
(1) 2

zPAS

2µ̺2sin2θ
− i~ cos θ

µ̺2sin2θ
Ĵ

(1)

zPAS

∂

∂ϕ
,

(252)

with

0 ≤ ̺ ,

0 ≤ θ ≤ π/2 ,

0 ≤ ϕ ≤ 2π ,

µ = mH√
3

,

where PAS denotes the instantaneous principal axis system of H3. ρ and {θ, ϕ} define the

size and the shape of the H3 triangle, respectively. They are defined such as

R1xPAS/d = ρ cos (θ/2 − π/4) cos ϕ ,

R1yPAS/d = −ρ sin (θ/2 − π/4) sin ϕ ,

R2xPAS ∗ d = ρ cos (θ/2 − π/4) sin ϕ ,

R2yPAS ∗ d = ρ sin (θ/2 − π/4) cos ϕ ,
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with d a scaling factor that is equal to 1.07457 for an equal mass tri-atomic system [200, 201]

(H3 is a ’equal mass system’ since the three atoms have the same mass). ~J (1) is a function

of three internal Euler angles α(1), β(1), γ(1) allowing the localization of the H3 PAS with

respect to the E2 frame. Since H3 is not involved in the definition of the E2 frame (the E2

frame is specified by ~R1 only), the E2-components of ~J (1) have a regular expression and after

applying the three Euler rotations (see Eqs. (69,70)), one obtains:























Ĵ
(1)

xPAS

Ĵ
(1)

yPAS

Ĵ
(1)

zPAS























=























− cos γ(1)

sinβ(1) sin γ(1) cot β(1) cot γ(1)

sin γ(1)

sinβ(1) cos γ(1) − cot β(1) sin γ(1)

0 0 1



















































1
i

∂
∂α(1)

1
i

∂
∂β(1)

1
i

∂
∂γ(1)





























. (253)

The third Euler angle is chosen such that γ = α(1) (Note that, for the first time, we no

longer use the definition of the BF frame as in Sec. IIC 1 (i)). The KEO is given by Eqs.

(250,252,253): the expression of the PAS-components of ~J (1) (Eq. (253)) is unaffected

by the choice γ = α(1)and the BF-components of ~J (1) are obtained from Eq. (253) along

with Eqs. (69,70). The fact that we use the KEO in hyperspherical coordinates for a

tri-atomic system for T̂ (1) and that we do not change the rest of the KEO comes from the

fact that ~R1 originates from the center of mass of H3. The correctness of the final KEO

(Eqs. (250,252,253)) was checked by using the expression of Podolsky from Eq. (2) along

with Mathematica. The hyperspherical coordinates were introduced in order to keep the

full symmetry of the system and to work in each irreducible representation of the D3h(M)2

permutation inversion group of the molecule [202]. In addition, R1 provides a good reaction

coordinate for the umbrella inversion (see Ref. [77] for how to distinguish the two isomers),

and ρ a good coordinate to describe the symmetric stretching mode of vibration.

(2) Introduction of hyperspherical coordinates for the water trimer:

Similarly, in Ref. [82], for the water trimer, we proposed to parametrize the three relative

positions of the subsystems (what we called the ’remaining’ vectors in Sec. IID (i)) by hyper-
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spherical coordinates instead of polyspherical coordinates. Indeed, all the parametrizations

proposed in Sec. IID for the water trimer (see Figures 8, 9, 10, 11) break the symmetry of

permutation of the three monomers. If one wants to keep this symmetry, a solution is to start

from the Jacobi vectors of Figure 8 (or Figure 9) and to parametrize the three ’remaining’

vectors by hyperspherical instead of polyspherical coordinates. The KEO in Jacobi poly-

spherical coordinates is given by Eqs. (125,126) with n = 3. Now, it should be emphasized

that the three ’remaining’ vectors originate from or point towards the centers of mass of the

three subsystems: there is no coupling in the matrix M between the n-1 ’remaining’ vectors

and the vectors of the subsystems (like in Eqs. (130,131)). Consequently, T̂ −
∑3

j=1 T̂ (j) is,

formally, identical to the KEO of a system of three particles except that ~̂J is replaced by

~̂J − ~̂L with ~̂L =
∑3

j=1
~̂J (j) (we recall that ~̂J (j) is the total angular momentum of the j-th

subsystem). The three ’particles’ are not three atoms but three ’fictitious’ particles, G1, G2

and G3 (we recall that Gj is the center of mass of the j-th subsystem). The mass associated

with Gj is equal to the mass of the j-th subsystem : mO + 2mH . Therefore, if we use

hyperspherical (instead of polyspherical) coordinates to parametrize the three ’remaining’

vectors, we simply have to rewrite Eq. (125) in terms of the hyperspherical coordinates

associated with G1, G2, G3. Therefore, the new KEO reads

T̂ = − ~
2

2µ̺5

∂

∂̺
̺5 ∂

∂̺
− ~

2

2µ̺2
[

4

sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+

1

sin2θ

∂2

∂ϕ2
]

+
(Ĵ − L̂)

2

xPAS

µ̺2(1 − sin θ)
+

(Ĵ − L̂)
2

yPAS

µ̺2(1 + sin θ)
+

(Ĵ − L̂)
2

zPAS

2µ̺2sin2θ
− i~ cos θ

µ̺2sin2θ
(Ĵ − L̂)zPAS

∂

∂ϕ

+
3
∑

j=1

T̂ (j) ,

(254)

with

0 ≤ ̺ ,

0 ≤ θ ≤ π/2 ,

0 ≤ ϕ ≤ 2π ,

µ = 2mH+mO√
3

.

In Eq. (254), PAS denotes the instantaneous principal axis system of {G1, G2, G3}, which

is chosen as the BF frame of the system. ρ and {θ, ϕ} define the size and the shape of the
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{G1, G2, G3} triangle, respectively. T̂ (j) is given by Eq. (126) or by Eqs. (B5,B6,B7) if each

subsystem is parametrized by non-orthogonal vectors. T̂ (j) could also be a rigid (flexible)

rotor of each monomer if the intramolecular motions are rigidly (adiabatically) constrained.

Again, we repeat that T̂ −
∑3

j=1 T̂ (j) in Eq. (254) is simply the KEO of a system of

three particles in hyperspherical coordinates [200, 201] except that:

(1) the total angular momentum ~̂J is replaced by ~̂J − ~̂L = ~̂J −
∑3

j=1
~̂J (j).

(2) the three ’particles’ are not three atoms but three ’fictitious’ particles, G1, G2 and

G3. The mass associated with Gj is equal to the mass of the j-th subsystem : mO + 2mH .

The introduction of the hyperspherical coordinates that describe the relative positions of

the three monomers allows the full symmetry of the system to be preserved. In particular,

the definition of the BF frame for the whole system is different from the definition in the

original formulation of the polyspherical approach (Sec. IIC 1 (i)). The BF frame is now

the instantaneous principal axis system of {G1, G2, G3}: the symmetry of permutation of

the three monomers is kept since no molecule plays a particular role in the definition of the

BF frame. The overall rotation of each subsystem is parametrized by three Euler angles

with respect to the new BF frame and, since the vectors in each subsystems play no role in

the definition of the BF frame (as before), the expression of the projections of ~̂J (j) onto the

BF frame is given by the usual formulae (Eq. (128)). Finally, let us mention that it could

be possible to use, instead of the three hyperspherical coordinates, Pekeris coordinates

(corresponding to the three distances between the three ’fictitious’ particles, G1, G2 and

G3) as proposed by Wang and Carrington for van der Waals trimers [203, 204].

(3) Generalization of the previous results:

The results presented above are of general character and can be used to combine the

polyspherical coordinates with other families of coordinates. For instance, for large van der

Waals clusters, it is possible to envision the use of normal coordinates to describe the relative

motions of the centers of mass of the different subsystems, since the normal coordinates
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simplify the final expression of the KEO. Let us separate the system into n subsystems as

in Sec. IID.

In the formulation that follows two conditions must be satisfied (note that they were

already satisfied for the water trimer in (2)):

(i) when the system is separated into subsystems, there is no coupling in the matrix M

between the n-1 ’remaining’ vectors ~̂Ri and all the vectors of the subsystems. It corresponds

to the case (2) of Sec. IID. In other word, the n-1 ’remaining’ vectors and the vectors in

each subsystem can be orthogonal or non-orthogonal vectors but the ’remaining’ vectors

must originate from or point towards the centers of mass of the subsystems. (The matrix

M has a block-diagonal form as in Eq. (132) of Sec. IID.)

(ii) The BF frame is defined by the n-1 ’remaining’ vectors and the vectors in each

subsystems play no role in its definition (before and after the coordinate transformation

from the polyspherical coordinates to the new coordinates).

The condition (i) entails that T̂ −
∑n

j=1 T̂ (j) is, formally, identical to the KEO of an n-

atomic system except that ~̂J is replaced by ~̂J − ~̂L with ~̂L =
∑n

j=1
~̂J (j) (we recall that ~̂J (j) is

the total angular momentum of the j-th subsystem). The centers of mass (Gj, j = 1, . . . , n)

play the role of the ’atoms’ and the mass associated with Gj is Mj , the total mass of the

j-th subsystem. A simple coordinate transformation from the polyspherical coordinates

parametrizing the n-1 ’remaining’ vectors to the normal coordinates associated with the

centers of mass (Gj, j = 1, . . . , n) leads to the new KEO

T̂ =
1

2

∑

α,β=x,y,z

(

(Ĵ − L̂)α − π̂α

)

µαβ

(

(Ĵ − L̂)β − π̂β

)

− 1

2

3n−6
∑

k=1

∂2

∂Qk
2
− 1

8

∑

α=x,y,z

µαα

+

n
∑

j=1

T̂ (j) ,

(255)

where

µαβ =
(

I′−1
)

αβ
, I′αβ = Iαβ +

3n−6
∑

k,l,m=1

ζα
kmζβ

lmQkQl , (256)

116



and where Iαβ is the inertia tensor and ζα
km are Coriolis parameters defined for example in

[88]. The vibrational angular momentum terms, πα, are

π̂α = −i

3n−6
∑

k,l=1

ζα
klQk

∂

∂Ql
. (257)

The BF frame is specified by the positions of the centers of mass of the subsystems: in Eq.

(255) its choice is free (it could be, for instance, the Eckart frame [111] of the {G1, . . . , Gn}
system). Eq. (255) is the Watson KEO [88] except that (1) the total angular momentum ~̂J

is replaced by ~̂J− ~̂L = ~̂J−
∑n

j=1
~̂J (j). (2) The normal coordinates are the normal coordinates

associated with Gj; j = 1, . . . , n (the centers of mass of the subsystems).

In addition, since the BF frame is specified only by the position of the centers of mass

of the subsystems and, therefore, since the vectors in each subsystem play no role in the

definition of the BF frame (condition (ii) above), the expression of the projections of ~̂J (j)

onto the BF frame is given by the usual formulae (Eq. (128)).

T̂ (j) could be given by Eq. (126) or by Eqs. (B5,B6,B7). T̂ (j) could also be a rigid

(flexible) rotor of each monomer if the intramolecular motions are rigidly (adiabatically)

constrained.

Finally, for very large van der Waals clusters, it becomes possible to forget the separation

of the overall rotation from the internal motions. The KEO simply reads

2T̂ = −
∑

i=1,...,n−1

∑

λ=X,Y,Z

Mij
∂

∂λSF
i

∂

∂λSF
j

+ 2

n
∑

j=1

T̂ (j) ,

(258)

where {XSF
i , Y SF

i , ZSF
i } are the Cartesian coordinates of the i-th ’remaining’ vector in the

SF frame. Mij are the elements of the mass matrix M of Eq. (54). T̂ (j) could be given by

Eq. (126) or by Eqs. (B5,B6,B7). As above, T̂ (j) could be a rigid (flexible) rotor of each

monomer if the intramolecular motions are rigidly (adiabatically) constrained.
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V. CONCLUSION AND OUTLOOK

In the last decades, important progress has been made in the development of quantum

dynamics simulations. This has been made possible by the increase in computer power and,

as importantly, the development of new efficient algorithms. In this context, the growing

interest in systems presenting large amplitude motions calls for correct quantum-mechanical

expressions of KEOs in curvilinear coordinates. The polyspherical approach recently

developed and reviewed in the present paper was devised in order to obtain these operators

in a systematic way. Numerous applications have already been performed using KEOs

obtained from this approach (see Part III for an non-exhaustive list). These applications

demonstrate conclusively that this approach can live up to its early promise of being

capable of providing compact expressions of KEOs in a form well-adapted to the numerical

approaches used in dynamics.

Looking ahead, we can say that the next step in the development of the polyspherical

approach will probably be the implementation of the results presented in Part II of the

present review, by way of an automatic procedure. Indeed, it should be possible to write

a program that uses the polyspherical approach combined with the (successive) separation

into subsystems. This program could give the explicit analytical expression of the KEO for

any particular case and could even directly implement the operator in a code used to solve

numerically the Schrödinger equation.

The polyspherical approach has given rise to many applications chiefly in the field of

Infra-red spectroscopy (see Part III). Another goal will be the study of chemical processes

for instance in photochemical reactivity involving conical intersections. As explained in

the introduction of Part IV, the number of quantum mechanical simulations with curvi-

linear coordinates for these systems is rather limited because it is difficult to obtain the

corresponding correct KEO. The results presented in Part IV could bring an important

contribution in order to generalize the use of curvilinear coordinates in this domain.
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APPENDIX A: PROPERTIES OF THE PARTIAL ANGULAR MOMENTA

When defining the conformation of an N -particle system by N -1 vectors, one unavoidably

comes across several angular momenta: not only the total angular momentum of the system

but also the various partial angular momenta corresponding to the motion of the various

vectors. All these momenta can, in addition, be referred to a variety of reference frames

such as the so-called Body-Fixed (BF) frame whose origin coincides with the center of mass

and whose axes rotate in a conventional manner when the particles move. The introduction

of the projections onto the BF-axes is necessary when using the BF coordinate (see Sec.

II B 2), but raises a new technical problem: while the projections of the angular momenta

onto the SF-axes satisfy the usual commutation relations, and their action onto a basis set of

spherical harmonics in terms of the SF spherical coordinates is well known (see for instance

Ref. [109]), the projections of the same angular momenta onto the axes of a moving frame

may satisfy anomalous, non-definite commutation relations [81].

We have shown elsewhere [81] that two cases must be distinguished: whether the vector is

involved in the definition of the BF or not. Indeed, if a vector is not involved in the definition

of a frame F, the expression for the projection of the corresponding angular momentum onto

the F-axes expressed in the coordinates in this frame is identical to the usual one in a SF

frame [58] (it should be stressed that this result is not trivial at all, see below). To be more

specific, if ~Rj is not involved in the definition of the BF frame, the projections of ~Lj onto

the BF-axes and expressed in terms of the BF-Cartesian coordinates are given by:























L̂j xBF

L̂j yBF

L̂j zBF










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


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



=























Rj xBF

Rj yBF

Rj zBF























×

























1
i

∂
∂R

j xBF

1
i

∂
∂R

j yBF

1
i

∂
∂R

j zBF

























. (A1)

Consequently, the usual commutation relations are verified.

If the vector is involved in the definition of the BF frame, the previous results are no

longer true. The projections have to be calculated explicitly and the commutation rela-

tions are non-definite. Several examples can be found in Sec. IIC 1 (Eq. (84)) and Ref. [81].
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Let us return to the first case, namely when the vector is not involved in the definition

of the BF. It would be altogether mistaken to suppose that Eq. (A1) refers to an angular

momentum computed in the BF frame. Indeed, Eq. (A1) is nothing but the exact quantum

mechanical counterpart of the classical expression [58]











Lj xBF

Lj yBF

Lj zBF











=











Rj xBF

Rj yBF

Rj zBF











×













∂T SF

∂Ṙ
j xBF

∂T SF

∂Ṙ
j yBF

∂T SF

∂Ṙ
j zBF













. (A2)

It is important then to notice that (L is the Lagrangian of the system)

∂T SF

∂Ṙj λBF

=
∂L

∂Ṙj λBF

6= ∂TBF

∂Ṙj λBF

, (A3)

i.e. that ∂T SF

∂Ṙ
i λBF

are not the components of a momentum computed in the BF frame, i.e.

they are not computed from velocities relative to the BF frame. Consequently, the angular

momentum operator in Eq. (A1) turns out to be the angular momentum computed in the

SF frame, projected onto the BF-axes and expressed in terms of BF coordinates. For the

sake of completeness, let us add that

∂T SF

∂Ṙj λBF

=
∂L

∂Ṙj λBF

→ 1

i

∂

∂Rj λBF

(A4)

is the only correct quantization rule [57] and not

∂TBF

∂Ṙj λBF

→ 1

i

∂

∂Rj λBF

. (A5)

To explain the origin of these results, let us point out that Eq. (A1) and Eq. (A2) result

from the vector ~Rj being not involved in the definition of the BF frame, which can also be

mathematically expressed as follows (a systematic parallel between classical and quantum

mechanics is made to highlight the physical meaning of the operators):

(i) by means of Poisson brackets:

{Rλλ′ , LjρSF } = 0 , (A6)
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(ii) or commutation relations:

[

Rλλ′ , L̂jρSF

]

= 0 , (A7)

(with (λ, λ′, ρ = x, y, z) and R(α, β, γ) the Euler rotation matrix) We then have in classical

mechanics
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= (RT (α, β, γ)
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(A9)

and in quantum mechanics
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An important question to ask is the following: is it true that
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or
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or, in other words, that the conjugate momentum associated with the BF coordinates (which

is not a ’BF conjugate momentum’ in the sense of a momentum computed in the BF frame)
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can be identified with the projection of the SF conjugate momentum? The explicit calcula-

tion of the projections shows that the answer is yes and comes directly from Eq. (A6) and

(A7), i.e. from the fact that the vector is not involved in the definition of BF.

We thus get
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and
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if the vector ~Rj is not involved in the definition of the BF frame.
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APPENDIX B: GENERAL EXPRESSION OF THE KEO IN ANGULAR MO-

MENTA FOR NON-ORTHOGONAL COORDINATES

In Section IIC 1, we have derived the expression of the KEO in angular momenta for

orthogonal vectors (Eq. (92)). Now, what happens if non-orthogonal vectors are used?

Whereas orthogonal vectors diagonalize the kinetic energy in Eq. (63), non-orthogonal

vectors give rise to off-diagonal terms, also called ’mass polarization’ terms: ~̂P †
i Mij

~̂Pj with

i 6= j. Since the conjugate momentum can be separated into a radial and angular term as:

~̂Pi = P̂Ri
~ei −

~ei × ~̂Li

Ri

, (B1)

with ~ei = ~Ri/Ri a unit vector along ~Ri; P̂Ri
, the radial momentum and ~̂Li, the angular

momentum; and its adjoint as

(~Pi)
†
= P̂ †

Ri
~ei +

~̂L
†
i × ~ei

Ri
, (B2)

in view of Eqs. (63), (B1,B2), ~̂P †
i Mij

~̂Pj + ~̂P †
j Mij

~̂Pi can be rewritten as

2T̂ij = Mij [~ei · ~ej(P̂
†
Ri

P̂ r
Rj

+ P̂ †
Rj

P̂Ri
)

−
~̂L
†
i × ~ei

Ri
· ~ej × ~̂Lj

Rj
−

~̂L
†
j × ~ej

Rj
· ~ei × ~̂Li

Ri

+P̂Rj

~̂L
†
i × ~ei

Ri

· ~ej − P̂ †
Rj

~ej ·
~ei × ~̂Li

Ri

−P̂ †
Ri

~ei ·
~ej × ~̂Lj

Rj

+ P̂Ri

~̂L
†
j × ~ej

Rj

· ~ei] .

(B3)

All the different terms appearing in Eq. (B3) have to be explicitly calculated. Taking into

account that

~̂LN−1 = ~̂J −
N−2
∑

i=1

~̂Li (B4)

and that ~̂LN−2 has a particular behavior, it is straightforward, but tedious to show that [78]
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T̂ = T̂1 + T̂2 , (B5)

with

T̂1 =
N−2
∑

i=1
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and with
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− MiN−1

RiRN−1

cos θBF
i − MjN−1

RjRN−1

cos θBF
j +

MN−1N−1

R2
N−1

}( L̂i−BF L̂j+BF

2
)

−
N−2
∑

i,j=1;i<j

Mij

4RiRj
sin θBF

i sin θBF
j (e−i(ϕBF

i +ϕBF
j )L̂i+BF L̂j+BF + ei(ϕBF

i +ϕBF
j )L̂i−BF L̂j−BF )

+

N−2
∑

i=1

{MN−1N−1

2R2
N−1

+
Mii

2R2
i

− MiN−1 cos θBF
i

RiRN−1
}(~̂L†

i
~̂Li)BF

+
N−2
∑

i,j=1;i<j

{ Mij

RiRj

sin θBF
i sin θBF

j cos(ϕBF
i − ϕBF

j ) +
MN−1N−1

R2
N−1

}L̂izBF L̂jzBF

+
N−2
∑

i,j=1;i<j

sin θBF
j (− Mij

RiRj

cos θBF
i +

MjN−1

RjRN−1

)(
e−iϕBF

j L̂i+BF + eiϕBF
j L̂i−BF

2
)L̂jzBF

+

N−2
∑

i,j=1;i<j

sin θBF
i (− Mij

RiRj
cos θBF

j +
MiN−1

RiRN−1
)(

e−iϕBF
i L̂izBF L̂j+BF + eiϕBF

i L̂izBF L̂j−BF

2
)

+

N−2
∑

i=1

MiN−1

RiRN−1
sin θBF

i (
e−iϕBF

i L̂i+BF − eiϕBF
i L̂i−BF

2
) . (B7)

The previous equations should be used along with

θBF
N−1 = ϕBF

N−1 = ϕBF
N−2 = 0 (B8)
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since ~RN−1 is parallel to the zBF axis and ~RN−2 is parallel to the ((xBF , zBF ); xBF > 0)

half-plane. Even if this does not appear explicitly for each term, it is emphasized that

the operator in Eq. (B5) is Hermitian. This operator is correct for the case in which the

wave functions are normalized with an Euclidean convention of normalization, i.e. with the

volume element given by Eq. (73). All the equations (75), (77), (83), and (99) given in Sec.

IIC 1 remain true.
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APPENDIX C: GENERAL EXPRESSION OF THE KEO IN CONJUGATE MO-

MENTA

This Appendix is devoted to the explicit expression of the coefficients Gqlqm
, Γλλ′ , and

Cλql
appearing in the KEO in Eqs. (106) and (111). Here, {qi; i = 1, . . . , 3N − 6} =

{(Ri; i = 1, . . . , N − 1), (ui; i = 1, . . . , N − 2), (ϕBF
i ; i = 1, . . . , N − 3)} and λ, λ′ = x, y, z.

The sub-matrices are all symmetrical, i.e. Gqlqm
= Gqmql

, Γλλ′ = Γλ′λ, and Cλql
= Cqlλ.

The following equations should be used along with θBF
N−1 = ϕBF

N−1 = ϕBF
N−2 = 0 since ~RN−1

is parallel to the zBF axis and ~RN−2 is parallel to the ((xBF , zBF ); xBF > 0) half-plane. We

recall that

ui = cos θBF
i (C1)

and that

cot θBF
i =

ui

vi
(C2)

with

vi =
√

1 − u2
i = sin θBF

i . (C3)

(i) General case:
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Vibrational terms:

GRiRj
= Mij(sin θBF

i sin θBF
j cos(ϕBF

i − ϕBF
j ) + cos θBF

i cos θBF
j ) ,

GRiuj
= − sin θBF

j (Mij

sin θBF
i cos θBF

j cos(ϕBF
i − ϕBF

j ) − cos θBF
i sin θBF

j

Rj

−MiN−1

sin θBF
i cos(ϕBF

i − ϕBF
j )

RN−1
) ,

GRiϕBF
j

= Mij

sin θBF
i sin(ϕBF

i − ϕBF
j )

Rj sin θBF
j

− MiN−2
sin θBF

i sin ϕBF
i

RN−2 sin θBF
N−2

+MiN−1

sin θBF
i (sin ϕBF

i cot θBF
N−2 + cot θBF

j sin(ϕBF
j − ϕBF

i ))

RN−1
,

Guiuj
= sin θBF

i sin θBF
j (Mij

cos θBF
i cos θBF

j cos(ϕBF
i − ϕBF

j ) + sin θBF
i sin θBF

j

RiRj

−MiN−1

cos θBF
i cos(ϕBF

i − ϕBF
j )

RiRN−1

−MjN−1

cos θBF
j cos(ϕBF

i − ϕBF
j )

RjRN−1
+ MN−1N−1

cos(ϕBF
i − ϕBF

j )

R2
N−1

) ,

GuiϕBF
j

= − sin θBF
i (Mij

cos θBF
i sin(ϕBF

i − ϕBF
j )

RiRj sin θBF
j

− MiN−2
cos θBF

i sin ϕBF
i

RiRN−2 sin θBF
N−2

+MiN−1

cos θBF
i (cot θBF

j sin(ϕBF
j − ϕBF

i ) + cot θBF
N−2 sin ϕBF

i )

RiRN−1

+MjN−1

sin(ϕBF
j − ϕBF

i )

RjRN−1 sin θBF
j

+ MN−2N−1
sin ϕBF

i

RN−2RN−1 sin θBF
N−2

+MN−1N−1

cot θBF
j sin(ϕBF

i − ϕBF
j ) − sin ϕBF

i cot θBF
N−2

R2
N−1

) ,

GϕBF
i ϕBF

j
= Mij

cos(ϕBF
i − ϕBF

j )

RiRj sin θBF
i sin θBF

j

− MiN−2
cos ϕBF

i

RiRN−2 sin θBF
i sin θBF

N−2

−MjN−2

cos ϕBF
j

RjRN−2 sin θBF
j sin θBF

N−2

+MiN−1

cos ϕBF
i cot θBF

N−2 − cos(ϕBF
i − ϕBF

j ) cot θBF
j

RiRN−1 sin θBF
i

+MjN−1

cos ϕBF
j cot θBF

N−2 − cos(ϕBF
i − ϕBF

j ) cot θBF
i

RjRN−1 sin θBF
j

+MN−2N−2
1

(RN−2 sin θBF
N−2)

2 + MN−2N−1

cos ϕBF
i cot θBF

i + cos ϕBF
j cot θBF

j − 2 cot θBF
N−2

RN−1RN−2 sin θBF
N−2

+MN−1N−1

cot θBF
i cot θBF

j cos(ϕBF
i − ϕBF

j ) + (cot θBF
N−2)

2

R2
N−1

−MN−1N−1

cot θBF
N−2(cos ϕBF

i cot θBF
i + cos ϕBF

j cot θBF
j )

R2
N−1

.

(C4)130



Rotational terms:

Γzz = MN−2N−2
1

(RN−2 sin θBF
N−2)

2 − MN−2N−1

2 cot θBF
N−2

RN−2RN−1 sin θBF
N−2

+ MN−1N−1

(cot θBF
N−2)

2

R2
N−1

,

Γyy = Γxx = MN−1N−1
1

R2
N−1

,

Γxz = −MN−2N−1
1

RN−2RN−1 sin θBF
N−2

+ MN−1N−1

cot θBF
N−2

R2
N−1

,

Γxy = Γyz = 0 .

(C5)

Coriolis terms:

CxRj
= −MjN−1

sin θBF
j sin ϕBF

j

RN−1
,

CyRj
= MjN−1

sin θBF
j cos ϕBF

j

RN−1

,

CzRj
= MjN−2

sin θBF
j sin ϕBF

j

RN−2 sin θBF
N−2

− MjN−1

sin θBF
j sin ϕBF

j cot θBF
N−2

RN−1
,

Cxuj
= − sin θBF

j (−MjN−1

cos θBF
j sin ϕBF

j

RN−1Rj

+ MN−1N−1

sin ϕBF
j

R2
N−1

) ,

Cyuj
= − sin θBF

j (MjN−1

cos θBF
j cos ϕBF

j

RN−1Rj
− MN−1N−1

cos ϕBF
j

R2
N−1

) ,

Czuj
= − sin θBF

j (MjN−2

cos θBF
j sin ϕBF

j

RN−2Rj sin θBF
N−2

− MjN−1

cot θBF
N−2 cos θBF

j sin ϕBF
j

RN−1Rj

−MN−2N−1

sin ϕBF
j

RN−2RN−1 sin θBF
N−2

+ MN−1N−1

sin ϕBF
j cot θBF

N−2

R2
N−1

) ,

CxϕBF
j

= −MjN−1

cos ϕBF
j

RN−1Rj sin θBF
j

+ MN−2N−1
1

RN−1RN−2 sin θBF
N−2

+MN−1N−1

cos ϕBF
j cot θBF

j − cot θBF
N−2

R2
N−1

,

CyϕBF
j

= −MjN−1

sin ϕBF
j

RN−1Rj sin θBF
j

+ MN−1N−1

sin ϕBF
j cot θBF

j

R2
N−1

,

CzϕBF
j

= MjN−2

cos ϕBF
j

RN−2Rj sin θBF
N−2 sin θBF

j

− MjN−1

cot θBF
N−2 cos ϕBF

j

RN−1Rj sin θBF
j

+MN−2N−1

2 cot θBF
N−2 − cos ϕBF

j cot θBF
j

RN−2RN−1 sin θBF
N−2

−MN−2N−2
1

(RN−2 sin θBF
N−2)

2 + MN−1N−1

cot θBF
N−2(− cot θBF

N−2 + cos ϕBF
j cot θBF

j )

R2
N−1

.

(C6)
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(ii) Orthogonal coordinates :

In the particular case of orthogonal coordinates, Eqs. (C4, C5, C6) reduce to µi = 1
Mii

,

δij = 0 if i 6= j, 1 otherwise)

Vibrational terms:

GRiRj
=

δij

µi

, GRiuj
= 0, GRiϕBF

j
= 0 ,

Guiuj
=

1

µN−1R2
N−1

sin θBF
i sin θBF

j cos(ϕBF
i − ϕBF

j ) +
δij

µiR2
i

(sin θBF
i )2 ,

GuiϕBF
j

= − 1

µN−1R2
N−1

sin θBF
i (cot θBF

j sin(ϕBF
i − ϕBF

j ) − sin ϕBF
i cot θBF

N−2) ,

GϕBF
i ϕBF

j
=

1

µN−1R2
N−1

(cot θBF
i cot θBF

j cos(ϕBF
i − ϕBF

j ) + cot2 θBF
N−2

− cot θBF
N−2

(

cos ϕBF
i cot θBF

i + cos ϕBF
j cot θBF

j

)

)

+
δij

µiR2
i sin2 θBF

i

+
1

µN−2R2
N−2 sin2 θBF

N−2

. (C7)

Rotational terms:

Γzz =
1

µN−2R
2
N−2 sin2 θBF

N−2

+
cot2 θBF

N−2

µN−1R2
N−1

,

Γxx = Γyy =
1

µN−1R
2
N−1

,

Γxy = Γyz = 0 ,

Γxz =
cot θBF

N−2

µN−1R
2
N−1

. (C8)
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Coriolis terms:

CxRj
= CyRj

= CzRj
= 0 ,

Cxuj
= −

sin θBF
j sin ϕBF

j

µN−1R2
N−1

,

Cyuj
=

sin θBF
j cos ϕBF

j

µN−1R
2
N−1

,

Czuj
= −

sin θBF
j sin ϕBF

j cot θBF
N−2

µN−1R2
N−1

,

CxϕBF
j

=
cos ϕBF

j cot θBF
j − cot θBF

N−2

µN−1R2
N−1

,

CyϕBF
j

=
sin ϕBF

j cot θBF
j

µN−1R2
N−1

,

CzϕBF
j

= − 1

µN−2(RN−2 sin θBF
N−2)

2 +
cot θBF

N−2(− cot θBF
N−2 + cos ϕBF

j cot θBF
j )

µN−1R2
N−1

. (C9)
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APPENDIX D: KEO FOR HCF3 IN VALENCE COORDINATES

Let us parametrize a penta-atomic system such as fluoroform, CHF3, by four valence

vectors as shown in Figure 17. The corresponding matrix M reads

M =















1
mC

+ 1
mH

1
mC

1
mC

1
mC

1
mC

1
mC

+ 1
mF

1
mC

1
mC

1
mC

1
mC

1
mC

+ 1
mF

1
mC

1
mC

1
mC

1
mC

1
mC

+ 1
mF















, (D1)

and if the following volume element is used in normalizing the wave functions

dτ ′ = dR4 dR3 dR2 dR1 du3 du2 du1 dϕBF
2 dϕBF

1 , (D2)

the KEO of Eqs. (111,C4) yields

T̂ = T̂Ri Rj
+ Vextra + T̂ϕi ϕj

+ T̂Ri uj
+ T̂Ri ϕj

+ T̂ui uj
+ T̂ui ϕj

,

(D3)

with

T̂Ri Rj
+ Vextra = −

4
∑

i=1

1

2µi

∂2

∂R2
i

−
3
∑

i=1

ui

mC
(

∂2

∂Ri∂R4
+

1

RiR4
)

− v1v2 cos (ϕ1 − ϕ2) + u1u2

mC
(

∂2

∂R1∂R2
+

1

R1R2
)

−
2
∑

i=1

viv3 cos ϕi + uiu3

mC
(

∂2

∂Ri∂R3
+

1

RiR3
) ,

(D4)

and with (we use ϕi instead of ϕBF
i and θi instead of θBF

i to lighten the notations)
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T̂ϕi ϕj
= −

2
∑

i=1

∂

∂ϕi

[
Mii

2R2
i v

2
i

− cos ϕi

mCviRiR3v3

+
cos ϕi cot θ3 − cot θi

mCviRiR4

+
M33

2R2
3v

2
3

+
cos ϕi cot θi − cot θ3

mCv3R3R4
+

cot2 θi + cot2 θ3

2µ4R2
4

− cot θ3 cos ϕi cot θi

µ4R2
4

]
∂

∂ϕi

− ∂

∂ϕ1
[
cos (ϕ2 − ϕ1)

2mCR1R2v1v2
+

M33

2R2
3v

2
3

+

∑

i=1,2 cos ϕi cot θi − 2 cot θ3

2mCR4R3v3

+

i6=j
∑

i,j=1,2

(
cos ϕi cot θ3 − cos (ϕ2 − ϕ1) cot θj

2mCRiR4vi

− cos ϕi

2mCRiR3viv3

)

+
cot θ2 cot θ1 cos (ϕ2 − ϕ1) + cot2 θ3

2µ4R
2
4

−
cot θ3(

∑

i=1,2 cos ϕi cot θi)

2µ4R
2
4

]
∂

∂ϕ2

− ∂

∂ϕ2
[
cos (ϕ2 − ϕ1)

2mCR1R2v1v2
+

M33

2R2
3v

2
3

+

∑

i=1,2 cos ϕi cot θi − 2 cot θ3

2mCR4R3v3

+

i6=j
∑

i,j=1,2

(
cos ϕi cot θ3 − cos (ϕ2 − ϕ1) cot θj

2mCRiR4vi

− cos ϕi

2mCRiR3viv3

)

+
cot θ2 cot θ1 cos (ϕ2 − ϕ1) + cot2 θ3

2µ4R
2
4

−
cot θ3(

∑

i=1,2 cos ϕi cot θi)

2µ4R
2
4

]
∂

∂ϕ1

,

(D5)

T̂Ri uj
= −

3
∑

i=1

(
∂

∂Ri

v2
i

2mCR4

∂

∂ui
+

∂

∂ui

v2
i

2mCR4

∂

∂Ri
) −

∑

i,j=1,2;i6=j

∂

∂Ri
[

vj(−viuj cos (ϕi − ϕj) + uivj)

2mCRj

∂

∂uj

+
∂

∂uj

vj(−viuj cos (ϕi − ϕj) + uivj)

2mCRj

+
vivj cos (ϕi − ϕj)

2mCR4

∂

∂uj

+
∂

∂uj

vivj cos (ϕi − ϕj)

2mCR4
+

v3(−viu3 cos ϕi + uiv3)

2mCR3

∂

∂u3
+

∂

∂u3

v3(−viu3 cos ϕi + uiv3)

2mCR3

+
viv3 cos ϕi

2mCR4

∂

∂u3
+

∂

∂u3

viv3 cos ϕi

2mCR4
] − ∂

∂R3
[
vi(−v3ui cos ϕi + u3vi)

2mCRi

∂

∂ui
+

∂

∂ui

vi(−v3ui cos ϕi + u3vi)

2mCRi

+
v3vi cos ϕi

2mCR4

∂

∂ui

+
∂

∂ui

v3vi cos ϕi

2mCR4

] −
3
∑

i=1

∂

∂R4

(
v2

i

2mCRi

∂

∂ui

+
∂

∂ui

v2
i

2mCRi

) ,

(D6)
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T̂Ri ϕj
= −

2
∑

i=1

∂

∂Ri

[(
vi sin ϕi cot θ3

2mCR4

− vi sin ϕi

2mCR3v3

)
∂

∂ϕi

+
∂

∂ϕi

(
vi sin ϕi cot θ3

2mCR4

− vi sin ϕi

2mCR3v3

)]

−
i6=j
∑

i,j=1,2

∂

∂Ri

[(
vi sin (ϕi − ϕj)

2mCRjvj

− vi sin ϕi

2mCR3v3

+
vi(sin ϕi cot θ3 + cot θj sin (ϕj − ϕi)

2mCR4

)
∂

∂ϕj

+
∂

∂ϕj
(
vi sin (ϕi − ϕj)

2mCRjvj
− vi sin ϕi

2mCR3v3
+

vi(sin ϕi cot θ3 + cot θj sin (ϕj − ϕi)

2mCR4
)]

−
2
∑

i=1

∂

∂R3
[(

v3 sin ϕi cot θi

2mCR4
− v3 sin ϕi

2mCRivi
)

∂

∂ϕi
+

∂

∂ϕi
(
v3 sin ϕi cot θi

2mCR4
− v3 sin ϕi

2mCRivi
)] ,

(D7)

T̂ui uj
= −

3
∑

i=1

∂

∂ui
v2

i (
Mii

2R2
i

+
M44

2R2
4

− ui

mCRiR4
)

∂

∂ui

− ∂

∂u1
v1v2[

u1u2 cos (ϕ1 − ϕ2) + v1v2

2mCR1R2
−
∑

i=1,2

ui cos (ϕ1 − ϕ2)

2mCRiR4
+

cos (ϕ1 − ϕ2)

2µ4R2
4

]
∂

∂u2

− ∂

∂u2
v1v2[

u1u2 cos (ϕ1 − ϕ2) + v1v2

2mCR1R2
−
∑

i=1,2

ui cos (ϕ1 − ϕ2)

2mCRiR4
+

cos (ϕ1 − ϕ2)

2µ4R2
4

]
∂

∂u1

−
2
∑

i=1

{ ∂

∂ui
viv3[

uiu3 cos ϕi + viv3

2mCRiR3
− ui cos ϕi

2mCRiR4
− u3 cos ϕi

2mCR3R4
+

cos ϕi

2µ4R2
4

]
∂

∂u3

+
∂

∂u3
viv3[

uiu3 cos ϕi + viv3

2mCRiR3
− ui cos ϕi

2mCRiR4
− u3 cos ϕi

2mCR3R4
+

cos ϕi

2µ4R2
4

]
∂

∂ui
} ,

(D8)

and
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T̂ui ϕj
= −

∑

i,j=1,2;i6=j

{ ∂

∂ui
vi[

ui sin (ϕj − ϕi)

2mCRiRjvj
+

ui sin ϕi

2mCRiR3v3
− ui(cot θj sin (ϕj − ϕi) + cot θ3 sin ϕi)

2mCRiR4

+
sin (ϕi − ϕj)

2mCRjR4vj
− sin ϕi

2mCR3R4v3
− cot θj sin (ϕi − ϕj) − sin ϕi cot θ3

2µ4R2
4

]
∂

∂ϕj

+
∂

∂ϕj

vi[
ui sin (ϕj − ϕi)

2mCRiRjvj

+
ui sin ϕi

2mCRiR3v3

− ui(cot θj sin (ϕj − ϕi) + cot θ3 sin ϕi)

2mCRiR4

+
sin (ϕi − ϕj)

2mCRjR4vj
− sin ϕi

2mCR3R4v3
− cot θj sin (ϕi − ϕj) − sin ϕi cot θ3

2µ4R2
4

]
∂

∂ui
}

−
2
∑

i=1

{ ∂

∂u3

v3[
u3 sin ϕi

2mCRiR3vi

− u3 cot θi sin ϕi

2mCR3R4

− sin ϕi

2mCRiR4vi

+
sin ϕi cot θi

2µ4R
2
4

]
∂

∂ϕi

+
∂

∂ϕi
v3[

u3 sin ϕi

2mCRiR3vi
− u3 cot θi sin ϕi

2mCR3R4
− sin ϕi

2mCRiR4vi
+

sin ϕi cot θi

2µ4R2
4

]
∂

∂u3
}

−
2
∑

i=1

{ ∂

∂ui
vi[

ui sin ϕi

2mCRiR3v3
− ui cot θ3 sin ϕi

2mCRiR4
− sin ϕi

2mCR3R4v3
+

sin ϕi cot θ3

2µ4R2
4

]
∂

∂ϕi

+
∂

∂ϕi
vi[

ui sin ϕi

2mCRiR3v3
− ui cot θ3 sin ϕi

2mCRiR4
− sin ϕi

2mCR3R4v3
+

sin ϕi cot θ3

2µ4R2
4

]
∂

∂ui
} .

(D9)

We recall that

ui = cos θi (D10)

and that

cot θi =
ui

vi
(D11)

with

vi =
√

1 − u2
i = sin θi. (D12)
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and J. Villà. The incorporation of quantum effects in enzyme kinetics modeling. Acc.

Chem. Res. 35 (2002), 341.

[10] D. G. Truhlar, J. Gao, C. Alhambra, M. Garcia-Viloca, J. Corchado, M. L. Sánchez,
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[198] M. Bittner, H. Köppel, and F. Gatti. A multi-dimensional quantum dynamical study of

beta-hydrogen transfer in a cationic rhodium complex. J. Phys. Chem. A 111 (2007), 2407.

[199] F. Gatti, C. Iung, C. Leforestier, and X. Chapuisat. Fully coupled 6d calculations of

the ammonia vibration-inversion-tunneling states with a split hamiltonian pseudospectral

approach. J. Chem. Phys. 111 (1999), 7236–7243.

150



[200] R. T. Pack and G. Parker. J. Chem. Phys. 87 (1987), 3888.

[201] R. T. Pack and G. Parker. J. Chem. Phys. 90 (1989), 3511.

[202] P. R. Bunker and P. Jensen. Molecular symmetry and spectroscopy. NRC Research press,

Ottawa, 1998.

[203] X.-G. Wang and T. Carrington, Jr. J. Chem. Phys. 115 (2001), 9781.

[204] X.-G. Wang and T. Carrington, Jr. Can. J. Phys. 114, 4 (2001), 1473–1477.

151


