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Abstract

A review of the polyspherical approach to the kinetic operators for polyatomic molecules is given.
This approach provides general and correct forms of the kinetic energy operator (KEO) expressed
in terms of curvilinear coordinates. These forms are well adapted to the physical description of
molecular systems and to the numerical methods used to solve the Schrodinger equation. The
approach derives its name, polyspherical, from the fact that the operators are expressed in terms
of spherical coordinates eventually. These kinetic energy operators can be exploited to treat a
large variety of problems such as the calculation of infrared or photo-absorption spectra or the

study of reactive scattering systems. Special emphasis is placed on concrete examples.
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I. INTRODUCTION

During the past years, considerable progress has been made in the field of molecular
quantum dynamics. The domain of applications encompasses broad areas in physics or
chemistry: photo-dissociations or excitations, dissociations of an adsorbate on a metal
surface, intramolecular vibrational energy redistribution and predissociation, infrared
spectroscopy, inelastic surface scattering, molecular reactive scattering, evolution of a
molecular system excited by an ultra-short laser pulse. On the experimental front, decisive
progress, in particular in the field of femto-spectroscopy [1-3] or infra-red/microwave
spectroscopy [4-7], allows the scientists to probe chemical phenomena at an atomic time
scale or to obtain fully resolved spectra of highly excited polyatomic systems. These
ultra-sophisticated experiments require new theoretical tools to interpret, predict and, in

other words, accompany these experimental works.

In addition, it should be emphasized that these molecular processes are generally
impacted to a significant extent by nuclear quantum mechanical effects [8-10] such as
zero-point energy effects or tunnelling of light atoms through barriers (for instance in the
case of electron or proton transfers), transitions due to strong vibronic couplings such as
conical intersections, which seem to play a crucial role in many organic or biological systems.
Several algorithms for solving the Schrédinger equation have thus been developed which
have wide applicability and allow to treat larger systems than in the past. In particular,
one can cite the Multi-Configuration Time Dependent Hartree (MCTDH) [11-20] approach,
the Multimode code [21-25] based on a time independent Vibrational Self-Consistent Field
approach coupled to a Configuration Interaction (CI-VSCF) procedure (see also [26-32] for
other CI-VSCF methods), or the Wave Operator Sorting Algorithm (WOSA) based on the

extraction of an active space within the framework of the Bloch formalism, [33-36].

When solving the Schrodinger equation, the choice of the set of coordinates used to
describe the physical systems is of great importance. First, for a given system treated in
full dimensionality, the convergence of the algorithms that solve the Schrodinger equation
depends on the correlation between the coordinates. More precisely, a set of coordinates

that minimizes the correlation will improve convergence, while a coordinate set that



introduces strong artificial correlations, i. e. correlations that are entirely due to an
unsuitable choice of coordinates, will slow down convergence. Let us consider an example.
For small amplitude motions around a well defined equilibrium geometry, the vibrations are
often rather harmonic. The well-known normal-mode rectilinear coordinates then make the
Hamiltonian operator almost separable — it is exactly separable for infinitesimal distortions
— and the use of these coordinates will be optimal in a low-energy domain. However, for
more floppy systems exhibiting two or several minima, or at higher excitation energies,
the vibrational amplitudes become larger and the rectilinear normal coordinates cease to
describe the motion in a natural way. This introduces strong artificial correlations. In such
situations, in particular when studying scattering, dissociation, or isomerization problems,
the use of appropriate internal coordinates becomes crucial. In general, curvilinear coordi-
nates, involving angles, are the natural choice, as they usually lead to a more separable and

hence less artificially correlated Hamiltonian operator.

Second, for very large systems, the correspondingly large number of internal coordinates
makes approximations unavoidable. This is true not only for the dynamics, but also,
and above all, for the calculation of the potential operator, i.e. the generation of global
potential energy surfaces, which is restricted to systems with only a few degrees of
freedom. Fortunately, chemical processes can often be described by a limited number of
active degrees of freedom. Under these conditions it is reasonable to invoke simplifying
approximations for the other degrees of freedom. This permits the construction of simple
model Hamiltonians [37-41]. Several general models have been formulated, such as the
reaction surface Hamiltonian [42-45], which makes use of a harmonic approximation locally
defined along one or several reaction coordinates, and the multistate-multimode vibronic
coupling model [46-50] to calculate photoabsorption spectra involving conical intersections.
The choice of the pertinent coordinates is crucial and determined by physical intuition.
It may happen that curvilinear coordinates are the only coordinates that can correctly
describe these chemical processes with a limited number of degrees of freedom. For instance,
several works have proved (i) that the reaction path Hamiltonian may sometimes be far
better described in terms of curvilinear coordinates than of rectilinear coordinates [51, 52J;
(ii) that the crossing seam of a conical intersection is, in general, curved [53, 54] and, thus,

that curvilinear coordinates are essential to describe the behavior of the extended seam



[55, 56].

Unfortunately, the use of curvilinear coordinates often leads to very complicated
expressions of the kinetic energy operator (KEO) [57, 58], which need to be derived
for a particular system [59-66] and are not easy to generalize. This is in contrast to
the rectilinear coordinates, which simplify the mathematical formulation of the same
operator in a systematic way. The problem is not primarily to derive a formula for the
KEO. An algorithmic program such as Mathematica [67] can be used to calculate the
operators analytically. A numerical computation of the action of the kinetic operator is
also possible and several contributions have been put forth in this direction (see, e. g.,
Refs. [68-71]). Consequently, the crucial point is to find a general form of the KEO that

is (i) as compact as possible and (ii) well adapted to the numerical methods used in dynamics.

The polyspherical approach, presented in a series of papers [72-83], accomplishes both
of these requirements. It is a general formulation of the exact KEO of an N-atom system
whose configuration, in the center-of-mass frame, is described by N-1 relative position
vectors. The approach derives its name polyspherical from the fact that the operators
are expressed in terms of spherical coordinates that parametrize the N-1 relative position

vectors eventually.

The polyspherical approach is characterized by the five following properties: (i) it explic-
itly provides rather compact and general expressions of the exact kinetic energy operator
including rotation and Coriolis coupling and avoids the use of differential calculus when
deriving these operators. (ii) Within this approach it is very easy to find a primitive basis
set (e. g. a basis set of spherical harmonics) that discards all singularities that may occur in
the KEO. (iii) General expressions for the KEO are explicitly provided. (iv) There is much
freedom in choosing the underlying set of vectors: they may be of Jacobi, Radau, Valence,
satellite type, or a combination of these. (v) When polyspherical coordinates are used, the

KEO always is separable: i.e. it can be written as a sum of products of monomodal operators.

The purpose of the review is to provide an overview of the polyspherical approach. In

Part II, the polyspherical method is introduced. The background theory is dealt with briefly,



before the polyspherical approach is looked at in detail. In Part III, concrete applications
on systems from 4 to 13 atoms are presented: the exact KEOs of these systems involving
all the degrees of freedom derived from the general expressions are given explicitly. Part IV
is devoted to the study of large systems: starting from a limited set of active curvilinear
coordinates, we present a general strategy to obtain the correct KEOs. Several examples
are given for systems such as organometallic complexes or organic molecules involved in

photochemical reactivity.



II. THE POLYSPHERICAL APPROACH: THEORY
A. Theoretical background

(i) Kinetic energy operators in curvilinear coordinates:

Systems of N particles possess 3N degrees of freedom, of which three can be eliminated by
translational invariance when there is no external field. The reduced system thus obtained
has 3N—3 degrees of freedom, and its configuration can be specified by N-1 relative position
vectors. Hereafter, G will denote the center of mass of the molecular system and the Space-
Fixed (SF) frame will denote the center of mass frame whose origin coincides with G and
whose axes coincide with the axes of the Laboratory-Fixed (LF) frame. The convention
h = 1 is used everywhere in the present review. Let the configuration of an N-particle

system be described by 3N-3 generalized coordinates ¢; (i = 1,...,3N — 3), and

xoc:xa(qla"'aQia"'aQi’)N—?’) (Oé:].,,gN—B), (1)

be the expression of the SF mass-weighted Cartesian coordinates associated with the N-1
vectors describing the system in terms of the chosen generalized coordinates. (The mass-
weighted coordinates are obtained by multiplying the standard Cartesian coordinates by
v/m, m being the mass of the particle). Coordinates that may be expressed as linear combi-
nations of Cartesian coordinates are called rectilinear, and those that are nonlinear functions
of Cartesian coordinates are called curvilinear. As shown by Podolsky, the expression of the
kinetic energy operator in curvilinear coordinates ¢; (¢ = 1,...,3N — 3) is given by the

expression ((—1) times the Laplacian) [57, 58, 84] :

o L0 0

with
J. = |Det( 25, 3)
e e 8q2 bl

the absolute value of the Jacobian (in the present review, 'the Jacobian’ stands for the Jaco-
bian determinant, i.e. the determinant of the Jacobian matrix, and not for the matrix itself.

Det denotes the determinant of a matrix) corresponding to the coordinate transformation



from g; to z,. We assume that J. > 0 except, possibly, on a null set. G;; (i,7 =1,...,3N—=3)
in Eq. (2) is given by

3N-3

dq; 0q; . .
Z@x axj i,j=1,...,3N = 3). (4)
In addition, the inverse of G,
g=1l9]=67"=16,"", (5)
satisfies -
0z, Ox
<= (i,j=1,...,3N = 3).
Z dq; Oq] hj=1...,3 3) (6)

a=1

Egs. (5,6) come from the fact that G;; and g;; are the contravariant and covariant compo-
nents, respectively, of the metric tensor used to measure distances and angles in terms of
curvilinear coordinates ¢; in the Euclidean space spanned by the mass-weighted Cartesian
coordinates x,. Note, however, that tensor notation is avoided in the present review in order
to simplify the equations. In other words, the matrix elements G;; and g;; correspond to g%
and g;;, respectively, in tensor notation. It is then straightforward to rewrite equation (2)

as

3N-3
2T = > Pl G, P, (7)
ij=1
with the momentum operators :
- 10
P, =- 8
q; Zan Y ( )
and their adjoints [58]
. 1 0
Pl =-Jt ", 9
qi 7 € aql ( )
which can be rewritten as
Pl = P+ A,

(10)

with A;, a purely multiplicative operator. The parentheses in Eq. (10) indicate that pqi

does not operate beyond the parentheses. In other words,
A 19(Je)

_1P. N
(! Py de) = =i e

(11)



Note also that
J. = (|Det(Gij)) 2 = g7 (12)

(ii) Change in the convention of normalization:

The kinetic energy operator of Eqs. (2,7) is correct in case the wave functions are nor-

malized as follows:

/\If*\IIdT ~ 1,

(13)
where
dr = Je dql e dQ3N_3
(14)
is the usual Euclidean volume element.
Now, if another volume element is used in normalizing the wave-functions, i.e.
dr' = pdq ... dgsn—s,
(15)

where p is an arbitrary weight function (we only assume that p > 0 and that, if p = 0, it is
only on a null set), the wave function ¥ and the kinetic energy operator are to be replaced

respectively by [58]

1

1
U= J2p 20, (16)
and
N 1 1~ 1 1
T =Jép 2Tp2J. *, (17)
so as to preserve the normalization of the wave-functions. The adjoint of the conjugate

momentum P, becomes

10



PT-/ = p‘]z—i_A;u
A = (P_lpqip)-
(18)

Let us consider an important particular case: the p = 1 case. If p = 1, Eq. (17) expands

into [58, 85-87]

3N-3

21" =" P, Gy By + 2V, (19)
C,J
with V), a purely multiplicative operator called ’extra potential term’, which reads
SN-3 A )
2V = (Y Je 2P, J.Gi ByJe ?) . (20)

1,J

(Again, the parentheses in Eq. (20) indicate that P, and qu do not operate beyond those).
(iii) Introduction of quasi-momenta:

Now, let us introduce a new set of linear combinations of the pqi (n>3N —3):

3N-3
Pe=> Agb (K=1,...n). (21)
i=1
The following cases may occur :
(1) there exists a coordinate transformation from ¢; to some new coordinates Qx such that

A is the ordinary Jacobian matrix :
_ Jy
0Qx

so that Py is the momentum conjugate to the curvilinear coordinate ().

Al (22)
(2) no such coordinate transformation exists and the Py that cannot be written as momen-
tum conjugates are usually said to be quasi-momenta [58, 81]. The usual angular momentum
component operators introduced in quantum mechanics are a particular case of such opera-
tors.

The KEO can be recast in terms of these new momenta:

2T = > PLGi, P, (23)

K,L=1

11



with
3N-3

i=1
the adjoint of Px. The elements of matrix G’ are functions of the elements of the matrices
G and A:

G = ATGA, (25)

AT denotes the transpose of A.

Let us consider an important particular case: the three BF-components of f, the total
angular momentum of a molecular system. In order to separate the overall rotation from
the internal deformation, let us introduce a Body-Fixed (BF) frame, {G; & ,5r, €,5r, €,5r}.
The BF frame is linked to the system, and its axes €,5r, €,5r and € ,sr rotate in a con-
ventional manner when the particles move. The orientation of the BF frame with respect
to the SF frame is determined by three Euler angles: «, [, v, and, after definition of the
three Euler angles, the shape and the size of the molecules are described by 3N —6 internal
BF coordinates. We have 3N-3 coordinates such as {¢;,i = 1,...,3N — 6} correspond to
the 3N —6 internal BF coordinates and q3ny_5 = «, @3y_4 = 3, and ¢3ny_3 = . This sepa-
ration greatly facilitates the construction of the irreducible representations of the rotation
symmetry group, thus reducing the size of the calculations needed to solve the Schrodinger

equation. The three BF-components of J can be expressed in terms of the three momentum

operators associated with the Euler angles as

_ - 190
A N a
e]xBF Lo
JyBF == AJ 19 (26)
i 0B
I J,Br | Lo
| i Oy |

(see Eq. (77), in Section ITC 1 below, for an explicit expression of A;). The KEO can be

rewritten in terms of the 3N — 6 momentum operators associated with the 3N —6 internal

12



BF coordinates and of the three quasi—momenta, J b, ijF, and J_zr:

3N—6 3N—6 Dt 7 7 >
2
I,m=1 =1 a=zy,z

jaBFFalgjﬁBF + jI@BFFI@ajaBF
D EDY 2 -

a=a,y,2 B=x,y,z

(27)
The matrices X, o and I' parametrize the vibrational (Tm-b), Coriolis (TCOT) and rotational
(T rot) parts of the KEO, respectively. (To be rigorous, it is never possible to fully isolate
the different parts of the KEO corresponding to the vibration, the rotation and the Coriolis
coupling. This depends on the coordinate system and the definition of the BF frame. Hence,
there is also some Coriolis coupling in T vip and T rot- However, we keep this notation for
simplicity). The elements of the matrices o and I" depend on the elements of the matrices

G and A of Egs. (7) and (26), respectively. Indeed, we have

1 0 Y of 1 0 b oTAy

0 AJ o r 0 AJ AJ o AJ FA_]
The elements of the matrix 3 are identical to the elements of the matrix G corresponding
to the 3N-6 internal coordinates. In other word, ¥y, = Gy, (i, = 1,...,3N —6). The

matrix 3 does not depend on the definition of the BF frame.

Let us point out that it is possible to introduce other quasi-momenta, for instance, the
BF-components of the angular momenta associated with the N — 1 relative position vectors

that will appear, in the polyspherical approach, in Section II B.

Another important "historical’ case of quasi-momenta are the so-called vibrational mo-

mentum components, T, (o = x,y, z), introduced by Watson [88, 89]. They read
3N—6

=1 Z ClekaQ (29)

kl=1
where @, are the normal coordinates and ¢ are Coriolis parameters defined in Ref. [88].
It goes without saying that they are different from the angular momenta introduced in the

polyspherical approach.

13



Finally, let us point out that it is also possible to introduce hermitian quasi-momentum

operators by the standard procedure:

Pl = Py + P} . (30)

It can be shown (see Chapter 3 in Ref. [58]) that

. . 1
PH = J2PeJr + S (31)
with
3N-3 ) '
Ak = Y (P A%), (32)
=1
and that
o= 3 G B + A0 G (B D)l (33)
K 2 KL L 9

The latter expression of the KEO is similar to the general expression given by Watson in
Ref. [88, 89]: see, for instance, Eq. (A.23) in Ref. [89]. As explained by Watson the terms

in A\ or Ay, are closely connected with the non-commutativity of the quasi-momenta.

(iv) Derivation of kinetic energy operator:

The derivation of the KEO of Eqs. (7,23,27) is a difficult task. In concrete terms, it is
possible to follow one of two routes: either to obtain the classical kinetic energy expression
and to quantize it [59, 73, 74, 87] or to use the chain rule to transform the space-fixed
Cartesian KEO to derive the new KEO [60, 61, 63-65, 90-93]. Note that the polyspherical
approach uses the first route and this is why we shall start from the classical expression
of the kinetic energy in Sections IIB1 and IIB2 and quantize it in a second step. In this
context, Lukka greatly simplified the derivation of KEOs in bond coordinates by suggesting
the use of infinitesimal rotation angles [94]. In the same manner, Pesonen proposed to use
geometric algebra to easily calculate the KEOs [95-97]. However, with the development of
algorithmic programs such as Mathematica, the main problem is no longer the derivation of
the KEO itself but rather the availability of a general expression of the KEO in curvilinear

coordinates that is not too complicated and well adapted to the numerical methods used in

14



dynamics. To our knowledge, there are not many available general expressions of the KEO in
curvilinear coordinates: the most famous one is given by the Wilson G matrix formulation
98, 99] (see also Ref. [100-103] for applications). One can also cite the formulation of
Gu at al. [104, 105] and, finally, the polyspherical approach, which is the subject of the
present review. They all correspond to different parametrizations of the N-body system.
Regarding the polyspherical approach, Chapuisat and Iung [73] were perhaps the first to
adopt this family of coordinates in quantum dynamics in a systematic way. The exact
quantum mechanical formulation was given in a series of papers a little bit later [72, 74-77].
It should also be pointed out that Mladenovié¢ has given a very clear presentation of the
equations of the polyspherical formulation in angular momenta [79, 106]. After this brief

presentation of the general background, let us describe the polyspherical approach in detail.

B. Vector parametrization and properties of angular momenta

As aforementioned, in the absence of external fields, it is possible to separate the transla-
tional degrees of freedom from the rest of the kinetic energy and to describe the configuration
of an N-particle system in the SF frame, by N-1 relative position vectors. In all that
follows, we no longer use mass-weighted Cartesian coordinates but, instead, the standard
Cartesian coordinates. In addition, we confine ourselves to studying isolated molecular
systems. Note, however, that if an external field is present or if the molecule is located in
a noble gas matrix or on metal surface, all the results subsequently presented remain true.
One simply has (i) to add one vector more: O—é, O being the center of the Laboratory-Fixed
(LF) frame and G the center of mass of the molecular system, and (ii) to add the ki-

netic energy of the center of mass of the molecular system to the final expression of the KEO.

As said in Sec. IT A, in the polyspherical approach, we start from the classical expression
of the kinetic energy and quantize it afterwards. More precisely, we start with the description
of molecular systems by N-1 vectors. To illustrate such vector parametrization, we consider
two examples in Sec. IIB1. Thereafter, we introduce the angular momenta associated
with these vectors and give a general expression of the KEO in terms of these angular
momenta. The latter are quasi-momenta (see the definition of the quasi-momenta in Section

ITA (iii)), and they may be looked upon as ’intermediates’ in the polyspherical approach.

15



FIG. 1: Definition of the three Jacobi vectors for an ABCD system. Here, g1 is the center of mass

of the (AB) subsystem, gy is the center of mass of the (CD) subsystem.

D
A
R,
SN R
9,
—»
R,
B C

The introduction of these intermediates allows (i) to obtain a very compact expression of
the KEO whatever the set of vectors. For orthogonal coordinates, this compact expression
is given in Eq. (65) in Sec. IIB2. (ii) It allows to derive a general expression of the KEO
for the family of standard polyspherical coordinates (Eq. (92) in Sec. IIC1 for orthogonal
coordinates) without using differential calculus. It is also the introduction of the angular
momenta that avoids the use of differential calculus. (iii) It allows to find straightforwardly
a primitive basis set (e. g. the basis set of spherical harmonics associated with the angular
momenta) discarding all singularities that may occur in the KEO. To illustrate our ideas
we will consider in Section II B 1 a four-atom system, ABCD, first using Jacobi vectors and,

second, using valence vectors.

1. Ezamples

(i) Jacobi vectors:
Let 74, 3, &, and rp be the position vectors from the center of mass G of the atoms A,B,C
and D (see Fig. 1). Jacobi vectors point from one atomic group center of mass to another
one. In general, the choice of the Jacobi vectors is not unique [107] and several ’clustering’
schemes are possible, one of which is shown in Fig. 1. Thus, we will use the Jacobi vectors

as shown in Figure 1:

16



Let {G, €,sr, €,sr,€,sr} be an inertial Space-Fixed (SF) frame, where €)sr (A = x,y, 2) are

fixed unit vectors. The position vector 74, when referred to the SF frame, is given by

’FA = Z T’A)\SFé}\SF 3 (35)

A=z,y,2
where 14 ysr (A = x,y, 2) are the SF Cartesian coordinates. The velocity vector of the atom

A, with respect to the SF frame, is given by

'f'_”A == Z ’f"A)\SFé»)\SF, (36)

A:m7y7z
where the dots denote time-derivatives. Similar relations hold of course for the atoms B,C
and D and the Jacobi vectors. The kinetic energy of the system relative to the center of

mass G, i.e. relative to the SF frame, is given by

SF o5 Lo L5 L5
2T :mA’r’A’r’A—I—mB’r’BTB+m0T0T0—|—mDTDTD, (37)

and which, in view of Eq. (34), can be rewritten as

QTSF = ,U,lﬁl ﬁl + ,UzQﬁg ﬁQ + ,uglfé;g §3 s (38)
with the corresponding 'reduced masses’:

mamp mgcmp

= DA, = O 39
i ma+mpg Ha mc +mp (39)
- (mc+mD) (mA—i—mB)
H3 = )
Mr

and with My = ma + mp + me + mp. Equation (38) shows that the kinetic energy has a
diagonal form, and this is why the Jacobi coordinates are said to be orthogonal coordinates

[108]. In other words, the kinetic energy of a four-atom system, relative to its center of mass,

17



can be described as the kinetic energy of three fictitious particles of masses p, o, and s
and of the position vectors ﬁl, ﬁg, and §3. To each vector RB; (1 =1,2,3), it is possible to
associate a conjugate momentum
oL orsF
P\sr = — = — A=T,Y, 2 (40)
8RZ A\SF 8RZ \SF

where £ is the Lagrangian of the system. It is also possible to define a partial angular

momentum corresponding to each Jacobi vector:

I5F = R, x P5F . (41)
This leads to
SBsY  Gap (IS
QTSF:;%:;ij(MER; . (42)
Here,
R = || (43)
denotes a vector length and
Pr, =P, &g, (44)
is a radial momentum .
(Pr, = 5= = S (43

The momentum B, is given by its radial and angular parts as

— - X El
P; = Pg,€r, — o ; (46)
R;
where
€r, = Ri/R; (47)
denotes a unit vector along R;.
The total angular momentum of the molecular system ABCD is
j: ’I?AXmAT'_"A—G—’FBXmBTL’)B—I—FCXmC?C—G—’FDXmDTL"D. (48)

18



FIG. 2: Definition of the three valence vectors for an ABCD system.

oY

v
O

Pkl

R
C
It is straightforward, but tedious to show that

J= Y IL". (49)

i=1,2,3

Eq. (49) is true whatever the set of N-1 vectors used to describe the system.

(ii) Valence vectors:
The valence vectors are vectors which join one atom to another one. The choice of the

valence vectors is not unique and we will use the following definitions (see Figure 2) :

Ry = 7 =74, Ry=7Tc—7Ta, R3=7p—7T4. (50)

Inserting Eq. (50) in Eq. (37) leads to a non-diagonal expression of the kinetic energy :

3 .o
QTSF == Z uljﬁlﬁj . (51)

ij=1
Since the expression of T°F is non-diagonal, the valence coordinates are said to be non-
orthogonal. Again, to each vector R; (1 = 1,2,3), it is possible to associate a conjugate

momentum (Eq. (40)) and to define a corresponding partial angular momentum (Eq.

19



(41)). Finally, after having inserted Eq. (50) into Eq. (37) and used Eq. (40), we obtain a

non-diagonal expression of the kinetic energy in terms of the momenta

3
275" = N PSF M, PEF (52)
ij=1

with the matrix M, which reads

1 1 1 1
ma T ms ma ma
_ 1 1 1 1
M=1" st (53)
1 1 1 1
ma ma  oma Cmp
2. General formulation

(i) Defining a set of N —1 vectors and the corresponding classical kinetic energy:
Let ﬁl, ﬁg, ey By_1 be any set of vectors chosen for the description of a molecular system.
ﬁl, J%, ce Ry_1 can be orthogonal vectors such as Jacobi vectors (i.e. vectors pointing

from one atomic group center of mass to another one) or Radau vectors (see Sec. 11T A3
for the definition of the Radau vectors) or non-orthogonal vectors such as valence vectors

joining two atoms. The classical SF kinetic energy can be written as

N-1
— —
2T =N " P My P§" = >~ > Pisr My Pysr (54)
3,j=1 3,j=1,...N—=1  =z,y,2
where M;; are the elements of the mass matrix M. We often use, mainly for orthogonal

coordinates, the notation
1

Hi = M.

for the diagonal elements of the matrix M. p; is called the 'reduced mass’ associated with

(55)

the vector R} To determine M, we introduce a (redundant) set of position vectors, 77, 3,
.., Tn, where 7; points from the center of mass G to the position of the i-th atom. The

kinetic energy, relative to the center of mass, is simply given by

= Y Y (P;ﬂ , (56)

i=1,....N A\=zx,y,z
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where p; is the conjugate momentum associated with 7;, and m; the mass of the i-th atom.
Let us now return to a set of (N—1) internal vectors, ﬁl, ﬁg, ce Ry_1 , chosen to describe
the same N-atom system. Then there exists an (N —1) x N matrix A, which connects the

two sets of coordinates (see Eqgs. (34) and (50) for two particular cases of an ABCD system):

Rl Fl
R 7
ol =A] ] . (57)
| By | |y |

The symmetric mass-dependent constant matrix M for the internal set of N — 1 vectors
appearing in the KEO is given by M = Am~'AT where m denotes the diagonal matrix of
particle masses. In this formulation, it is thus very easy to switch from one set of vectors to
another, just by changing the matrix M.

For valence and Jacobi vectors, M can be obtained directly by using the following general
property [73]:
(1) The diagonal element M;; is the inverse of the reduced mass associated with the two

groups of particles whose centers of mass are joined by R;.

For instance, in the case of the ABCD system in the Jacobi vectors of Figure 1, we get

1 1 1
My = —+—=—,
ma  MpB 241
1 1 1
My = — + —=—,
mc  Mp 2
1 1 1
Mss = = —. (58)

mA—I—mB mc+mD U3

In contrast, using the valence vectors of Figure 2, we obtain

1 1
My = —+—,
ma mpg
1 1
My = — +—,
map  Mc
1 1
M33 = — 4+ —. (59)
ma mp

(2) For the off-diagonal elements, M;; is zero for Jacobi vectors and for valence vectors with
no common atom. Otherwise, |M;;| is the inverse of the mass of the atom common to both
R; and ﬁj. The sign of M;; is + if the two vectors originate from or point towards the same

atom; it is — in the other case.

21



FIG. 3: (AB)CB(EF) system parametrised by five valence vectors.

1
R;
R
C D
R;
B R F

For instance, in the case of the ABCD system in Jacobi vectors of Figure 1, all the

off-diagonal elements are equal to zero, while for the valence vectors described in Figure 2,

we obtain M12 = M13 = M23 =+ mLA’

Let us give a final example: in the case of an (AB)CB(EF) system parametrized by five

valence vectors as depicted in Figure 3, the matrix M can be obtained using the previous

result without any calculation:

4+ 4L 0 0 +-L
ma mc mc mc
1 1 1 1
Toe mstme O 0 e
M = 0 o L+ 4+ L L . (60)
mp mg mp mp
1 1 1 1
0 0 +mD mp " mp  mp
1 1 1 1 1 1
L The Tre mD “mp mc | mp J

In the general case, one should calculate the matrix A and derive the matrix M from it.

(i) Introduction of the Body-Fized frame and quantization:

In order to separate the overall rotation from the internal deformation, let us now introduce
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a Body-Fixed (BF) frame, {G; €,5r, €,5r, €,5r}. Its orientation with respect to the SF
frame is determined by three Euler angles: «, (3, 7. After definition of the three Euler angles,
the shape and the size of the molecules are described by 3N —6 internal BF coordinates. At
this level, the exact definition of the BF frame is not yet specified (and not necessary), but
the classical kinetic energy can already be recast as follows:

27" = " 3" Pier My Pysr (61)

i,j=1,...,N—1 A=x,y,2

where P, sr are the Cartesian components of the SF (and not BF! see below) conjugate
momenta in the BF frame [81], or in other words, the projections of the SF conjugate

momenta onto the BF-axes:

P;- = P, .Br€  sr + PinngBF + P, ,sr€Br . (62)

According to Refs. [58, 81], the exact quantum mechanical counterpart of Eq. (61) is given
by:

Z7.7:177N_1 A:m7y7z

where the adjoint ]5Z.T)\BF is given by Eq. (9).

(iii) Introduction of the Body-Fized projections of the angular momenta associated with
the N -1 vectors
It should be clear that the kinetic energy operator will always be the Space-Fixed one, and
not the Body-Fixed kinetic energy, even after introduction of the BF frame. Furthermore,
the quantum mechanical counterpart of Eq. (46) is given by
€; X sz

)

(64)

After the introduction of a BF frame, projections of the angular momenta onto BF axes

will be used. For instance, in the special case of orthogonal vectors, Eq. (63) yields (here,

Hi = ]V})

Pu, (LI
T R +( 1 )BF

P i R

If the set of vectors is non-orthogonal, the structure of the kinetic energy operator is more

(65)

complex (with crossing terms between the radial and angular momenta proportional to
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the masses M;;, with ¢ # j : see Appendix B). At this level, we have already a general
formulation of the kinetic energy operator for any set of vectors expressed in terms of the
BF projections of the momenta associated with these vectors. The 3N — 3 BF-projections
of the angular momenta are quasi-momenta and Eq. (65) appears as a particular case of

Eq. (23) of section ITA.

Let us explain why it is necessary to introduce the BF projections of the momenta when
making a change of coordinates to separate the overall rotation from the internal vibrations.
The action of SF-components of the angular momenta on the primitive basis functions
expressed in BF coordinates is very complicated, whereas the action of the BF-components
onto the primitive basis functions expressed in BF coordinates is rather simple, see, e. g.,
the action of the KEO onto a basis set of spherical harmonics of BF spherical coordinates
discussed in Sec. IIC 1 below. As BF coordinates are needed to separate the overall rotation
from the internal vibrations, it becomes necessary to express the KEO in terms of BF-
components of momenta and angular momenta as in Eqgs. (63, 65), rather than in terms of
the SF-components.

It is to be emphasized again that angular momenta that will appear in the kinetic energy
operators (such as in Eq. (65)) are all computed in the SF frame, but are projected onto the

axes of several frames (e. g. the BF frame in Eq. (65)):

inBF inSF
EinF = RT(aa /677) [A/inF ) (66)
[A/ZZBF [A/iZSF

where R(«, 3,7) is the Euler rotation matrix [109] (see Eq. (70) below for the explicit
expression of this matrix). As aforementioned, the introduction of these projections is nec-
essary when using the BF coordinates, but raises a new technical problem. The projections
of the angular momenta onto the SF-axes satisfy the usual commutation relations, and their
action onto a basis set of spherical harmonics in terms of the SF spherical coordinates is well
known (see for instance Ref. [109]). However, the projections of the same angular momenta
onto the axes of a moving frame may satisfy anomalous, non-definite commutation relations
[81]. Luckily, this problem does not occur for all angular momenta. If a vector is not in-

volved in the definition of a frame F (see Section IIC1 (i) to understand what we exactly
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mean by ’a vector involved in the definition of a frame’), the expression for the projection of
the corresponding angular momentum onto the F-axes expressed in the coordinates in this
frame is identical to the usual one in an SF frame [58]. For instance, if one vector R}- is
not involved in the definition of the BF frame, the projections of Ej onto the BF-axes and

expressed in terms of the BF-Cartesian coordinates are given by:

A 1 o)
ijBF ijBF iaRszF
~ o 1 9
Ljyer | = | Rjysr | X | 3 OR; Br : (67)
[, . 1_9
| Lyor | [ Buae || 1t

This expression is identical to the expression of the projections of an angular momentum
onto the SF-axes in terms of SF coordinates. The origin of this property is explained in

Appendiz A. 1t is easy to verify that the usual commutation relations,
[[A/j A\BF, [A/j VBF] =1 Z EAVp[A/j pBF s (68)
o

are satisfied, where e denotes the well-known totally antisymmetric tensor, i.e. €y, = 1
(exp = —1) if {Avp} is an even (odd) permutation of {xyz}, and zero otherwise. This
property (especially Eq. (67)) is remarkable and very helpful, since combined with the
previous vector parametrization of N-atom systems, it will allow us to derive kinetic energy

operators in a compact and general form with no need to use differential calculus.

C. A general expression of the KEO in standard polyspherical coordinates

Until now, we have described an N-particle system by a set of N-1 vectors and provided
the expression of the KEO in terms of the conjugate momenta associated with these vectors.
We have explained in Sec. IIB2 (i) how to switch from one set of vectors to another one.
Thereafter, we have introduced the BF projections of the angular momenta associated with
the N-1 vectors in Sec. IIB2 (ii) and brought out some general properties regarding these
projections in Sec. IIB2 (iii). All of this constitutes a framework that makes possible to
derive a general expression of the KEO in terms of the spherical coordinates that parametrize

the vectors in the BF frame whose precise definition must be given now.
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1. Ezxpression in angular momenta

FIG. 4: Definition of the E5 Frame and of the first two Euler angles.

ZSF
ZE2
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Y

(i) Definition of the BF frame: Fig. 4, 5, and 6.
The orientation of the BF frame with respect to the SF frame is determined by the Euler
angles «, 3, 7. There are numerous ways of specifying Fuler angles. The one chosen here is
that of Biedenharn and Louck [110] where o and 3 are the ordinary spherical coordinates
of the € fF vector in the SF system and + is an angle measuring a clockwise rotation about

ezB F To be very precise, it means that, for a given vector ﬁ, the relation between SF and

BF components of this vector is given by

R, sr R.sr
RySF = R(Oé, /67 7) RyBF ) (69)
R, sr R.sr

with R(«, 3,7) the Euler rotation matrix, which takes the following form in the convention

of Biedenharn and Louck [110] (see also Ref. [109]):
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FIG. 5: Definition of the BF frame and of the third angle.

Zor=Ler
Ry,
Ry,
Yer
G .................................................................
....... <7 N
>
Y
Xe, XBF
R, 8,7) = D.(@) x Dy(8) x D.(7)
cosa —sina 0 cos3 0 sinf cosy —sin~ 0

= | sina cosa 0| X 0 1 0 |Xx|siny cosy 0| . (70)
0 0 1 —sinfg 0 cosf 0 0 1

Throughout this Section, a very particular definition of the BF frame is used:

(1) Let {G} €5, €51, €5} be the By frame resulting from the first Euler rotation, i.e.
whose origin coincides with G, where €5, = €.sr and where € 5, and €5 are obtained
by a rotation through the angle av about €5, .

(2) Let {G}; €5, €52, €5, } be the Ey frame resulting from the first two Euler rotations,
where €, p, = €,p and where €5, and €5, are obtained by a rotation through the angle
3 about €',r, (see Fig. 4 and 6).

(3) Let {G} €y, €ypy, €55} = {G; €ynr, €

frame resulting from the three Euler rotations, where €., = €,5,, and where € s, and

87, €,5r} be the E3 or BF frame, ie. the

€,m; are obtained by a rotation through the angle v about €, .
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(4) The Euler angles are chosen such that the BF or Es frame is oriented in a way that
€,8r = €8, 15 parallel to the vector Ry_1 and that ﬁN_g, € er and € ,8r lie in the same

half-plane (see Figs. 5 and 6).

28



FIG. 6: Definition of the BF frame and of the three Euler angles. The Ey Frame is the frame

obtained after the first two Euler rotations.

Y YBF

Yer
Xer

We have thus chosen a very specific definition of the BF frame (note, however, that the
choice of the set of vectors remains free). It is important to notice that this definition of
the BF frame has an important advantage: only two vectors are involved in this definition
of the BF frame. This property will greatly simplify the quantum mechanical expression
of the kinetic energy operator. Indeed, as outlined in Sec. IIB2 (iii), the expressions for
the angular momenta associated with the N —3 remaining vectors are the usual ones when
projected onto the BF-axes and expressed in terms of BF-coordinates. It should be pointed
out that this is very different from the Eckart frame [111], which minimizes the Coriolis
coupling. The definition of this latter frame, however, depends on all vectors rather than
on two. Consequently, using the Eckart frame in general leads to a much more complex
expression of the KEO. This is particularly true for the part of the KEO containing the
Coriolis coupling whose expression directly depends upon the definition of the BF frame.
On the other hand, the KEO for J = 0 is independent of the definition of the BF frame
(see ITA (iii)).

Generally speaking, it is advantageous to choose the vector Ry, (that defines the 287
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axis) such that its 'reduced mass’,

1

UN-1 = 77—
My_1n-1

(71)

in Egs. (54,63,65), is larger than the reduced masses associated with the other vectors (u;,
i=1,..., N—2). Indeed, we shall see later that the part of the KEO containing the Coriolis

coupling is proportional to
1

HN-1
If it is possible to find such a vector, one reduces the Coriolis coupling without resorting

= Mn_1n_1. (72)

to a very complex expression of the KEO. It is when such a vector cannot be found that
changing the definition of the BF frame might be appropriate. In the present review, we
do not want to tackle the subject of how to change this definition, and we simply refer the

reader to the article of Wang and Carrington [112], which deals with this issue (see also

Ref. [113] and Sec. IV C3 (ii) for examples).

(ii) Polyspherical parametrization.
Until now, we have not defined the 3/N-6 internal coordinates that describe the deformations
of the molecular systems. Let us now parametrize the vectors by spherical coordinates called

the 'polyspherical coordinates’. The spherical coordinates in a given frame F are defined as

R;,r = Risinff cos !l R;,r = RisinfF sinp? | R,.r = Rjcos 6!,

iy
with 0 < 0F < 7 and 0 < " < 27, The parametrization of the standard polyspherical type
consists of three Euler angles for the overall rotation of the BF frame and 3N —6 internal
coordinates. With our definition of the BF frame, it is clear that the first two Euler angles
simply are the two spherical angles of Ry_; in the SF frame, a = @57 | and 3 = 65F,. The
third Euler angle is given by v = <p§2_2. The other 3N —6 coordinates are the BF spherical
coordinates, i. e. the N—1 vector lengths R; € [0,00), N—2 (BF) planar angles 62 € [0, 7]
between the vectors By_; and R;, and N —3 (BF) dihedral angles P € [0,27) between
the two vectors é,-, ﬁN_g around the vector ﬁN_l. They are depicted in Figure 7. If an
Euclidean convention of normalization is used [58], the volume element reads
dr = R%_,sin8dRy_1dadf R _,sin05, dRy_o dydoR~,
N-3

x [ B sin6P" dR; dpP" doP" (73)

i=1
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i.e. it is the usual Euclidean volume element:

N-3
dr = Je dRy_y da dB dRy_y dy dOR", [ dR; de?" doP" (74)

i=1
where J, is the absolute value of the Jacobian (see Eq. (3)) corresponding to the coordinate

transformation from the Cartesian coordinates to the polyspherical coordinates.

FIG. 7: Definition of the standard polyspherical coordinates: the N—1 vector lengths R; € [0, c0),

N —2 (BF) planar angles 2 € [0, 7], and N—3 (BF) dihedral angles % € [0, 2r).

(iii) Properties of the BF-projections of the angular momenta.
In the expression of the kinetic energy operator in Eq. (65), N—1 angular momenta appear
(the same is true for non-orthogonal coordinates). Since only ﬁN_l and ﬁN_g are involved

in the definition of the BF frame, the projections of all the N-3 angular momenta [_:1, ey
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Lx_3 onto the BF axes are regular. They are characterized by the usual formula [109, 110]

T ] [ ' BF BF BF |
L, Br —sin " —cos ;" cot 0;
o)
7 86?F
T — BF :n BF BF
Liypr | = | cospy’  —sing" cot 6] : (75)
1_9
i OpBF
Li 2BF 0 1

Hence, they obey the usual commutation relations and are self-adjoint.

Now, what about the two last angular momenta, [:; ~—1 and E N_o? First, it is trivial to elim-
inate i ~_1 by substituting i N_1 With f — Zf\:f [%Z where f is the total angular momentum,
which is a constant of motion when no external field is present. Considering the particular

case of orthogonal vectors, one can recast Eq. (65) as

o 3 PhPus | =L Lowe | (1= ST (TS E)or g
- M i—1 i R pn—1R%_,

The expression of the BF-projections of the total angular momentum in terms of the Euler

angles is well-known [109, 110, 114]:

- L S f1a]
J,BF —% siny  cot 3 coty P Oa
Jypr | = Snj cosy —cotf3siny 1o | (77)
i 9p
I J,BF | I 0 0 1 I
| i Oy |
and we obtain [Jysr, Jer] = — i 3 ) e,\,,pjpBF , which are the well-known anomalous com-

mutation relations [114]. Tt is also worth noting that all the components are self-adjoint.

Now, what about the angular momentum EN_Q associated with ﬁN_g? Since ﬁN_g is in-
volved in the definition of the BF frame, nothing can be said a priori about the properties
of the projections of EN_Q onto the BF-axes. When such a case occurs, one proceeds as
follows. One starts with the projections of the same angular momentum but onto another
frame. Here, it is judicious to start with the projections of i ~_2 onto the Fs-axes, because
ﬁN_g is not used when defining the Fs frame. (We recall that the E, frame is the frame

resulting from the first two Euler rotations only, see Fig. 4). Indeed, Ry_s is needed only
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for defining the third Euler angle. Consequently, the Fs-components of L have a regular

form
Ly o5 —sin ph? , —cos ph? ,cot BN,
7 — E B E
Ly_gym | = | cospp’, —singp? cot Oy,
LN—22E2 O ]_

19
i 96%2

=
Q

=

0PN~

(78)

These components obey the usual commutation relations and are self-adjoint. The BF-

projections of L ~N_o are obtained by rotating the Fs-projections of Ln_s through the angle

E )
@'y = 7 around the 2F2 axis

A final change of coordinates is then performed

_ B2
Y= SON—Z ;
BF _ pEs
9N—2 - 9N—2 ’

OBF = 9P i=1,... N-3 |

gpiBF:gpiEé—gO§2_27izl,...,N_?)

Applying the chain rule to ,‘32 and —9— | gives respectively
00N~ , PN o
0 0

89]%2_2 89]?7122 ’

SN <
8@%_2 oy Y o

33

- - _ . . — -
Ly_o.5rF cospn”y sinpy’, 0 Ly _5.p
- _ B E 7
Ly _gysr | = | —singy?, cos@pt, 0 Ly g, : (79)
LN_2 2BF O 0 ]_ LN—2 2E2

(80)
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Inserting these relations into Eq. (79), we obtain

7 BF BF 10
- B 10
LN—ZyBF - 0 1 0 4 89552 ) (82>
7 N-31_ 9
i Ly_5.8F ] | 1 0 -1 1L Zj:l ZW i
1. €.
- . [ BF (7 N-3 7 i
f/N - —cot Oy 5(J,nr — Zi:l L;.5r)
—2X
A _ .9
Ly_gysr | = —VerT, ) (83)
LN—2 ,BF j N-3 lﬁ/
- - 2BF — Zi:l izBF

which satisfy non-definite commutation relations

s A T 1 0 0

L _ xBF,L _9yBF - T == o\~ — N _BE )

I N-2 N-2y | (Sineﬁ€2)2(87 ; 8901BF)

EN_QyBF, EN_QZBF - 0 y (84)
-iN—2zBF7EN—2xBF- =0

The y-BF component of EN_Q is not Hermitian and its adjoint, E}LV—2’ is given by the

following equation

0
(EN_Q)T = EN_Q + | icot 9?{2 . (85>
0

We have used Egs. (10,73) to obtain Eq. (85).

Two points must be addressed here: (1) the BF components of Ly_» do not com-
mute with those of the other angular momenta (see Eq. (83): Ly_o.8r and Ly_o.5r
depend upon jZBF and f)izBF (1t =1,...,N —3) so that they do not commute with j,\BF,

~

Lisr(i =1,...,N —3), A = z,y), (2) the fact that we have used an intermediate frame

34



(the B, frame here) to determine the projections of Ly_, onto the BF-axes is of general

character and can be used to determine the projections of other angular momenta with a

non-regular behavior.

(iv) General expression of the KEQO in polyspherical coordinates.

If we keep in mind that Ly_o has a particular behavior, we can establish that [74, 76]:

—2
RN S AR Sty
i=1 7j=1 =1 Eo

A N-2  N-2 N-2
P (S BN ) - o E»)

i=1 7j=1 =1 BF
N2 _ _  N-2 N-2 _ _ N-2
PASHEAY S -2y m)

i=1 i=1 j=1,j#i 1=1 BF
. N-2 N-3 N-—2 _ _ N-2
PN L 42 S m)

i=1 i=1 j=1,7>1 i=1 BF

(86)

Note that the order of the operators in the scalar products is strictly fixed! The key point is

the fact that the BF-components of L ~_2 must remain on the right hand side of all the scalar

products. The first line of Eq. (86) is correct whatever the frame used to calculate the scalar

product. The parentheses (), indicate that all the scalar products inside the parentheses

are calculated using the F-components of the angular momenta. The non-trivial results of

Eq. (86) are obtained from Eqgs. (75,77,82). Now, since

and, in view of Eqgs. (73,10),

and since

R 10
PRi—;aRi (87)
R 10 2
plo== = 88
Ri ™ OR; +¢R,-’ (88)
i 1 1 02
P}.Pr; = 0 p 9 _ 0 (89)

e R = SR,
RZOR, "OR,  R,0R?

Eq. (76) for orthogonal coordinates can be written as [74, 76]:
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We recall that if we do not indicate the frame in which the scalar product is computed, like
for the term EIEZ in Eq. (90), it means that the scalar product can be calculated in any
frame. If we now introduce the operators f)+ = f}m + if/y and L_ = f)x — ifly for all the

angular momenta and take into account the fact that
N-3

Ly_g.er = Joor =  Lisr (91)
i=1

(see Eq. (83)), Eq. (90) yields

T:N*(_iﬂ i )+N2( L) I
— 2u; R; 8R2 — \2un- 1R, 2,uZR2
. T ~ 2Jme(Joor = N0 Lior) +2N *Lioe(2Lir + N0 Lor)
2pN— 1R12V 1 2un_1R%_,
. S S (L ysr Ly _er + Ly _or Ly er) = S0 2 (Jenr Ly _sr + J_sr Ly or)
2un—1 Ry, ’

(92)

where, again, the order of the operators in the scalar products is strictly fixed: the key
point is the fact that the BF-components of iN_g must remain on the right hand side of
all scalar products. All the explicit expressions of the projections onto the BF-axes are
given by Egs. (75,77,82). Consequently, we have explicitly a general expression of the KEO
whatever the number of atoms and whatever the set of N-1 orthogonal vectors for the family
of polyspherical coordinates.

Several points must be emphasized here:

(1) except in Eq. (81), the derivation of the results is free of differential calculus. We have
simply exploited the properties of the angular momenta, which are highlighted in Sec. 11 B 2
(iii).

2) The physical meaning of the different parts of the KEO is quite transparent since it can
Y g
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be interpreted in terms of the couplings between the momenta associated with the different
vectors.

(3) As ah"eady noted, the Coriolis coupling, which is mainly included in the term

_ZN 2 (JL)pr

=1 R , is proportional to ﬁ, the higher the mass py_1, the smaller the Cori-

olis coupling.
(4) In view of Eq. (83), it clearly appears that the expressions of Ly s +nr and Ly_y_br
are not the usual ones (compare for instance with Eq. (75)). This is due to ﬁN_g being
involved in the definition of the BF frame. However, we shall see later that their action onto
an appropriate primitive basis set of spherical harmonics in terms of the BF angles is the
normal one.
(5) The generalization to non-orthogonal coordinates is straightforward and given in Ap-
pendix B.
(6) Finally, if an external field is present or if the molecular system is located in a noble gas
matrix or on metal surfaces, one simply has to add the kinetic energy T of the center of
mass of the system, G, in Eq. (92). In other words, let Xq, Ys, and Zg be the Cartesian
coordinates determining the position of G in the Laboratory-Fixed (LF) frame. The KEO
for the center-of-mass motion then reads
. 1 0? 0? 0?
To =50, oxz “ave T a2z

(93)

where M7 is the total mass of the molecular system and the final KEO reads T+ Te.
(7) All the BF-projections of the angular momenta appearing in Eqs. (90,92) are quasi-
momenta and Egs. (90,92) are particular cases of Eq. (23) of Section IT A.

v) Introduction of a primitive basis set of spherical harmonics.
As often when using curvilinear coordinates, several configurations of the molecular systems
correspond to a singular situation for which the KEO in Eq. (92) has infinite contributions.
Let us consider an example. In the first line of Eq. (92) the following terms do appear:

Ll
<_LL_R) (M L+ 2M2R2) L,L; withi=1,...,N —3. In view of Eq. (75),

2u; R; OR?

these terms can be recast as
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11 02 1 1 SN 1 1 02
————=R; LTLZ- =(———=—=—=R;
1 1 1 0 . gp O 1 0?
a (Q;LN_lR?V_l * 2,uiRi2)[sir19fF 00BF sin; O0PF  gin?gBr &psz]'
(94)

In Bq. (94), if 67" is equal to 0 or  or R; is equal to zero, the terms including —p7 and

% diverge and the the volume element

dr o< R?sin 0PF dR;dpP* doP* (95)

7

0PF = 0 or m) P is no longer defined, in the second case

is equal to zero. In the first case (
(R; = 0) ¢PF and PF are no longer defined. When such situations arise, it is necessary
to find an appropriate primitive basis set that removes all the singularities. Thanks to the
introduction of the angular momenta in Sec. 11B2 (iii), the appropriate angular basis set
appears naturally: it is the basis set of spherical harmonics that is introduced in the present
section.

For orthogonal coordinates, it is also straightforward to find the radial basis set that discards
the singularities for R; equal to zero: it is a basis set of Bessel functions along with an
appropriate pseudo-spectral approach [115] (see Section II A in Ref. [77]). However, since
they correspond to geometries that rarely occur, the topic of the radial singularities will not
be addressed here.

Let us now introduce the appropriate angular basis set. The overall rotation of the molecule

can be described by a set of (normalized) Wigner rotation matrix elements [109, 110]:
<a7ﬁa7|J>M79>:D1{4*Q(aa/677)’ (96)

where the star denotes complex conjugate and M is the projection of the total angular
momentum onto z°" and ) = Zf\:lz Q; is the projection of the total angular momentum
onto zP¥ | ; being the projection of El onto the same axis (note that Qx_; = 0, since ﬁN_l
is parallel to zP%).

In the particular case of an isolated molecule, SF is isotropic, i.e. the orientation of z°F is

arbitrary, and any observable must be a-independent. The overall rotation of the molecule

can thus be described by the following basis set [109, 110]:
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where Y$}(3,7) is a spherical harmonic,

YA(B,7) = Pf(cos(B))(2m) /2 exp(idy) .

Here P§}(cos(f)) is a normalized associated Legendre function times (—1) [109, 110]. Ev-
erywhere hereafter, we assume that the molecule is isolated and that SF is isotropic. If that
is not the case, one simply has to replace Y3(8,7)(—=1)® with < o, 8,7 | J, M,Q > in all
the following equations.

Now we choose the following angular basis for the BF spherical angles of the vectors R

(t=1,..,N—=2):

< (), 8,7, 08 0, 00T, 00T, oRT s, 08T
01, 000 U3, Qn_3, lNn—2, Qn_2; J, 2 >=
Y8, 7) (=) B 2 (cos(ORF5)) %
Y OPF oPT) YN (08 5 oR )

(98)

In Eq. (98), we have Qy_5 = Q2 — SV "° ;. Note the following link between the third Euler

angle and the spherical angle associated with Ry_o:

YE(B,7) (1) PN 2 (cos(08F,)) Y (0FF, o) LY N2 (08F, oRE)

IN_2 T UN_3

= (2m)PY7(8,0) (= 1)PYy Y (08, o) Yl (077, 012) . YN (08T, o)

In—2 T UN-3

Eq. (99) originates from EN_Q being involved in the definition of the BF frame, i.e. v =
go%_z. Regarding the action of the projections of the angular momenta onto the BF-axes
on the previous primitive basis functions, two cases must be distinguished: (i) The BF-
components of the total angular momentum and the operators El (i=1,...,N-3) have their
usual expressions. Their action on the spherical harmonics in the BF coordinates of Eq. (98)
is the usual one and hardly needs mentioning. (ii) For the angular momentum Ly_, this
action is less straightforward. However, it was proved that, if care is taken to account for
the unusual features of the BF-components of L ~N_2, this action is eventually a normal one.

For instance, we obtain [74]
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~

L(N_g):tBF < angles ‘ o> = C:t(gN_27QN_2> X

< angles | fl,Ql, R ,EN_g,QN_g,EN_Q,QN_Q +1; J,Q +1>
fL(N_g)ZBF <angles|...> = (Qy_2)x < angles | ... >

JesrLy_ginr < angles | ...;J, Q> = ci(J,Q)ex(ly_a, Uy_g) ¥

< angles | fl,Ql, R ,EN_g,QN_g,EN_Q,QN_Q +1; J,Q +1>,
(99)

with

cr(J,Q) =/ J(J+1)—QQE1). (100)

(We remind that the BF-projections of j have an ’anomalous’ behavior [114], i.e. Jy |
J,Q>=c(J,Q) | J,QF 1 >.) The symbol < angles | ... >; denotes the current element
of the angular basis set. Even though these results are not obvious they are not surprising
as all angular momenta are calculated in the SF frame and several changes of coordinates
and projections onto adequate axes is all that has been performed. Egs. (92) and (99) lead

straightforwardly, for orthogonal coordinates, to

T |glagla"'agN—?nQN—?nEN—Q;J?Q>

L ey e ey
O 2 RORYTY T = 2un Ry 2mRETT
JI+1) 200 -+ D 20+ 300 Wi ras
2pn— 1R12v 1 2un-1 Ry Y
" Z ZJ 1]>Z(C+(€29Q) (EJ,QJ)|QZ+1QJ—]_,7J,Q>)
2,U/N—1R?V_1
n Z ZJ 1]>Z( _(gi,Qi)C_i_(gj,Qj) | QZ—1QJ+1,7J,Q >)
2,U/N—1R?V_1
(e (e (6, ) |y =1, Q- 1)
QMN—IR?V_l
- S e (L e (G, ) | Qi+ 1, Q41 >)
QMN—lR?V_l '
(101)
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Consequently, the basis set of Eq. (98) along with an appropriate pseudo-spectral approach
[116-118] eliminates all singularities appearing in the KEO. The same is true for non-
orthogonal coordinates. In other words, equations such as Eq. (99) can be applied to
evaluate the action of the BF-components appearing in Eqs. (B5,B6,B7). In addition, for
orthogonal coordinates, the number of terms in the KEO always remains moderate. The
only disadvantage of this formulation is that, in the grid representation, one has to deal
with complicated multi-dimensional Discrete Variable Representations (DVRs) for the an-

gles [118-120].

2.  Matriz expression of the KEO

As above-mentioned, the conjugate momenta are only intermediates in the polyspherical
approach. There is no obligation to utilize them, except in the case of the presence of
singularities. If the potential prevents the system from reaching such singular geometries,

one can express the KEO explicitly in differential operators where ¢; denote the 3N —6

5 a 5
polyspherical coordinates as in the original formulation of Podolsky (Eq. (2)). As we will
see, the number of terms in the KEO increases, but only simple one-dimensional DVRs are
required in a numerical calculation. The present section is devoted to the derivation of the
general expression of the KEO in terms of differential operators for the family of standard
polyspherical coordinates.

In Section ITC1, we have established a general expression of the KEO in polyspherical
coordinates. The operator is available for orthogonal vectors (Eq. 92) and for non-orthogonal
vectors (Eqs. (B5,B6,B7)). As we also know the explicit expressions of the projections onto
the BF-axes of all the angular momenta (Eqs. (75,77,82)), we are thus in a position to provide
a general expression of the KEO in the following form, similar to Eq. (27) of Section IT A,

whatever the set of vectors (orthogonal or non-orthogonal):

3N—6 3N—6 p

P Z PT qzqm Py, n Z Z quoc aBF;JaBFUOqu @

I,m=1 =1 a==xy,z

aBFFaﬁngF + JBBFPBOCJQBF
DD 3 -

a= x?y7’z6 "E7y z

(102)
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In contrast with the matrix M, the matrices 3, o and I" do not depend on the masses of the
atoms only. They also depend on the 3/N-6 internal polyspherical coordinates. In addition,
they are all symmetrical, i.e. Yg,,. = Xg.q, I'av = Iy, and oy, = ogn. ijF, ijF, and
jZBF are the self-adjoint BF-projections of the total angular momentum, the expressions of
which are given by Eq. (77). P, = %a% are the (3N-6) momentum operators associated
with the (3N-6) spherical coordinates {¢;;i = 1,...,3N — 6} = {(R;;1 = 1,...,N — 1),
(0PF:i=1,...,N =2), (¢PF;i=1,...,N —3)}. Thus, q collectively denotes the (3N-6)

spherical coordinates.

(i) New convention of normalization of the wave-function:
Before providing all the matrix elements, let us point out that all the operators introduced
so far are correct only for the case in which the wave functions are normalized with an
Euclidean convention of normalization, i.e. with the volume element given by Eq. (73).
Next, in view of Eqgs. (73) and (10), it appears that peiBF (t=1,...,N —2) and pRj
(j =1,...,N —3) are not self-adjoint, i.e. f’; #+ }A’qi for these coordinates. For the sake of
simplicity, we shall prefer to work with momentum operators that are Hermitian. First, we

replace the coordinates ; by u; = cos(62F); (i =1,..., N — 2). Indeed, since
du; = —sin 7 doP" (103)

after this transformation, the Euclidean volume element now reads [121]
N-3
dr = Ry sinfdRy_1dadB Ry 5 dRy_odyduy_y [ [ B} dR;del" du;,  (104)
i=1
so that, in view of (10), le — P, with (i =1,...,N—2). Eq. (104) can be formally written
as
N-3

dr = J dRy_y da dB dRy_y dy duy_ [ [ du; (105)

i=1
with J/ = sin S[[~;" R?, the absolute value of the Jacobian (see Eq. (3)) correspond-
ing to the coordinate transformation from the Cartesian coordinates to the polyspherical

coordinates, taking into account the fact that we use u; = cos(9PF) instead of #PF for
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(i=1,...,N—2). The KEO now reads

3N—-6 3N—-6
~ P ququ P quaJ BF + J BFCaqlP
T=) ==+ 2 >

l,m=1 =1 a=z,y,z

jaBFFaﬁjI@BF + jﬁBFrﬁajaBF
DD 5 ~

a=z,y,z f=x,y,2

(106)

The relation between 3, and G, on one hand, and between o and C, on the other hand, is
rather simple. When ¢,, = 0" in Eq. (106), one has to multiply the corresponding matrix

element by —sin 057, Let us give two examples:

_ . nBF
GU1R2 = —Ssin 91 X 29131?32 5

i OBF . nBF
Gu1u2 = Slnel X ZQIBFOQBF X sm92 .

(107)

Second, we also change the convention of normalization of the wave-function, i.e. we now

use the following volume element in normalizing wave-functions:

N-3
dr’ = sin BdRy_1dadB dRy_ody duy_o H dR; dpPF du; . (108)
i=1
Let us also take
N-3
dr' = pdRy_y dodB dRy_y dyduy_o || dR; de" du;, (109)

=1
with p = sin 3. This new convention of normalization entails that the operators }A’Ri (i =
1,..., N — 1) are now self-adjoint (see Eq. (18)). However, the KEO, T, has to be replaced
by

N-1
= J2pETp T = H ) T H (110)

so as to preserve the normalization of the wave-functions (see Eq. (17)). The explicit

calculation yields:
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3N-6 A A 3N—6 A 5 5 A
7 PQz un]m qu qu CQWJQBF + Jonr COCQI PQL
e 3 B S :

I,m=1 =1 a=zy,z

j Brl 5j BF-l—j BFFﬁ j BF
_I' Z Z = = 7 2 7 >z extra »
a=x,Y,z ﬁ:xvyvz

(111)

with Vegiq a purely multiplicative operator called ’extra potential term’ (see Egs. (19,20)),

which, in our particular case, reads

Via = =3 Gt (112)
oy 2R, R;

Interestingly enough, in the case of orthogonal coordinates V.., = 0 . For non-orthogonal
coordinates, V.zq 7 0 (see Appendix B: in Eq. (B7), there is a coupling between R; and
R;. Consequently, Gg,r, # 0 ).
Inserting Eqs. (75,77,82) into Eq. (92) provides all the matriz elements appearing in G, C
and I'; which are given in Appendixz C. We have used the notation G for the vibrational part
of the KEO to keep the notation of Wilson et al [98] but it should be emphasized that the
G-matrix elements in Appendix C are different from those in Ref. [98] since they correspond

to a different family of coordinates.

Let us consider only one term in Eq. (111), the first appearing for G, in Eq. (C4):

cos(p; — ¢;)
o Pi Vi) 11
G, " R;R; sin 6; sin 0; (3)

Hence, the following terms crop up in the KEO

>

- cos(pi — ;) - cos(; — ;) -
M (P,. - - P,. . - - P,
J( vi RZRj Sin 92 sSin Hj #i + i RZRj S 92 Sin 9]‘ SDZ)
5 COSPiCOsSp; 4 COS (p; COS P

>

= M;(P,, Sk | | 7 _p,
]( s RZRj Sin 92 sSin Hj #i + #i RZRj Sin 92 Sin 9]‘ <p1)
X MZJ(P SN @; S Q5 ~ X P SN @; S111 QY ; ~

v RZRj sin 92 sin Hj i i RZRj sin 92 sin 9]‘ ¢i> )

(114)

Two points must be addressed here: (1) as long as the singular geometries (for instance

for 0PF = 0 or 7) are not physically accessible, the action of all the terms in the KEO
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(such as those in Eq. (114)) can be evaluated with a simple one-dimensional primitive
basis set (DVR or Finite Basis Representation (FBR)) for each degree of freedom. (2) The
last two lines of Eq. (114) clearly show that the terms are products of one-dimensional
functions. This property is true for all the terms in the KEO in Eq. (111) and can be

very useful for many numerical methods used in dynamics to solve the Schrodinger equation.

(ii) Connection between polyspherical coordinates and normal modes:
The previous formulation allows a simple correspondence between normal and polyspherical
coordinates. This may turn out to be very helpful since it permits to analyze the results
of the dynamics in the normal mode picture. The method is as follows [122]: we define

curvilinear normal modes from a zero order harmonic Hamiltonian, H°, expressed as

3N—6

agd 1 e e A ° A

H° = 5 Z (QI - qlq)Fqlqm(qm — qnf) + quququqm , (115)
I,m=1

where G° represents the G matrix of Eq. (111) but evaluated at the equilibrium geometry
qeq- Here, ¢ and g, denote the 3N-6 polyspherical coordinates and the F matrix corre-
sponds to the harmonic approximation for the potential (including the extra potential term):
Fya = 0*V'/0q,0q,,| ded) V' is the potential V' plus V_,ie. One can then proceed with the
Wilson G matrix formulation [98, 123], and define curvilinear normal modes {Q,} in terms

of the polyspherical coordinates. In this, one diagonalizes the matrix F G°
FG°L = Lw?, (116)

where w? denotes the diagonal eigenvalue matrix with diagonal elements w? and L is the

eigenvector matrix subject to the normalization
LTG°L =1. (117)

AT denotes the transpose of A, A being a matrix or a vector. The mass and frequency

weighted normal coordinates (), are related to the polyspherical coordinates as

3N—-6

Qa = (Ui/2 Z (QI - Qqu)qua . (118)
=1

These dimensionless normal coordinates let H° become separable,

3N—6

He = Z:l he, (119)
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and the one-dimensional operators h? read

02
Q%

Note that these operators depend on all 3N-6 polyspherical coordinates because of Eq. (118).

~ wOé

ho:_ 2
[e% Q(Qa

). (120)

Finally, it should be emphasized that the curvilinear normal mode frequencies, w,, are

identical to the usual normal mode frequencies.

D. Separation into subsystems

The general approach outlined in sections IIB and IIC can be generalized to derive
kinetic energy operators in terms of other kinds of coordinates than the standard poly-
spherical coordinates. The latter are defined with respect to two vectors only: Ry_1 and
Ry_o. For large systems, this can introduce artificial couplings between motions that are
physically decoupled, e. g. between atoms that are located in very different parts of the
molecule. A simple solution is to integrate atoms into subsystems and to define for each
subsystem an intermediate BF frame. In each subsystem, the angles are defined with
respect to the intermediate frame, which decouples the motions between atoms belonging

to different subsystems.

(i) Vector parametrization and separation into subsystems:

Let an N-atom system be separated into n subsystems. Let NU) be the number of atoms
of the j-th subsystem, (j = 1,...,n). The system thus obtained is parametrized by
> (N @) —1)+n—1= N — 1 vectors. The vectors are divided into two groups: first, the
> (NU) — 1) vectors RY with (k= 1,..., N — 1) parametrizing the subsystems and,
second, the n-1 'remaining’ vectors R, with (i=1,...,n— 1) that parametrize the relative
positions of the subsystems. Let f(j ) be the total angular momentum of the j-th subsystem.
This definition entails that

o= 3 LY, (121)

k=1,..,N@—1

E,(f ) being the angular momentum associated with ﬁ,(f ),
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FIG. 8: Definition of the eight Jacobi vectors for the water trimer. Here, G; is the center of mass

) )

of the j-th monomer. ﬁgj is the vector joining the two H atoms, ﬁg is the vector joining the
center of mass of Hy to the O atom. ﬁg joins Gz to G and Eg joins the center of mass of (G3G2)

to Gl.

To illustrate our ideas, let us consider an example: the water trimer using eight Jacobi
vectors, which are shown in Figure 8. In the present case, n = 3, N¥) — 1 = 2 with
7 =1,2,3, and each subsystem is described by two Jacobi vectors. R, and R, are the two

‘remaining’ vectors.

For the definition of the BF frame, we choose ﬁn_l as the vector that defines the zPF
axis and, if n > 2, R,_» as the vector that defines the ((zBF,287); 2B > 0) half-plane (as
in Figure 6). If n = 2, i.e. for a separation into two subsystems, or if, for any physical
reasons, it is not judicious to choose one vector ﬁj to define the ((xB%,28F); 2B > 0)
half-plane, this half-plane must be defined by a vector belonging to one of the subsystems.
The latter case is slightly more complicated and is addressed in Section IIIC1 (i).

In the standard polyspherical parametrization, the system is described by 3/N-3 coordinates:

(1) the three Euler angles «, 3, and ~;
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(2) N-1 vector lengths {R;, (i =1,...,n—1);RY (k=1,...,NO —1;5=1,... . n)}
(3) N-2 planar angles {#PF (i=1,....,n— 2);9(j’BF), (k=1,...,N9Y —1:5=1,...,n)}
(4) N-3 dihedral angles {©BF, (i = 1,...,n—3); o7 "7 (k=1,... N —1,j=1,... n)}.

(ii) New polyspherical parametrization:
Let us now perform a new coordinate transformation from the 3/N-3 standard polyspherical
coordinates to the new 3N-3 coordinates defined as follows.
Let BFY) be an intermediate frame associated with the j-th subsystem such as € _BrG) 18

parallel to the vector RY) and RY) € prt) and € g lie in the same half-plane (as

NG) -1 N(J) 27

in Fig. 6). The orientation of the BFY) frame with respect to the BF frame is determined
by three Euler angles: o), gU), 4U). With our definition of the BFU) frame, it is clear

in the BF

( (J))
NG)—27

that the first two Euler angles simply are the two spherical angles of RY

frame, al) = <p§$(B)F1 and BU) = Hx(B)Fl

NG -1
The third Euler angle is given by fy(J =

where the Eéj frame is the frame resulting from the first two Euler rotations o), 5)
only (starting from the BF frame). Next, the N — 1 vectors are parametrized by their

spherical angles in the BFY) frame: QBF(J) and ¢ BF(J)

The new polyspherical parametrization thus obtained consists of 3/N-3 coordinates that
are:
(1) the three Euler angles «, 3, and ~;
(2) N-1 vector lengths {R;, (i =1,...,n—1); R,(Cj), (k=1,...,NY —1:5=1,...,n)}
(3) n-2 planar angles {027 (i =1,...,n—2)};
(4) n-3 dihedral angles {©PF (i =1,...,n —3)};
(5) and for each subsystem : three Euler angles o), 3U) ~();
NG) — 2 planar angles 6277 (k=1,... N —2);
NU) — 3 dihedral angles pBF? (k=1,..., NGO —3) .

(iii) Ezpression of the KEO:
Using the properties of the angular momenta highlighted in Sec. IIB2 (iii) allows the
expression of the KEO to be derived without resorting to differential calculus.
Indeed, suffice it to note for our present purpose that:

(1) since the vectors in the different subsystems are not involved in the definition of the
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BF frame, the expression of the BF-components of their angular momenta in terms of the
BF coordinates is identical to the expression of the SF-projections of any arbitrary angular
momentum in terms of SF coordinates.

(2) For each subsystem, the coordinate transformation from

(89P0 (b =1, NOD —1): 0P (k. =1, NO —1)} to {aV), B0, 70);gBFV (}; =
1., ND—2); oBFY (] = 1,... NW—3)} only affects the coordinates of the j-th subsystem
and not the other coordinates.

From this, we can deduce that the previous coordinate transformation for the j-th subsystem
alone is mathematically identical to the coordinate transformation from the SF to the BF
coordinates thoroughly studied in Sec. IIB2 and IIC1. Therefore, the BFY)-components
of the angular momenta can be readily obtained from the formulae derived in Sec. I1C1.

In view of Eq. (77)

C0 T et S e ]
JiQF(j) —:(l)sggi Sin fy(]) cot ﬂ(]) cot fy(]) i Oald)
7(4) _ in~() , L .
e | = | g o8 0 —cot Y9 siny W) L. | (122)
P08
7(7)
JZBF(J.) | I 0 0 1 I
L 1 afy(J) i
or still in view of (75) for k < NU) — 2
[ [A/ 1 [ ; BFU) BF@) QBF(j) T
& oBFW) — SIn @y, —Cos ;. " 7 cot O
1_9
7 66kBF(J)
EkyBF(j) = | cospBF?  —sin pBFY cot 9BFY , (123)
10
| Lk ,BFU) ] i 0 1 ]

and, from (83)
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A A BF () 7( j N(J) 3 v
L(N(') ) Br() — cot eN(j) 2( BF(J) Z LszF(J))
1) —2)x

7 _ _,_ 0
L(N(j)_Q) yBF(j) - ZaeBJ(F_()J') : (124>
N() —2
Z} ) i N(J)
(j) —2) zBFW) 37 .
| TV 2)z | ZBF(J) Z LkZBF(J) |

In order to obtain the KEO in terms of the new set of polyspherical coordinates, let us first

confine ourselves to studying the case of orthogonal vectors. Eq. (76) can be recast as

_|_

with

NO Py P 8O0 p0) f)
oft =y MR NS L I (126)

k=1 Mi(g]) k=1 M,&J)R,?)
where p; denotes the reduced mass associated with R; and ,u,(f ), the reduced mass associated
with é,(j ), Taking into account that L,_5 has a particular behavior, we obtain from Eq.

(125) (the key point is the fact that the BF-components of L,_, must remain on the right
hand side of all the scalar products):

. n—1 1 1 82 n—2 1 ata n
T = - — R L.L; T70)
— ( 241 R; OR; )+; (2un 1 RZ_ 2/~LiRz‘2) ' +;

A~
- = n_2 ——

2 (LiL)pr JL) gr JBF
Z( ) —Z( DT

+
1,j=11<j ’uﬂ_lR?L—l i=1 lu"—lR?L—l 2,Un—1R3L_1
L (JUIT, n G fm n(JT
(J(])L2>BF (J( J )BF (JJ )BF
" R 2. - (127)
2212_2 Iun_lR?L_l l,m;<m ’un_lel—l ; :un—leL_l

Eq. (127) is strictly equivalent to Eq. (90) except that (1) N has been replaced by n,
(2) J has been replaced by J- > e f(j), and (3) >0 . TY) has been added to the

.....
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KEO. The BF-components of J and L;, (1 =1,...,n—1) are given by Eq. (77) and Eq.
(75), respectively. In the last two lines of Eq. (127), only the BF-projections of JU) with
(j =1,...,n) appear. They can be obtained from Egs. (122,69,70) (they are similar to the

SF-projections of a total angular momentum [109)]):

- — T [ l a ]
j:EJBQF —CoSs a(.?)cot ﬁ(]) — Sin a(.?) Z?Eg((j)) i 9a(9)
JDe | = | —sinaWcot f9)  cosal) e || (128)
7980
L jijB)F ] | 1 0 0 i 1 0

Finally, Eq. (92) or Eq. (76) can be applied to express T

NG -1 NG —9 .
o 1 1 82 ) 1 1 . TQ(J)
TV =% <— R R(”> + ) + LY
0 50 AmG)2 % ' ) Ypu? | R
2,Uk R 8R(J) k=1 2/1/5372]‘) 1(R§\szj) 1) Qlul(cj)Rl(cj)

7(7) N(J) 3 7(5) N(J) 3 2 G) NG _3 )
2JZBF(j)( ZBF(J) Z Lk‘ BF(])) + Z Lk; BF(J)( Lk BrG) —+ Zk" 1,k'#k Lk’zBF(]))

2:“5%‘) 1(R%<J> 1)2
n ]kV:(Ji)_3 Jk\iz)lgc2’>k(i’](j_)|_BF(J)lA’g) sr) T L;i ’ BF() ,(j)+BF(J'))
2:“5%‘) 1(R%<J> 1)2
B ]kV:(Ji)_2(jf;p(j) [A’,(g ) srG) T J( _Br) L;(:J)FBFU)) jég(j)2
2150, (RS, )’ 2050 L (R)

(129)

To be more specific, let us consider various parametrizations of the water trimer. In the case

of the set of orthogonal vectors depicted in Figure 8, the matrix M of Eq. (54) becomes
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20 0 0 0 0 0 0

myg

0 Zputmo 0 0 0 0 0

mygmoO
0 0 2 0 0 0 0 0
myg
0 0 0 |Zpuime g 0 0
M = o : (130)
0 0 0 0 20 0 0
mpy
0 0 0 0 0 Zutmo 0
mygmoO
0 0 0 0 0 0 srs 0
0 0 0 0 0 0 0 T

In the matrix of Eq. (130), eight reduced masses appear. They are associated with ﬁl(l),
ﬁg(l), }?1(2), §2(2), }?1(3), §2(3), R, R, (see Figure 8). The KEO is given by Eqs. (127) and
(129) with n=3, NU) =2, (j =1, 2, 3).

Now, what happens if non-orthogonal coordinates are introduced?
Several cases must be distinguished depending on the structure of the matrix M from Eq.
(54).
(1) If the subsystems are described by non-orthogonal vectors and if there is no coupling in
the matrix M between one subsystem and the rest of the molecular system, then Eq. (111)
or Egs. (B5,B6,B7) can be used for 7. In Egs. (111) or (B5,B6,B7) N must be replaced
by N@ and J by JU).

Let us give a new example: the mixed Jacobi/valence parametrization for the water

trimer depicted in Figure 9. As far as the matrix M is concerned, one obtains
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FIG. 9: Definition of the second set of vectors for the water trimer. Egj ) and ﬁg ) are the two

valence vectors joining one H atom to the O atom.

—

(1)
R 2

H
(2)
R 2
H
mptmo L 0 0 0 0 0 0
mygmo mo
L mutmo () 0 0 0 0 0
mo mygmo
0 0 papling 0 0 0 0
MmO mo
0 0 = =t = 0 0 0 0
M — o Hoomo . (131)
0 0 0 0 mpgtmo 1 0 0
muamMO mo
0 0 0 0 1 my+mo 0
mo mygmo
0 0 0 0 0 0 ss 0
0 0 0 0 0 0 0 T T

The KEO is given by Eq. (127), TU) is given by Eq. (111) or Eqs. (B5,B6,B7) with n=3,
NG =2 (j=1,2, 3). In Egs. (111) or (B5B6,B7) N must be replaced by NO) =2 and .J
by f(j).

(2) If the n-1 vectors R; are non-orthogonal vectors and if there is no coupling in the

matrix M between the n-1 vectors R; and all the subsystems, then Eq. (111) or Egs.
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FIG. 10: Definition of the third set of vectors for the water trimer. Here, G; is the center of mass

of the j-th monomer.

(B5,B6,B7) can be used for T — Dietm T with two changes : N must be replaced by n

~

andfbyj—z

Let us consider the third parametrization of the water trimer depicted in Figure 10. The

J0,

7j=1,...,n

new matrix M reads (note its block-diagonal form)

mptmo _1 0 0 0 0 0 0
mygmo mo
L mutmo () 0 0 0 0 0
mo MHEMO
0 0 myg+mo _1 0 0 0 0
mygmo mo
0 0 L mutmo () 0 0 0
M= © Hmo ) (132)

0 0 0 0 mptmo _L 0 0

mygmo mo
0 0 0 0 1 mptmo 0

mo mygmo

2 1

0 0 0 0 0 0 2mug+mo " 2mp+mo
0 0 0 0 0 0 L 2

T 2mpgtmo 2mp+mo

The KEO is given by Eq. (111) or Eqs. (B5B6,B7) for 7' — Y., T (with NV
instead of N and J instead of J) and 70 is given by Eq. (111) or Eqs. (B5,B6,B7) with
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FIG. 11: Definition of the fourth set of vectors for the water trimer. Here, only valence vectors are

used.
—
(1)
R 2
(1)
R/
H
H
)
R 2
1
_, H
R
1
(3)
R 2
H

n=3, NU) =2 (j =1, 2, 3).

(3) The situation becomes more complex otherwise.
Let the water trimer be parametrized by the valence vectors depicted in Figure 11. Here,

the matrix M becomes (note that the matrix is no longer block-diagonal)

mgtme L 0 0 0 0 0o —-L
MHEMO mo mo
1 muimo 0 0 0 0 [0 ——
mo mMmygmoO mo
myg+mo 1 _ 1 1
O O MmO mo O O mo mo
0 0 1 my+mo 0 0 -1 1
M = mo o mo-me (133)
0 0 0 0 Uy e 1 L
MHEMO mo mo
0 0 0 0 L mutmo 0
mo mygmo mo
1 1 1 1 2 1
0 0 “me Tmo  me me  me me
1 1 1 1 1 2
| w6 The mo ™o 0 0 -5 = |

. . . . = 21 .
The situation becomes more intricate since scalar products such as mLOL2L§ ) appear in the
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KEO (see the second line of Eq. (176) in Section IIIC1 (ii) and Eq. (133) to understand
the origin of this term). These scalar products raise a new technical problem as, on one
hand, the expression of the BF-projections of [ijgl) are very complicated and, on the other
hand, the BF(M-projections of L, are complicated. Obviously, one of these two frames
has to be chosen to calculate the scalar product. If the scalar product is calculated in the
BF frame for instance, Eq. (75) provides the BF-projections of L. Unfortunately, the
BF-projections of l%gl) are more complicated. They can be obtained from (123) combined
with Egs. (69) and (70): the result is more complicated than in the case of standard
polyspherical coordinates because of the presence of the three Euler angles a®, g1, A1)
One example is given in Section IIIC1 (ii).

However, it should be emphasized that, whatever the situation, all the terms can be
calculated in a systematic way. Therefore, it is possible, in principle, to derive a general
expression of the KEO whatever the set of vectors, whatever the number of atoms, and
whatever the choice of the subsystems. It is also possible to separate each subsystem into a

new group of subsystems: see Sec. IVC3 (i) for an example.

E. Checking the correctness of the operators

It is not enough to derive the kinetic energy operator, it is also important to check
its correctness. For this purpose, two strategies have been adopted. First, for several
particular cases, we have compared the operators obtained from Eqgs. (111,C4,C5,C6) with
those obtained using the expression of Podolsky from Eq. (2) derived with Mathematica or
Maple [67]. We have checked, for instance, that Eq. (C4) gives the same matrix elements
as those previously calculated with Maple and published in Ref. [124] for an (AB)CD(EF)
system in valence coordinates (Figure 3). We have also verified that Eqs. (111,C4,C5,C6)
can reproduce the KEOs (including the rotation and the Coriolis coupling) published in
Ref. [59]. In Ref. [87], the KEOs for tetra-atomic systems parametrized by Jacobi, valence,
and satellite coordinates were given. They were first calculated 'by hand’ and later checked

using Mathematica [125].

Second, for several systems, the correctness of the derivation of the KEO was checked
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by comparing it with numerical results provided by the program TNUM of Lauvergnat and
Nauts [68]. TNUM computes G, I'; and C of Eqgs. (111,C4) numerically. We have verified
that the numerical values of all the functions G;;(q) at several non-symmetrical grid points
q agree with those provided by the program TNUM for systems such as CoH, [126], HCF; in
valence coordinates [127] or the Zundel cation, H;OF , in Jacobi coordinates [128] or in mixed
Jacobi/valence coordinates (in all cases for J = 0). The latter test does not only guarantee
that the KEO is correct but also that the operator is correctly implemented in the code used

to solve the Schrodinger equation, in this case the Heidelberg MCTDH package [129].
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III. EXPLICIT EXPRESSIONS FOR PARTICULAR CASES AND APPLICA-
TIONS

In Part II, we have described the configuration of an N-particle system, in the SF frame,
by N-1 relative position vectors. We have considered only isolated molecular systems but
it is straightforward to generalize the expressions presented above to molecules that are
not isolated. We have presented several vector parametrizations of an N-particle system,
for instance, parametrizations based on Jacobi or valence vectors (see, e.g., Figures 1,2,3).
We have expressed the kinetic energy in terms of quasi-momenta (see Section IT A (iii) for
a definition of the quasi-momenta): the angular momenta associated with the vectors. We
have explained how to switch from one set of vectors to another one and how to calculate
the matrix M that appears in the kinetic energy. In Section IIB2 (ii), we have shown
that the quantization of the kinetic energy is straightforward. In order to separate the
overall rotation from the internal vibration, we have introduced, in Section IIB2 (iii), the
Body-Fixed (BF) frame of the molecular system and highlighted some general properties
regarding the projections of the angular momenta onto the BF axes. In Section IIC1 (i),
we have chosen a very particular definition of the BF frame (see Figure 6), and, in Section
ITC1 (ii), we have parametrized the vectors, in turn, by (poly)spherical coordinates. We
have then provided the general expression of the KEO for orthogonal vectors (Section ITC 1
(iv)) and for non-orthogonal vectors (Appendix B) in terms of the angular momenta. From
these general expressions, we have deduced, in Section 11 C2, another general expression of
the KEO in terms of the conjugate momenta of the 3/N-6 internal polyspherical coordinates.
Finally, we have explained how to combine the polyspherical approach with the separation
into subsystems. The present Part of this review is devoted to the presentation of different

applications treated in full dimensionality, using the results obtained in Part II.

For concrete applications, two cases must be distinguished:

(1) Geometries corresponding to angular singularities in the KEO are accessible during
the physical process. This is usually true for so-called flexible systems, i.e. systems
presenting motions of large amplitude such as scattering systems. In this case, one should

use the KEO in terms of angular momenta, see Egs. (92,B5,B6,B7) together with the basis
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set of spherical harmonics of Eq. (98). The action of the KEO is rather simple in this basis
set and the singularities are removed analytically. In a grid representation, however, one

has to deal with complicated multi-dimensional DVRs.

(2) The potential prevents the system from reaching singular geometries. Such a system
is called semi-rigid, although it may exhibit large amplitude motions. For semi-rigid
systems one should utilize the expression of the KEO in derivative operators a%- of
Egs. (111,C4,C5,C6). The number of terms in the KEO increases, but only simple

one-dimensional primitive functions (DVRs or FBRs) are required.

A. Flexible systems
1. Tri- and tetra-atomic flexible systems

For the explicit expression of the KEOs in angular momenta for tri-atomic systems with
the conventions of Section IIC 1, we refer the reader to Ref. [130] for orthogonal vectors and
to Ref. [131] for non-orthogonal vectors. Let us focus on tetra-atomic systems and consider
an example: the Hy+H inelastic collision studied in Ref. [132].

In order to describe this process, it is natural to parametrize the system by three Jacobi
vectors as shown in Figure 1. The BF frame is oriented such that € ,sr is parallel to the
vector Ry and that J%, € r and €,pr lie in the same half-plane (or, in other words, R,
is parallel to the ((zPFGzPF), 2B" > 0) half-plane). Before and after the collision, the two
molecules can freely rotate, and therefore the singularities corresponding to 2% = 0 or 7
are accessible. Consequently, it is the expression of the KEO in terms of angular momenta
of Eq. (92) that must be applied.

The reduced masses of Eq. (39) become

m
{Ml = M2 = TH7/~L3 = mH}; (134)

and the KEO of Eq. (76) becomes
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(J'J = (LY + LY)J — JN(Ly + Ly) + L Ly + LY Ly + LY Ly + LI Ly) e

2T =
33
3_pt p . 52
Pp. L L LyL
+Z 1)2BF +( 2 2)231?.
= pa Ry 2R3
(135)
Furthermore, in view of (86),
(LY + L) T + JU(Ly + Ly) = (J(Ly + La)) e (136)
and
FiFs 4 EiEy = 2(Fan) (137)

In Egs. (136,137), the order of the operators in the scalar products is again strictly fixed.
The BF-components of E2, the angular momentum associated with Ji’é, the vector that is
involved in the definition of the BF frame, must remain on the right hand side of the scalar

products. Eq. (92) becomes

3 2
A 1 1 02 1 1 NS
7= - - % g L,L
J_%F jZBF(jZBF - leBF) + [AzlzBFlAzlzBF
2413 R3 13 R3
R R N N 9 N A R R
(L1 wrLy_Br 4+ Ly _BrlL, +BF) — ijl(J+BFLj _BF + J_BFLj +BF)
2113 3 .

(138)
The angular basis of Eq. (98) becomes
< angles | J,Q, 01,0, 6, Q >= (27)2Y(B,9) (= 1)V, 2 (07, 0)Y, 1 (077, oP), (139)

with Q = Q; + Q. The action of the projections of angular momenta appearing in Eq. (138)
onto the angular basis functions of Eq. (139) is the usual one and is given by Eq. (101). In

particular, if we use the volume element
sin 3dB dy dR; dRy dRs sin 027 dOP sin 6537 doFF dpBt (140)
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E

q. (138)

~>

I
(]
/T\
)
= -
o))
5| R
[N}

(e L) il
7)o = \2mRy 2Ry T

J%F jZBF(jZBF - ilZBF) + ilZBFilzBF
2p3 3 1133
. R R N 9 A A A R
(Ll BrLy _Br 4+ Ly _BrL, +BF) — ijl(J+BFLj _BF + J_BFL]' +BF)
2u3R3 '

(141)

In addition, in view of Eq. (101), we obtain

ALY (057, PPV (B,7) = (6 + DY (087, BT )Y (5,)
ELLaY 2607 )Y (B.7) = Calla + DY2(007, 0)Y2(5.7).

Ly oor Y (08T oBP)YR(B,7) = QY2 (087, oPP)YR(B, 7).
Lyor Y2 (057, 0)Y2(8,7) = QY2 (057, 0)Y2(5,7).

0)Y;'(8,7) =
07", ol )Y (057, 0)Y (B, ),
j$BFE1:|:BF}/é11(91BF7SOI )YJ (577)< 1 Q

Co(J, Q)CL(ly, 9 )Yﬂﬁ:l(elBF’ SO{BF)YJ(Qil)(ﬁ’ 7)(=1)@ED

Ly por Ly _se Y1007, oPF) Y2 (057, 0)Y7(8,7) =

Cy (1, Q) O Ly, Q) YO 0P )Y 21 (077, 0)Y (8, 7)
Ly _sr Ly se Y (0FF, o )Y;fZ(eBF,

C_ (€1, ) Cy (6, Q)Y 0P o

Jenw Ly oY 2 (057 0)Y2(3,7)(~1)% =
C1(J,Q)C (4o, (22)}/22*1(923F’ O)Y}Qil)(ﬂ, 7)(—1)@FD)
(142)

The KEO of Eq. (138) was also applied to the study of the photo-dissociation dynamics
of the AryHBr van der Waals molecule with MCTDH [133]. Obviously, the reduced masses
are different for AroHBr (see Ref. [133] for their actual values). In addition, it goes without
saying that the KEO of Eq. (138) for standard diatom-diatom Jacobi coordinates is not a
new result. Some operators similar to Eq. (138) have already been applied in the past, often

with different conventions (see for instance [134-137]).
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FIG. 12: Definition of the five Jacobi vectors coordinates for the (Hz), trimer. Here, g; is the

center of mass of the i-th monomer Hy, G is the center of mass of the (H>), subsystem.

2. Weakly bound molecular trimers

Weakly bound molecular systems feature several minimum energy structures and large
amplitude motions between regions connected by low energy barriers. Consequently, they
can easily reach singular geometries. Let us consider an example in molecular spectroscopy,
the calculation of the vibrational energy levels of the hydrogen trimer (H,), achieved by
Costa and Clary [138] and Yu [139]. The system is described by five Jacobi vectors as shown

in Figure 12. The five reduced masses read

mg 4

i = e = py = == pa = mur, s = gmar}; (143)

and Eq. (92) straightforwardly leads to
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'ﬂ>
I
™
N

11 0° ! 1 1\ a2
—— — R, L,L;
241 R; OR} ) " ; (2,“4331 " 2Mi32'2> '
J_%F QjZBF(jZBF - Z?:l iiZBF) + Z?:l iiZBF (ziiZBF + Z?Zl’j# EjZBF)
Z?:l Z?:l,j>i(f’i +BF[A/j _BF + [A/i_BFIA/j +BF) — Z?zl(j_,_BFﬁj _BF + j_BF[A/j +BF)
2415 R '

(144)

The angular basis of Eq. (98) becomes

< angles | JvQaglaglag%g%gi’nQ3a€4794 >=

(2m) 2V (8, (=) 07" 0) Y (077, o )Y (057, o3 )Y 07" o), (145)

with Q = Q) + Qs + Q3 + Q4. In Ref. [138], as well as in Eq. (38) of Ref. [79], appears the
'sign of (k-K)” in the matrix elements (K-k corresponds to our Qy_5). This sign does not
appear in Eq. (101). This difference can be traced back to a slightly different convention in
the angular basis set. Indeed, Ref. [138] and Ref. [79] use PJQ4|(COS(943F )) instead of our

P (cos(07)) = (1) P (cos(07")) = (2m)" Y (07", 0) (146)

in Eq. (145) (we recall that P;**(cos(0FF)) is a normalized associated Legendre function).

3. Protonated methane in Radau coordinates

Isolated CHZ is a stable but very floppy system, the protons continually hopping between
120 minima [140]. Very recently, Wang and Carrington [140] reported the first vibrational
energy levels including all the 12 internal degrees of freedom. They adopted the polyspherical
approach based on a parametrization of five Radau vectors, as shown in Figure 13. For the
reader who is not familiar with Radau coordinates, let us add that these are often introduced
to replace valence coordinates in describing the vibrational motions of molecules in which
the central atom is much heavier than the end atoms [141]. For this type of molecules, both
systems of coordinates are very similar, the former having the advantage of being orthogonal.

The Radau vectors, ﬁi, are the vectors BH ;» B being the canonical point of CH; defined

as the geometric mean of CG and GGpys. Here, C is the C atom, G is the center of mass
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FIG. 13: Definition of the five Radau vectors coordinates for the CH5" system. Here, B is the
canonical point of CH;’, G is the center of mass of CH;’, Gps is the center of mass of the Hs

subsystem.

of CHZ, Gpgs is the center of mass of the Hs subsystem. The canonical point is defined by

(BGH5)2 = GGpys x CGys [141]. Let us also put 7; = G—f)I, It entails that

Rl = (1 — ozmH)f'l — ame'g — ame'g — ozme'4 — OémH’I::r, s
ﬁg = —ame'l + (1 - OémH)’f_"g - ame'g - ame'4 - OémH’I::r, y
Ry = —ampi, — ampis + (1 — ampg)7s — amyy — ampTs,
§4 = —ampgr|, — amgTy — amgrs + (1 - OémH)F4 — ampgrs,
R:r, = —ame'l — ozmHFQ — ozme’g — amHﬁ + (1 - OémH)FE) )
(147)
with
o= (1= /), (149
mc
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and M=m¢c+5mpy, mpy, = 5my. The KEO is formally identical to the operator of Eq. (144)
except that p; = my, with (i =1,...,5).

B. Semi-rigid systems
1.  Tetra-atomic molecules

(i) Tetra-atomic molecules in orthogonal coordinates:

If the potential prevents the system from reaching singular geometries, the KEO in deriva-
tive operators of Egs. (111,C4,C5,C6) can be used. Let us detail two examples to explain
how one proceeds. The two examples are the HOOH molecule in Jacobi vectors as shown
in Figure 1, and the NHD5 molecule in Radau vectors as shown in Figure 14. If one aims at
calculating the infra-red spectrum of HOOH as in Ref. [65] or the tunneling dynamics of the
NH chromophore in NHD2 after coherent infrared excitation as in Ref. [142], no singularity

is accessible. The KEO for J = 0 is given by Egs. (111,C4) for N = 4 and with the following

matrix M:
L 0 0
M1
M=|0 L 0], (149)
H2
0 0 L
H3
with
mompg mo +mpg
_ _ -~ 7 150
{,Ul 2 mo+mH,M3 5 } ( )

for HOOH in Jacobi coordinates and {1 = po = mp, pz = my} for NHD, in Radau coordi-
nates. The three vectors are in turn parametrized by six internal polyspherical coordinates:

R17 R27 R37 Uy, U2, SOlBF Eq <C7> ylelds (We use ¢QBF = 0)
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FIG. 14: Definition of the three Radau vectors for the NH Dy molecule. Here, B is the canonical

point of NH D5, G is the center of mass of the molecule, Ggps is the center of mass of the HDy

—_ H
RS
1 .
GRZ.RZ- = —5 1= 172737
1 1
Gupu, = sin 95F)? +—=) =12,
i Us ( (3 ) (IUZRZQ ,U,?,Rg)
a _ sin 08% sin OBF cos pPF
e s R3 ’
G sin 0P sin BT cot HBF
gl 3 R3 ’
O sin 08 sin B cot HBF
u2#1 13 R3 ’
2 2 1 1
G _Br, Br = —((COt HBF) + (COt GBF) )+ +
TV e 3 R2 ! 2 pl(sinelBF)2R% Mz(SiH92BF)2R§
_W cot OFF cos BT cot OPT
3

(151)

All the other matrix elements (for instance G, or G, 5r) are equal to zero. Now, the
vy

choice of the following volume element in normalizing wave-functions
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dr' = dRs dRy dRy duy duy dp?P" (152)

entails that the KEO reads

2

; 1 0 1 1 .0 ,0
T = — S —— + 2
i:1223 24 OR] ;(zﬂiR? 2#335)8% Yi ou;
cos pBr 02 . o2
- v U Vg ———V
2,“/3R§ 18u18u2 2 28u18u2 1
Uz . BF 82 02 ) BF
— S 4 —
2113 R3v; (sin o1 Ou 0pBE R Ou, 0Bt singp™)
_ L(Sin BF;,U o Lsin BF)
2u3 30, Qug OBt 2 2 00, 9P #1

B 22:( 1 N u? ) o
270} 2R3pav;” 0P

i=1
+ COS Y] == »
pizvav1 I3 0" boopPt

(153)

Here, and in the following, we use the notation:

v; = /1 —u} = sin P, (154)

Note that this KEO applies to both HOOH and NHD,, despite the two molecules are
described by different coordinates systems. In fact, Eq. (153) applies to all 4-atom
systems described by orthogonal coordinates, only the masses, u;, have different values.
Furthermore, the KEO of Eq. (153) is identical to the operator given in Eq. (A.5) of
Ref. [65] by Bramley and Carrington (they used Mathematica to calculate the operator).
Note, however, that these authors do not use the same conventions for the coordinates, for
instance their 127 is our Rz. In addition, they use 677 instead of u; = cos #P: this is why

there is a difference of sign for the terms (see Eq. (107) to understand the origin of

82
89184,0{3 F

the change of the sign).

(ii) Tetra-atomic molecules in valence coordinates:
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FIG. 15: Definition of the three valence vectors for the HONO molecule. Here, 3<% = 7 — 95F.

H O
R, R,
BF
91 62new e BF
o T
—R> ZBF

(1) A-B-C-D structure:

Let us now consider a non-orthogonal parametrization of tetra-atomic molecules. For
valence vectors, only two ’clustering’ schemes are possible, denoted as A-B-C-D and A(CBD)
structures. They are shown in Figures 15 and 16, respectively.

In Ref. [143-145], the trans-cis Isomerization of HONO was studied with MCTDH. A
parametrization of three valence vectors as shown in Figure 15 was adopted. This results in

the following matrix M :

1 1 1
mr Tmo 0 o
_ ETI U
M 0 A4+l - | (155)
1 IS T SR
mo my mo my

In order to be consistent with the conventions used for the potential energy surface calculated
in Ref. [143], we also slightly changed the convention for the angle 05" — onev = 7 — BF
(see Figure 15). Because of this, there appears the phase factor S; in Eq. (A.2) of Ref.
[144]. The internal motions are described by six coordinates: Ry, Ro, Rz, u; = cos P,

uy = cos 03¢V, pBEIf the following volume element,
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dr’ = dRs dRy dR; duy du, dpP" (156)

is used in normalizing wave-functions, the KEO is obtained from Egs. (111,C4) and its

explicit expression is given by Eq. (A.2) of Ref. [144].

(2) A(BCD) structure:

Let us consider the second ’clustering’ scheme for a tetra-atomic molecule parametrized
by valence vectors. In Ref. [146-148], the Intra-molecular energy redistribution (IVR) in
HFCO and DFCO with MCTDH was studied. The valence parametrization shown in Figure
16 was adopted.

The matrix M reads

1 1 1 1
my + mc mgc mc
_ 1 1 1 1
M L Ll L : (157)
1 1 1 1
mc mg mo + mc

If we use the volume element of Eq. (156) in normalizing wave-functions, the KEO can

be obtained from Eqs. (111,C4) and its explicit expression is given by Eq. (15) of Ref. [146].

The KEO of Eq. HFCO shows more terms than those of HONO and NHD,. The two last-
mentioned operators can be derived from the KEO of HFCO just by replacing the matrix
elements of M appearing in Eq. (157) by those of Eq. (149) and (155), respectively. It
is worth noting that the KEO used in Ref. [149] to study the selective population of the
vibrational levels of HyCS with MCTDH is formally identical to the operator of HFCO. The
only difference is that the matrix M, for HyCS, reads

1 1 1 1
mg + mo mo moe
- U U E
M L4 . (158)
1 1 1 1
me me  mo T ms

69



FIG. 16: Valence BF polyspherical coordinates for the HFCO system. R belongs to the xz plane.

\ HlBF
o5F | (- Y

Ry

F

2. Penta-atomic molecules

(i) Orthogonal coordinates:

In Ref. [150-152], the computation of vibrational levels of methane was reported. A
set of Radau polyspherical coordinates was used. The Radau vectors, for a molecule such
as methane, are identical to those depicted in Figure 13 except that there are only four
Radau vectors for CH, instead of five for CHZ . The internal motions are described by nine
coordinates: Ry, Ry, Ry, Ry, u; = cos 0PF | uy = cos 0P uz = cos OPF | oBF and B If the

following non-Euclidean volume element,
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dr' = dRy dR3 dRy dRy dus dug duy dpPt dpP” (159)

is used, the KEO of Eqgs. (111,04) becomes (we use again ; instead of ¢P to simplify the

notation)

~

My 02 1 1 .0 ,0

B Z 2 8RZ-2 B ;(QMRZZ * 2,u4R2)8uivi ou;
COS (P COS (P + SIn 7 Sin Py o 0
2u4 R? (v2 Ouy Ouy

Cos 1 o 0 o 0 COS (o o 0
2p4 R? vs Ous 8ulvl + Ula—mﬁ—zﬁgw) B 2,u4R4( Ous Ous

ug 0 0 0o o0 . 0 0 0o 0

2U3M4R2 [aul v sin SOI& o1 + v 8’&1 8@1 (a 2U2 sin @28 22 U28—u28—g02 S @2)]
L 0 (2 us . 0

—— w1 (—(Sin 1 COS g — COS Py sin g) — — sin 1) —
2 V3 0

11— ——(—(sin COS — COS sin — sSin
1 ;g 5 Vo ®1 ¥2 ¥1 P2 s ¥1

[y (—(sin ¢y cOS @y — cOS Py sin ;) — % in |
2R3 Duy 2 o P2 COS 1 2 S Y1 s Y2 £
0 0 w u

3 .
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with p; = myg, and (i = 1,...,4). Of course, the operator of Eq. (160) could be applied to

any set of orthogonal vectors for a penta-atomic system. One simply has to change the four
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FIG. 17: Definition of the four valence vectors for the CHF3 molecule.

reduced masses.

(ii) Non-orthogonal coordinates:

For the study of the vibrations of a molecule such as fluoroform, CHFj3, the previous
Radau parametrization is no longer adapted since the F atoms are rather heavy. Hence,
the canonical point, used to define the Radau vectors, is located far from the C atom. The
resulting Radau vectors are therefore very different from the valence vectors and cannot
correctly describe the vibrations in the normal or local mode domains. It is more pertinent
to parametrize CHF3 by four valence vectors, which are shown in Figure 17.

This results in a full matrix M that reads

IS IS N I 1 1
mc my mc mc mc
R I S 1
M = me . me me o me me (161)
1 1 1 1 1
mg mgc mc mpg mc
L L 1 SR
L mc mc mc mc mp

If one uses the volume element of Eq. (159), the KEO is given by Eqs. (111,C4), as usual.
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Its explicit expression can be found in Appendix D. Let us only point out that we have
recently implemented this nine-dimensional operator in the Heidelberg MCTDH package
[11-15, 129]. In addition, we have used the program TNUM of Lauvergnat and Nauts [68]
to check the correctness of the operator [127]. As already mentioned, the test does not only
guarantee that the KEO is correct but also that the operator is correctly implemented in

the code.

C. Separation into subsystems

Until now, we have confined ourselves to considering only particular cases of the stan-
dard polyspherical approach. For clusters involving molecules of water, the separation into
subsystems is more appropriate than the standard parametrization since the separation
into subsystems allows to have purely intramolecular angles instead of angles mixing the
intra-monomer and inter-monomer motions. The present section aims at giving the explicit

expression of the KEO for several protonated water clusters.

1. Protonated water dimer (Zundel cation)

(i) Jacobi description:

In Ref. [153, 154], the simulation of the IR linear absorption spectrum of H;OJ was
reported. A set of six Jacobi vectors was chosen [128], as depicted in Figure 18. The
system is separated into three subsystems: the two molecules of water and the proton. Each
molecule of water is parametrized by two Jacobi vectors: é? ), the vector connecting the
center of mass of the Hy subsystem to the O atom, and ﬁgj ), the vector joining one H atom
to the other one (here, j = 1, 2). The two 'remaining’ vectors are the vector ﬁg, which
connects the center of mass of one monomer to the center of mass of the other monomer,
and él, the Jacobi vector from the center of mass of the water dimer to the proton. Let
j ) be the total angular momentum of the j-th molecule of water. This definition entails
that J ) — D ket 2 L,g ), L(] being the angular momentum associated with R

According to the general strategy adopted in Section IID, the zPf" axis should be parallel
to Ry and R, should be parallel to the ((zBF,28F); 2BF > 0) half-plane. However, for the
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FIG. 18: Jacobi description of the H5O; system. Gy is the center of mass of the first monomer,

Go is the center of mass of the second monomer. G402 is the center of the dimer, H4Os.

definition of the ((zBF, 2BF); xBF > 0) half-plane in H;O3, it is more natural to choose a
vector belonging to one monomer, let say 1%2) (it is, indeed, more appropriate to link the
overall rotation of the Zundel cation to the molecules of water than to the proton alone since
the mass of the latter is much smaller). Therefore, as already mentioned in Section IID (i),
we have to face a particular case which is slightly more complicated than the general case
thoroughly treated in Section II D. Using the properties of the angular momenta highlighted
in Sec. IIB2 (iii), we can already predict that the BF-projections of the total angular
momenta of the second monomer have a non-regular behavior. As in Section IIC1 (iii)

for the BF-components of L ~N—2, one needs to introduce an intermediate frame, the E, frame.

But, prior to the introduction of the Ey frame, let us define a BF frame for each molecule
of water, as in Section IID (ii). Let BFY) be the intermediate frame associated with the
Jj-th molecule of water (j = 1 or 2) such as € ,(; is parallel to the vector égj) and égj),
€ pr and € pp lie in the same half-plane (as in Fig. 6). Clearly, for the molecule of
water, the vector ﬁgﬂ ) would have been a better choice for the definition of the zBF” axis
since the reduced mass of ﬁ? ) is larger than that of ﬁg ). However, in Ref. [128], we

preferred to use Ré] ) in order to avoid the singularity which appears in the KEO when Ry
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and the 2BFY axis are parallel. The orientation of the BFU) frame with respect to the
E, frame is determined by three Euler angles: a¥), 8U), 4 However, a/? = 0 since the

(2B, 2BT); BT > 0) half-plane is parallel to 1%2’

For the KEO, one obtains in view of Eqs. (125,126)

i—1 Mg 1 =1
Tt — LT+ J— (L + JU)
U S ) (T (T 5 ) .
p2R3
with
2 PT(J)PR(J) 2 ( i'
. L
4 — k
2 = Z ,U(] Z J (J (163)
k=1 k k

where p; denotes the reduced mass associated with R; and ,u,(f ), the reduced mass associated

with é,(f ), They read

; 2mpgmo .
) = g =12,
mg + mo
py' = my /2, j=12;
mg(4dmy + 2mo)

o= omy + 2m0
2
to = w. (164)

Next, since it is Réz) that plays a role in the definition of the BF frame, Eq. (127) is no
longer valid. In fact, it is easy to derive an expression similar to Eq. (127) for our particular
case: we would obtain something similar to Eq. (127) except that it is i;z) which would
appear on the right hand side of the scalar products instead of l:jn_g (= il for the Zundel
cation). But, here, let us simply put j: 0 and recast Eq. (162) as
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2T:Z R; Rz+(11)BF

— vt

s o pt p . N N = syt o

N [ RY RY) N ((J(]) _ Lga) )(J(y) _ ng)))BF(j) . (ng) ng))BF(J')]
E § () : ) . 2
=1 k=1 ) ,u,(g)R,(f) u,(j)R,(j)

2 N 2 5.
N (L} + 325, 9 ) - (L + 325, T9)) e
p2RR3 '

(165)

The BF-components of El are given by Eq. (75) and BFBF” _components of fﬁj), with
(j=1,2), and j(l) by Egs. (122) and (124), respectively. But what about the BF- and
BF gp2-components of J;@)? As in Section ITC1 (iii), we start from another frame, the E,
frame (we recall that the E, frame is the frame resulting from the first two Euler rotations
only). Since the proton and the two molecules of water are not involved in the definition of
the E5 frame, the expressions of the Es-components in terms of the Ey coordinates of all the

angular momenta appearing in Eq. (165) have a regular form. In particular, one obtains

1 0
o1 | Dot 50 _gina? 0% || T
T —COS (X CO — SIn « 3 2
']sz Es B Er sinﬁgz)
JO | = | _sina@eot 42 (2 sinap) , (166)
yF2 sinag, cot Jg,  cosap, o= 1 o
Ey i 66(EQ)
A 2)
j
22 1 0 0 1.0
) T Lt |

where agz, ﬁgz), and 7232’ are the three Euler angles of the second molecule of water in the
E, frame.

The BF-projections of J® are obtained by rotating the Es-projections of J@ through

2)

the angle ozfLJ2 = ~ around the 22 axis

j:f;?F cos agz sin agz 0 jfE)Q
jy(?F = | —sin aﬁi’ cos aﬁi’ 0 j;?z . (167)
S 0 o 1| [JY

76



A final change of coordinates from the E5 to the BF coordinates is then performed

v=al | (168)
OBF — gF2

2
SDIBF = QOIEQ - a(EQ) )

1 1 2
affh = ol —aff) .
G) _ A0 (19
fyBF_fVEgv(.]_ ) ) 9
o = 0P (= 1,2)

Applying the chain rule to the partial derivatives, gives
0 0 0 0

_ g _ - 1

9@ 07 ok BAT e
9 _ 9
891E2 - aelBF )

o 0
R

o 0
80(%13 0@%}; ’

0 0

6E2 6BF

0 0
o0 g =12

TE, YBF

0 0

BF () - BF ()
90! 90!

It is important not to forget the term —8@% in the first line of Eq. (169). Inserting Eq.

1

(169) into Eq. (167), we obtain
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- l(ai - ?1) - %F) -
52) ] [ 2 71|19 oa dp
T —cot By 0 @ e '
=1 o 1 o o . (170)
OB
S 1 0 0 o
I P i
In addition, in view of Eqgs. (69,70)
[ T T 113 -9 — 557 |
7 . . 3 P
Ji?F(Q) - Z?jgg; siny@  cot BU) cot ) 7 dagp P
7(2 siny(® .
y(B)F(z) = smg(z) cos 7(2) — cot 5 sm7(2) Ly . (171)
T 98@
7(2)
B JzBF(2) i L 0 0 1 . 1 9
L FNe) J

Consequently, we explicitly have all the components of the angular momenta appearing
in Eq. (165). It results in a KEO with 95 terms whose explicit expression is given in
the Appendix of Ref. [128]. As already explained in Section IIE, the correctness of the
derivation of the KEO was checked by comparing it with numerical results provided by the

program TNUM of Lauvergnat and Nauts [68].
(ii) Mized Jacobi/valence description:

In Ref. [155], the computation of the Infra-red spectra of the isotopically substituted
forms of the Zundel cation D(D,0)3, H(D2O)5, and D(H,0); was reported. For technical
reasons (the cluster expansion of the potential failed to converge), it was necessary to switch
from the previous Jacobi parametrization to a mixed valence/Jacobi parametrization which
is depicted in Figure 19. The vectors Ry is no longer the Jacobi vector joining the center
of mass of one monomer to the center of mass of the second monomer but a valence vector
joining the two O atoms. The vector R, joins the center of mass of the Oy subsystem to the

proton. The matrix M is no longer diagonal and now reads
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FIG. 19: Mixed Jacobi/valence description of the H5O; system. Gpg is the center of mass of the

O subsystem, or, in other words, the middle of ﬁg, the valence vector joining one O atom to the

other one.

[ 2mpyg+mo
2mompy

0

0
0

1

1
+ig

o o O 05‘1\90

1 1
0 =55 Tmg
0 0 0
1 1
0 —3 ~wo
2 0 0
mpg
myg+2m
0 2%07774{0
0 0 2
mo

(172)

The part of the KEO coming from the diagonal part of the matrix M of Eq. (172) is

identical to the operator for the Jacobi description given in the Appendix of Ref. [12§]

except that the reduced masses are different. With the new description, four more terms

crop up in the KEO. They read
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Tang = —5m 5 )
. 5 ST
R (Pﬁégz) . Pﬂl + PR*l : PR’%Z))
Taop, = —5m 5
(173)
Let us recast only the first term. Since the conjugate momentum can be written as:
A & x L;
P = P — S (174)
R;

with €, = J%Z /R; a unit vector along ﬁi; PRZ., the radial momentum and Ei, the angular

momentum; and its adjoint as

a1
st s L Ly x €
i) = €+ s 175
(B) = Phé+ 2p (175
T A A, can be rewritten as
. 1) oA R i A
2T1§§1)ﬁ2 - mLO [61( . 62(P;§1)PR2 + PIT%Q Rgl))
SN 5 a1 5
Lgl) X 51(1) €y X Ly Ly X € 81(1) X Lgl)
R§l) R, R, Rgl)
— T —
. IO 2@ B o >0 o 7D
"‘PRQ ! m ! €9 P}Tb@ 1 )
1 1
L i
pt o (1) €2 X Lo s 2 X €2 (1)
_PRgl) ! 2 Y Ry vl
(176)

As already mentioned at the end of Section IID, these terms raise a new technical problem

since the expression of the BF projections of Eﬁ” and of the BF® projections of L, are
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complicated. Obviously, one of these two frames must be chosen to calculate the scalar
ey T A
Lgl) Xé(ll) . Eax Lo

D , for instance. If one chooses the BF
R\ Ry

products appearing in Eq. (176), —
frame, equations similar (with o™, 1) and v(!) instead of «, 3, and v) to Eqs. (69,70)
along with (123) must be used to obtain the BF components of igl). The appearance of
the three Euler matrices of o, 3 and 4V complicates the final expression. However, all

these terms can be calculated.

2. Protonated water tetramer (Eigen cation)

For HyoOf, the Eigen cation, a judicious vector parametrization is the mixed Ja-
cobi/Radau one as shown in Figure 20. In Figure 20, the system is separated into four
subsystems: the three molecules of water and the H3O" ion. Each molecule of water is
parametrized by two Jacobi vectors: }_ﬁ] ), the vector connecting the center of mass of the Hy
subsystem to the O atom, and ﬁgj ), the vector joining one H atom to the other one (here,
j=1,2,3). The H3O" system is parametrized by three Radau vectors, joining Boys, the
canonical point of H3O™, to the H atoms. These three Radau are denoted ﬁ§4), with (i =
1, 2, 3), in Figure 20.

By definition, (BOHgGH3)2 = GomGuz x OGopus, with Ggs, the center of mass of the
Hs subsystem; Gogs, the center of mass of H;O%. Now, the three 'remaining’ atoms are
the three 'Radau’ vectors B_G;, with (j = 1, 2, 3). Here, B is the canonical point of
the Eigen cation and G is the center of mass of the j-th molecule of water. By definition,
(BGH603)2 = GGreos X Gr3soGreos, with G, the center of mass of the Eigen cation; G ggos3,
the center of mass of the water trimer, i.e. the Eigen cation without the H3O" ion. The
KEO can be straightforwardly obtained from the formulation of Section IID with n=4, NU)
= 3 with j = 1, 2, and 3 and N® = 4. To be more specific, in view of Eqgs. (127,129) this

reads
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FIG. 20: Mixed Jacobi/Radau description of the HgO} system (see the text).
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and
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(179)
with the corresponding reduced masses:
() 2mgmo . _ .
e =1,2,3;
! = mu/2, j=1,2,3;
Y = my, i=1,2,3;
i = 2my+mo, i=1,2,3.
(180)
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IV. DESCRIPTION OF LARGE SYSTEMS WITH ACTIVE POLYSPHERICAL
COORDINATES

The rigorous quantum mechanical description of the dynamics of polyatomic molecular
systems remains a formidable challenge for the theoretical chemists [156, 157]. Indeed, the
cost of quantum dynamics simulations grows very rapidly with the number of degrees of
freedom involved. For the numerical solution of the Schrodinger equation of the nuclei,
very important developments have been recently introduced to describe the motion of
molecular systems with 10-30 degrees of freedom: for instance, the MCTDH, CI-VSCF,
WOSA approaches already mentioned in the introduction. More recently, the multilayer
formulation of the MCTDH algorithm [11, 12, 158-161] seems promising for the treatment
of hundreds of particles. However, the solution of the Schrodinger equation of the nuclei will

still be a challenging task, in particular due to the complexity of the Hamiltonian operator.

Another bottleneck in the future treatment of large systems will be the need for potential
energy surfaces (the potential energy surfaces of the ground and of the excited states).
In principle, since the potential energy surfaces for an N-atom system depend on 3N-6
coordinates and about 10 points are needed on the surfaces for each degree of freedom in

order to characterize them, about 103V-¢

ab initio quantum chemistry calculations should
be required for each electronic state. However, important progress have been made in the
surface-fitting procedures as well, which allows to describe PESs with a limited number of
ab initio calculations. For instance, we mention the Sheppard interpolation scheme and
the fitting with redundant coordinates [162-171]. However, the generation of an accurate

multi-dimensional PES remains a difficult task.

Fortunately, dynamical processes in complex molecular systems often evolve around
a 'system’ or 'reactive core’ composed of relatively few ’active’ degrees of freedom that
carry the dominant part of the dynamics. The latter are generally coupled to a 'bath’
composed of a much larger set of degrees of freedom that act as an environment. Under
these conditions, it is reasonable to invoke simplifying approximations for the other degrees
of freedom when calculating the potential and simulating dynamics. These approximations

permit the construction of simple model Hamiltonians with a relatively small number of
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calculations for the electronic energy. A widely used approach is the rigid-constraint one,
which consists in freezing some bond lengths, angles or entire atomic groups: the dynamics
simulations are performed within a subspace of ’active’ coordinates only and, for each
set of active coordinates, the potential is calculated by relaxing all remaining coordinates
according to a local potential minimization (see Refs. [68, 69], and references therein for
applications).

An improvement of the previous model can also be envisioned by means of the reaction
path Hamiltonian approach [42, 43] that makes use of a harmonic approximation locally
defined along one or several reaction or ’active’ coordinates (see also [21, 69, 172] for
other models related to reaction path Hamiltonian). In its simplest version, this approach
becomes a model composed of one or several active coordinates simply coupled to a bath
[43]. With the reaction path Hamiltonian approach, many degrees of freedom can be taken
into account in the dynamics, using MCTDH or its multilayer formulation for instance,
whereas the number of ab initio quantum chemistry calculations does not dramatically

increase (see for instance [173-175] for applications).

Another fruitful model has been formulated [46-48] to describe multimode vibronic
coupling effects. This model provides the first terms in a Taylor expansion of a diabatic
representation of the potential surfaces around the Franck-Condon point and can correctly
reproduce the nonadiabatic effects in its vicinity. Thanks to this model, even though the
number of degrees of freedom in the dynamics can be relatively large, the number of ab
initio quantum chemistry calculations and the number of parameters in the analytical
expression of the potential are rather limited [176-178]. More recently [179, 180], the model
has been generalized to study the quantum dynamics through a conical intersection in a
macro-system. The system is also split into a ’system’ that collects the most important
"active’ coordinates and a ’bath’. The bath modes are transformed to three ’effective’ modes
only, and it has been shown that the effective modes reproduce the short-time dynamics of

the macro-system correctly.

These two models, the reaction path Hamiltonian and the vibronic coupling model,
demonstrate that it is possible to correctly reproduce elementary processes in chemical

dynamics with a relatively modest number of calculations for the electronic energy and for
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dynamics. Obviously, the choice of the active coordinates is crucial. More precisely, only a
judicious choice of active coordinates allows to carry out the dominant part of the dynamics
using a small number of degrees of freedom.

Now, rectilinear coordinates, such as the Cartesian or normal-mode coordinates, may be
unsuitable since a huge number of them is necessary to describe chemical processes when
motions of large amplitude are involved. Consequently, curvilinear coordinates are some-
times the only coordinates that can correctly describe these chemical processes with a limited
number of degrees of freedom. The importance of curvilinear coordinates to describe elemen-
tary processes in chemistry is well known and has already been highlighted by numerous
publications: see, for instance, Ref. [51, 52| for the calculation of thermal rate constants of
chemical reactions or Ref. [55, 56] for photochemical reactivity involving conical intersec-
tions. The number of quantum mechanical simulations with curvilinear coordinates for these
processes is however rather limited. This difficulty probably lies in obtaining the correct ki-
netic energy operator in a form that is not too involved and well-adapted to the numerical
methods used to solve the Schrodinger equation. The goal of the present Part of the present
review is (i) to present a rigorous theoretical background to derive kinetic energy operators
when only a limited set of ’active’ coordinates is considered to simulate the dynamics and,
(ii) to show that the polyspherical approach provides an ideal framework to obtain these

operators in a form that is suitable to numerical applications.

A. Kinetic energy operators for rigidly and adiabatically constrained molecular

systems

Let the N-atom system be subject to constraints, so that its motion is no longer
free. The purpose of the additional constraints is to reduce the dimensionality of the
problem, from 3N-6 (free system) internal degrees of freedom to n < 3N-6 internal degrees

of freedom by means of m = 3/N-n-6 additional constraints. Two cases must be distinguished:

(1) The rigid-constraint approach: it consists in freezing some bond lengths or angles.

(2) The adiabatic-constraint approach: it consists in adjusting the variations of the

inactive coordinates to those of the active coordinates.
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The rigorous derivation of the corresponding constrained kinetic energy operators is a
rather delicate task [68-70, 72, 98, 181-187] and is reviewed in the present Section. The
results presented below (for instance Eqs. (190,211)) do not depend on the choice of the
internal coordinates, and, consequently, they are not just valid for polyspherical coordinates.

Let the 3N-6 internal degrees of freedom {¢;;i = 1,...,3N —6} be collectively denoted q.
The starting point in applying constraints to a molecular system to constraints consists in
partitioning the set of internal degrees of freedom into two subsets: g’ and q”. q’ corresponds
to the set of "active’ coordinates, {¢};i = 1,...,n}, and g” corresponds to the set of 'inactive’
coordinates, {¢/;i=1,...,m}, with n+m = 3N — 6. In addition, P’, P". J correspond to

{PA/:l.i,;Z'Zl, n} {PN—

4 = 5o i =1,...,m}, and {J,sr, Jysr, J,5r}, respectively

8 // )
(see Eq. (77) for the expression of J,br, JyBF, and J_sr in terms of the conjugate momenta
associated with the Euler angles). After this separation into active and inactive coordinates,

the KEO can be written as follows

> Qf o || P
— [P plilla o || P
0_/ 0.// T JT

(181)

The matrix €, appearing in Eq. (181), corresponds to the coupling between active and
inactive coordinates. In the particular case of standard polyspherical coordinates, all the
matrix elements of Eq. (181) could be obtained from the matrices G, I', and C', which are
given by Eqgs. (C4,C5,C6), along with equations similar to Eq. (107). However, it should be
made clear that the KEO in Eq. (181) can be expressed in terms of any set of coordinates

and the results presented below are valid whatever the set of coordinates.
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1. Rigid-constraint approach

If the inactive coordinates are fixed once and for all, the m = 3N —6 —n rigid constraints
can be expressed as

' =q;i=1,...,m; (182)

or equivalently

@ =0,i=1,...,m; (183)

where the dots denote the time-derivatives.

Two important points must be addressed at this level:

(1) Eq. (183) is not equivalent to
Pp=0;i=1,...,m; (184)

In other words, starting from the constraint-free KEO of Eq. (181) and applying the rules

(qu, =0;i=1,...,m) does not lead to the correct constrained KEO.

(2) Regarding the overall rotation of the system, two cases must be distinguished. These
two cases correspond to two different kinetic energy operators and to two different experi-
mental conditions:

(i) the total angular momentum .J is constant. It is the subject of the present section to
derive the constrained KEOs for this case.

(ii) The molecule is in a fixed orientation or, more precisely, the BF frame is in a fixed
orientation, that corresponds to

Ga=p3=4=0, (185)

with «, (3, 7, the three Euler angles introduced in Section II B 2. Here also Eq. (185) is not
equivalent to P, = ]55 = 157 = 0, and thus, is not equivalent to J = 0. The derivation of the
constrained KEOs corresponding to this second case is not explicitly treated in this section.
However, using the results presented below (Eqs. (190,211)), its derivation is almost trivial.
Indeed, if the case of a molecule oriented in space is considered, the three FEuler angles

play the role of inactive coordinates. The corresponding KEO could be obtained simply by
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recasting Eq. (181) in terms of the three conjugate momenta associated with the Euler angles
(Pa = %a% , 155 = %%, and ]57 = %%) instead of {ijF, ijF, szF}. The transformation is
straightforward and given by Eq. (77) of Section IIC 1. After this transformation, the three
Euler angles can then simply be added to the group of the inactive coordinates ¢”, which
now contains m+3 coordinates and the new KEO reads
. N > Qr P g
2o = | PP .
Q Y P”
(186)

From now on, we restrict ourselves to considering the case (i) only, i.e. the Euler angles
never play the role of inactive coordinates and we start from the KEO given by Eq. (181).
In order to derive the constrained kinetic energy operator, it is necessary to come back to the
general definition of the conjugate momenta and angular momentum components without

constraints [98]:

- o o7 || P

LA " nT 50
q - Q E P )
w’ o o T JT

(187)

where w denotes {w,sr,w,sr,w,sr}, i.e. the angular velocity vector that specifies the angu-
lar speed and axis about which a framework is rotating. Let P’|,, P”|,, J|, be the (conjugate
and angular) momenta with the extra constraints of Eq. (182): the mark |, indicates that
the system being subject to rigid constraints. It is important to point out that, in general,
P'|, # P’ and P"|, # 0. Imposing the constraints of Eq. (182), i.e. ¢” = 0, in Eq. (187)
results in [181]

LT LT LT
QL,P|, +%",P", +d", J], =0, (188)
where for instance: X"[, = X"(q';¢"[o) = X"(¢;, i=1,...,n;¢"; =q¢";]0, 7=1,...,m). In

other words, the inactive coordinates are fixed in 3”|,. The same notation holds, of course,

for all the matrices. Eq. (188) yields

P, = 3", QL P, e, (189)
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In view of Eq. (189), it appears that Eq. (183) is not equivalent to Eq. (184). Finally,
inserting Eq. (189) into Eq. (181) gives

~ ot PI‘OT
2T, = [Plo J|O]g|o e
Jo
= |:p/| T j| ] (E/‘o - Q|OT E//‘o—l Q‘o) (U/‘OT B Q‘OT E,,|O_1 0'//‘0T) P/|OT
(0"|O - o-//|02//|0_1 Q|O) (I‘|O _ 0.//|0 E”‘o_l 0_,,|OT) JA‘OT
(190)

In order to complete the derivation of the quantum-mechanical kinetic energy operator
T)|,, we also have to calculate the Jacobian of the transformation from the constrained
coordinates {q’; q"|,} to the Cartesian coordinates. The Jacobian is equal by construction,
to \Det[£|o]\_%, where €|, is the matrix appearing in Eq. (190). It is useful to express this

Jacobian in terms of the Jacobian of the 'free’ system:

[NIES

JIr® = | Det|E]| "2, (191)

i.e. the Jacobian of the transformation from the coordinates {q’;q"} to the Cartesian co-
ordinates (E is the matrix appearing in Eq. (181)). It can be shown (see Section 2 in Ref.

72]) that

Det[E] = Det[X"] Det[¢], (192)
where
€ B (E/ —Qr E//—l Q) (O./T _ QT 2/1—1 o_//T) (193)
o (0', — o 2”_1 Q) (F — o 2”_1 O.IIT) ’
By introducing the constraints (¢”; = ¢”;|o; ¢ = 1,...,m), one obtains

Det[€|,] = Det[E],] Det[2"|,] 7, (194)

so that, for the Jacobian

Jeo(a') = TIo(q') V[ Det[Zo]| (195)
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In other words, the kinetic energy operator of Eq. (190) is correct only for the case in which

the wave functions are normalized as follows:

/\If*\IIdT =1,

(196)

where

dr = J"|,(q") dq' da sin 3dB dry,
(197)

with dq’ = dgq; ...dq,, and «, 5, and v denote the three Euler angles. However, since

| Det[%"],]| is, in general, complicated, it is often profitable to normalize the wave functions

as follows:
/ Ty = 1,
(198)
where
dr" = dq' dasin BdBdry ,
(199)
then an extra-potential (i.e. purely multiplicative) term pops up (see Eq. (17)):
1. 1
Ve = (e D, ). (200

In Eq. (200) T|O does not operate beyond the parentheses. In other words, the KEO
T|, + Ve, with T, coming from Eq. (190), V" coming from Eq. (200), must be used
along with Eqs. (198,199). Note also that, with the volume element of Eq. (199), lﬁ’|0T =
P,
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2. Adiabatic-constraint approach

An improvement on the rigid-constraint approach consists in adjusting the inactive co-

ordinates to the active coordinates, i.e. Eq. (182) is replaced by

¢ =q"laa(d); i=1,...,m; (201)

which can be collectively rewritten as q” = q”|.a(q’) (see Eq. (236) for example). Let us

first perform a new change of coordinates from {q’; q"} to {q’; f}, with

f=4d"—q"wald). (202)

It is clear that Eq. (201) is equivalent to

f=0, (203)

i.e. the adiabatic constraints of Eq. (201) are equivalent to rigid constraints on the new’

set of coordinates, {q’; f}: we can thus apply the results of Section IV A 1. However, we

first have to perform the change of coordinates from {q’; q"} to {q’; f}. Let {fsfi = % 8?% 1=
1,...,m} be collectively denoted P;. The KEO of Eq. (181) can be rewritten as
P
. At NS R
o7 = [P Pj || Bf
JT
Sw e’ ol | | P
— [ p' Pl J ] Qe = o7 Pt |,
- o T, .0 jT
(204)

with
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¥ Qe ol (1 00
Quew 2, o/ " | =D 10
0w Orw  Thew 0 0 1
s Qf o7 1 DT o
x | @ x o7 o 1 0],
o o T 0O o0 1

(205)

where 1 and 0 denote the identity matrix and the zero matrix, respectively. Moreover,

a//.e !
= — QJ|f1(q). (206)

D
aq/i

In other words, the matrix
0
0 (207)

¥
I
=T

0
1
0 1

is the Jacobian matrix of the transformation from {q’; q¢"; o, 5,7} to {¢’; f; o, 5,~}. If the

motion of the inactive coordinates is decoupled from the active coordinates, all the terms

—W must be very small. This is why, we proposed, in Ref. [185], to assume that, in
Eq. (207), 8 1)
q jlad q

oq'; 7 (208)
ie.

d=1, (209)
or

= =g, (210)

instead of 2’ = d Z d’. After this simplification, in order to derive the KEO, we simply

have to apply the results of Section IV A 1. It follows that
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P'|3,

2T|ad = [P,|ld J|ad_ £|ad jz;d
_ [p/|T J d} (Xad — QUL "0 Raa) (0|2 = QUL E" |4 o |2) P'|7,
- d* la _ _ ~ )
’ | (0']aa = 0"10a 2"]5g @ad)  (Tlaa = 0"laa B"15q 0"[20) | | TNea

(211)
where for instance:

¥ =3X"(qq"a(d) =Z"(ds, i=1,....,n:¢"; = ¢"}laal(d), 7=1,...,m). (212)

The same notation holds, of course, for all the matrices. In Eq. (211), we do not impose

¢ jlaald)
oq’;

= 0, since it would lead us back to the rigid model. Paradoxically, this
small (numerical) additional approximation (Eq. (210)) allows to keep a much simpler
(analytical) form of the KEO. In this adiabatic model, we do no have to add some new
terms to the rigid KEO (compare Eq. (190) with Eq. (211)): this adiabatic formulation
allows to recast the problem into an equivalent 'flexible’ pseudo-rigid case. We repeat that,
from a physical point of view, this new approximation (Eq. (210)) is justified since it is
well-known [188-191] that the adiabatic approximation is valid provided that there is a
clear decoupling or hierarchy between the inactive coordinates and the active coordinates,

39" jlaa(d’)
aq’;

i.e. provided that the functions — are close to zero.

The general equations without the additional approximation of Eq. (210) are given in
Section 3 of Ref. [72]: this ’exact’ adiabatic model leads to numerical results that are slightly
better but the corresponding KEOs are considerably more complicated.

Let us add that the operator T|ad of Eq. (211) is correct only in the case that the wave

functions are normalized with an Euclidean convention of normalization, i.e. with the volume

element given by

dr = J"|wa(q') dq' da sin BdS dry,
(213)

with
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JE"aa(@) = T Naa(@') V| Det[27ad]| - (214)

(This result is not affected by the use of the additional approximation of Eq. (210)). How-

ever, if the wave functions are normalized according to

/\D*\I’d’T, =1,

(215)
where
dr’" = dq'da sin 3dSdy,
(216)
then an extra-potential (i.e. purely multiplicative) term defined as (see Eq. (17))
1 _1
Ve = (a1 laa e od) (217)

must be added to T).q of Eq. (211).

Finally, it is worth noting that the program TNUM of Lauvergnat and Nauts [68], al-
ready mentioned in Section II E, numerically computes all the functions appearing in the
constrained operators. To be more specific, (i) for the rigid-constraint approach, TNUM
numerically provides the matrix elements in Eq. (190) and the extra-potential term of Eq.
(200); (ii) for the adiabatic-constraint approach, TNUM numerically provides the extra-
potential term of Eq. (217) and the matrix elements appearing in the adiabatic operator

with and without the approximation of Eq. (210).

B. Combination with the polyspherical approach

The constrained operators of Eqs. (190,211) are a sum of two terms. The first term,

called the 'main’ term, reads
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E/|o o./|OT 15/|T

onainlo = | P'lo' o | S
ol T Jl5
(218)
in the rigid model and
, o ta 1| Tl ol || P
2Tmain|ad - [P/|ad J|adi| , a ~ Td 5
0'lad Tlaa Jaa
(219)

in the adiabatic model. This 'main’ term is directly obtained from the operator without
constraints (Eq. (181)) simply by removing all terms involving conjugate momenta
associated with the inactive coordinates. If polyspherical coordinates are used, this term

can always be written as a sum of products of mono-mode operators and is directly obtained

from Eq. (C4,C05,C6,107).

The second term

_ _ AT
3 Lt QL 2,7, QL 2, e, P,
2Tcor7"|0 = - |:P‘0 J‘O] 1 -1 T & T ’
0_//|02//|O Q|o 0.//|O E//|o o.//|o J|o
(220)
for the rigid model, and
~ St 1 QL0 Qlaa QLT 0"k P/|aTd
2TCOTT|ad = - [P ‘ad"”ad] " n—1 " nm—=1 _mT rT ’
0"aa X" g Qaa 0"|aa "5 0" |2a J |aa
(221)

for the adiabatic model, is a 'correction’. This term vanishes if there is no coupling between
the active and the inactive coordinates, i.e. if 6” and Q in Eq. (181) are equal to zero. In
general, if the choice of the ’active’ coordinates is relevant, this 'correction’ is numerically
smaller than the 'main’ term but may play a non-negligible role in the dynamics, as

aforementioned. According to our experience, this correction is very important for accurate
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ro-vibrational spectroscopy (see [4, 183, 192] for instance) but of minor importance for
the calculation of the photo-absorption spectra involving conical intersections (see [126] for

instance), which, in general, are not of high resolution.

The combination of the polyspherical approach and the previously developed rigidly and
adiabatically constrained models presents several advantages. First, the polyspherical ap-
proach straightforwardly provides the 'main’ term in a form adapted to the methods used to
solve the Schrodinger equation. Second, as far as the ’correction’ is concerned, the situation
is a little bit more complex: this correction can be very complicated, and above all, this cor-
rection, even when using polyspherical coordinates, cannot be written as a sum of products
of mono-mode operators, because the inverse of the matrices 3" will in general depend on
the coordinates in a complicated non-separable way (see Eqs. (234,240) of Section IV C for
examples). It is all the more important to exploit the polyspherical coordinates. Indeed, if
one uses the polyspherical coordinates in orthogonal coordinates along with the separation
into subsystems of Section IID, it is easy to almost separate the active coordinates from
the inactive coordinates in the free KEO (see Eq. (228) of Section IV C for an example). In
other words, almost all the terms in the matrices ” and € in Eq. (181) are equal to zero
so that the correction almost vanishes. If the correction is neglected, the effect of the latter
approximation is drastically reduced. If it is not neglected, for instance to calculate accurate
infra-red spectra, it is, in general, much easier to derive Thop, (in polyspherical coordinates

than in another set of curvilinear coordinates): see Section IV C for illustrations.

C. Examples of applications

This Section is devoted to the presentation of different applications using the results

obtained in Section IV A combined with the polyspherical approach.

1. Rigid- and Adiabatic-constraint approaches: the water dimer

(i) Exact operator:
For van der Waals polymers, a decoupling between the intra- and intermolecular modes
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FIG. 21: Jacobi description of the water dimer.

is often very relevant since the intramolecular coordinates move much faster than the inter-
molecular ones. In Ref. [192], the determination of the water dimer potential energy surface
via direct inversion of spectroscopic data was reported. An adiabatic model was adopted.
A set of five Jacobi vectors was chosen. This set is depicted in Figure 21.

The dimer is split into two subsystems that are simply the two molecules of water. As

far as the exact KEO is concerned, one obtains in view of Eqs. (125,126) of Section 11D

2T = +2) TV
H1 =
TH— (2, 0 ) (T = (X2, JW)
, P M) U= (S5 1) -
pa Ry
with
2 PP it rol s ro =) 20)
o) — Z Ry B +((J —Li" )(JY = LY")) pro +(L1 LY")pro (223)
- ] . 2 . N2 )
— Ui(g]) ,ugj)R;J) ng)jo)

where p; denotes the reduced mass associated with R; and ,u,(f ), the reduced mass associated

with ﬁ,(f ), They read
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() 2mHmo

= —— = 7=12;
:U“l 2mH+mO’] } )
g = mu 2, §=1,2;
2myg +m
= SO (224)

Furthermore, we have (see Eq. (124) of Section IID)

- . [ BFW@ 7(j)
L ) — cot 91 JZBF(j)
1mBF(J)
A . o
L. i) | = i) : (225)
1yBF J 89{3F J
Ll ,BF() j(j)
- - i ZBF(j)

The six intramolecular coordinates are the four lengths R§1), Rgl), R§2), R§2), and the

two angles 057" and 6B (see Section IID (ii) for their precise definition). The six

2) 2)

intermolecular coordinates are Ry, and the Euler angles o), g1, v 52 () 4l

i.e. a® defines the ((xBF, 2BF); 2BF > 0) half-plane.

=7

(ii) Rigidly constrained operator (rigid rotor):

Before adopting an adiabatic model, as in Ref. [192], the water dimer was studied by
means of a rigid monomer description for each molecule of water (see Ref. [4, 193], for
instance), following the general formulation of Brocks et al. [60] for van der Waals dimers.
In order to derive the corresponding rigid operator, let us go back to the exact formulation.
Since we have used a polyspherical description of the water dimer with orthogonal vectors
along with the separation into subsystems, it results in an exact KEO, Eqs. (222,223), in
which there is almost no coupling between the active coordinates (the six intermolecular
coordinates) and the inactive coordinates (the six intramolecular coordinates). More pre-
cisely, in view of Egs. (222,223), we see that Rgl), Rgl), Rf’, Réz) are not coupled with the
other coordinates; that #2F™ is coupled with jigF(l), JO JY  only; and that gBE®

yBF(l)’ ZBF(U’
2)

is coupled with ng(z), j;i)Fm, jZ(BF(z)’ only. It means that freezing the intramolecular co-
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ordinates comes down to freezing the internal coordinates of each molecule of water taken
separately. For each monomer, the KEO can be written as (see Eq. (181))

2//(1’) n@)T p//(j)T

o) — { prf j(j)] 7
o.//(j) INE2 j(j)T

(226)

with P = (P, Py, Pyper } and with (we use Eqs. (223,225))

>0 =0 0 (227)

oV =10 0 o0 (228)

e}
-
e}

and

1 0 cot ngF(j)
N (2 N (2
HéJ)RéJ) “éJ)RéJ)
rv = 0 1 0 . (229)
() p()
@ M
CotﬁlBFJ
0

1 cot? 9{3F(j)
N (2 - N () (2 2
i “éJ)RéJ) sin2 915F(J)“§J)R§J) ué])RéJ) ]

If we now subject each molecule of water (j = 1,2) to the following rigid constraints:

RY = RV,
Ry = R,

BFW@ BFW@
91 91 |

eq )

2
(230)

where |., means that the coordinate is fixed at its value at the equilibrium geometry. The

'main’ term of the rigidly constrained operator reads (see Eqgs. (218,230))
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1
prr
PO [ 1 FlU)T
2Tmain|0 - [J|£])i| 0 “éj)Réj)2|O 0 [J‘Oj) i| ’
1
0 0 ugj)jo)z\o

(231)

and it is worth noting that the resulting coefficients are not the principal values of the inertia

tensor of the water molecule. The ’correction’ reads (see Eq. (220) and Egs. (227,228))

2TC(52T|O _ [«ﬂéﬁ} o,//(j)|02//(j)|o—1 o,//(j)|Z“ [ j|((3j)T}
0 0 0
o () )2 .
— —|J9 B R 1) T
B [J|o] ] 0 Héj)Réj)2(H§;)R;;)2+Héj)Réj)2)|O 0 [J|oj } :
0 0 0
(232)
The final rigidly constrained operator reads
I N N
277, 2 10,
M1 —
j_
2 o f 5 5
2 ; 2 ;
(ﬁ - (Zj:l JU) )) ’ (J - (Zj:l J(j)))
+ 2 , (233)
pa Ry
with
2T(j)|o = 2Tn(£m|o + QTC(gT)T|O
1
uéj)Réj)2|O 0 0
s 1 (DT
- [J|§J)] 0 “§j>R§j>2+ug)Rg)2|o 0 [J|g]) ] :
1
0 0 M§f>R§j>2|°
(234)

The operator in Eq. (234) is the rigid rotor of the water molecule, i.e. the resulting

coefficients are the principal values of the inertia tensor of the water molecule. The result
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given by Eqgs. (233,234) is a particular case of the general formulation of Brocks et al. [60]

for van der Waals dimers.
(iii) Adiabatically constrained operator (flexible rotor):

In Ref. [192], it was shown that the flexibility of each water molecule plays a crucial
role in the description of the hydrogen bond between the two molecules. A very relevant
adiabatic formulation was adopted for the water dimer. Indeed, for the water dimer, a
single quantum of excitation energy in one intramolecular mode of vibration is sufficient
to break the hydrogen bond. This implies that only the ground vibrational state of each
monomer has to be considered to study the rovibrational bound states of the dimer. Another
possibility is to take into account the first excited vibrational state of each monomer alone if
the dissociation of the dimer is to be considered. Such a situation is reminiscent of the Born-
Oppenheimer approximation that allows one to confine the description of a bound molecule
to one electronic state. Consequently, it turns out to be very relevant to define the adiabatic
dependence of the inactive coordinates as follows. We first work out the vibrational equation

for the six inactive coordinates (see Eq. (181) for the definition of ¥”) :

1 .~ 4 N
(§P// E// P + V(q”;q/)) (I)n(q//; q/> — En(q/> (I)n(q//;q/) 7 (235)
with ¢” that collectively denotes {Rgl), Rgl), RP, R§2), 9BFY 9BFOY and with ¢’ that col-
lectively denotes {Ry,a™, 30 1) 32~ The inactive coordinates are then adapted

to the active ones depending on the intramolecular state to be considered (for instance, the

ground state corresponds to n=0). In other words, Eq. (201) becomes
0 = " Jaald) =< ©u(q" @) | ¢ | Oulq'sq) > i = 1,23 (236)

q";|aa(q’) is not known analytically but numerically on a grid. For each monomer, the KEO
is given by Eq. (226) and if we now subject each molecule of water (j = 1, 2) to the adiabatic
constraints of Eq. (236), the 'main’ term of the adiabatically constrained operator for each

water molecule (j = 1, 2) reads (see Eq. (219))
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[ | 0 cot ngF(j) | i
R Rm? ad WO RO? 1
2Tn(iazn|ad - |:J|((1]d)j| 0 W|ad 0 |:j|¢ggT] :
cot GBF(J) 1 cot? GBF(J)
WW 0 cin? 915F<j)u5j>35j>2|ad WO RO’ ad_
(237)

The ’correction’ reads (see Eq. (221) and Egs. (227,228))

20wt = = | I | "= O [ DT ]
0 0 0
B 5 () p9) R S ()T
- [J|ad] “§j>R§j>2(“§>ngl')zﬂéa')}zgj)z)|ad 0 [J‘ad ] :
0 0 0
(238)
The final adiabatically constrained operator reads
) P} P
2P|,y = +2ZT ad
H1 i
2, 9 . 5 9 .
(= (52, 9 ) - (= (22, T9)
+ 5 : (239)
p1 Ry
with the 'flexible’ rotor
[ cot GBF(]) 1
(J)R(J)Q‘ad 0 (J)R(J)2 ad
PO — [ @) L j|u)T
2T(J)‘ad = [']|ad ] 0 u;j)R;jﬂwéj)jo)”ad 0 ‘ [J‘z(zjd) ] :
COt@BF(J) cot2 GBF(])
Wud 0 Sl + = ol
J R] SiH2 61BF /”’1] le MQJ sz ]

(240)

Let us point out that the functions ¢”,|.s(q’), and hence the matrix elements of Eqs
(237,238,240) are not known analytically but are numerically defined on a grid. Interest-
ingly enough, in Ref. [192], the extra-potential term of Eq. (217) was neglected: this term

is, in general, numerically very small (see Ref. [72, 194, 195], for instance). The numerical
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results of Ref. [192] compared to experimental values have proved that the adiabatic model

dramatically improves the rigid one for the water dimer.

2. The photo-induced non-adiabatic dynamics of ethene

In Ref. [196], Krawczyk et al. have computed the three lowest potential energy surfaces
of ethene. Ethene has six atoms and its geometric configuration is, therefore, described by
12 internal coordinates. However, in order to make the investigation feasible, the authors
considered only the six most important or ’active’ coordinates. The determination of the ac-
tive coordinates is achieved by screening many geometric parameters for the most important
geometries (for instance, the stationary points of the potential energy surfaces). The geo-
metric parameters and the corresponding coordinates that change the most must be retained
as active coordinates, whereas the coordinates that remain approximately constant can be
considered as inactive and frozen during the dynamics. In Ref. [196], the six active modes
were torsion, C-C stretching, left and right scissoring and left and right wagging (pyrami-
dalization). The left and right rockings and the four C-H stretches were ignored and their
coordinates were fixed to their equilibrium positions, i.e. we have the case of a rigid con-
straint studied in Section IV A 1. The six active modes are parametrized by six coordinates,
which are: ¢, the torsional angle; r, the C-C distance; «,., the right scissor angle; oy, the
left scissor angle; ¥,, the right pyramidalization angle; ;, the left pyramidalization angle.
The PES were transformed to a diabatic representation and dynamical calculations were
performed in Ref. [197] using the multi-configuration time-dependent Hartree (MCTDH)

method. Unfortunately the KEO, obtained by inversion of the 6 x 6 matrix: Z(lxgzl %”f; %qu‘,

where the z, are mass-weighted Cartesian coordinates of the six atoms of the molecule, and
g € {o, 7, a., 0., %} (see Egs. (2,5,6) of Section IT A), is unsuitable for the MCTDH propa-
gation. Indeed, it cannot be factorised as a sum of products of one-dimensional operators.
Therefore, several simplifications have been added to the KEO.

In Ref. [126], we have revisited the problem and proposed a set of five vectors, which are

depicted in Fig. 22, and the corresponding 12 standard polyspherical coordinates: (R1, Rg,
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FIG. 22: Mixed Jacobi/valence description of the CoHy system (see the text).

H H
G H2 .
E’ — R3 G H2
! H R, H .
C ¢ R
R,

L4+ 0 0 0 —-1
mgc H mc
0 L—l—% 0o 0 —-L

mgc H mc

M = 0 0 2 0 0

my
0 0 0 = 0
mpg

-1 -1 0o 0 -2
L mg mc mc 4

(241)

This particular choice of the vectors was motivated by the attempt to obtain coordinates

that are as close as possible to the ones used in Ref. [197] (¢, 7, o, oy, O, ¥;). Indeed, since

the potential energy surface is given only in terms of six degrees of freedom, we subject the

system to the following constraints:
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eszg,
opr = 2.,
wazg,
o = T

Ry = 24/R%, — R?,
Ry = 2y/R%, — R2, (242)

with the distance Ropy being fixed to its equilibrium geometry. After a simple change of
coordinates (for instance @B = pBF — ©BF) that does not affect the 'main’ term of the
final KEO, the constraint for P g R3, and R4 can be expressed as a rigid one. The relation
between our polyspherical coordinates and the six degrees of freedom used in Ref. [197] is

then simply given by

= R5>
9, = 65"
0 = o5F

a, = 2arccos(Ry/Rem) ,
a; = 2arccos(Ry/Ren),
p = a

where Roy denotes the C-H equilibrium distance.

The fact that we use Ry and Ry (see Figure 22 for their definition) instead of the two scis-
sor angles, «, and o, between the C-H bonds allows us to reformulate the problem in terms
of polyspherical coordinates. The use of polyspherical coordinates allows a direct obtaining
of the main term of the KEO in a form perfectly adapted to MCTDH. For CyH,, when using
the elementary volume element dr = dR3 dR, dRs dOPFdOPY dOPT dpBt and assuming J =
0, the main term, 1/2 [P’|OT] 3, [15’|0T}, is given by Eq. (11) of Ref. [126] (we used
Egs. (111,C4)). The ’correction’, - 1/2 [IA”|OT ] Q" =", Ql, [P’|OT] for J =0, cannot
be written as a sum of products of mono-mode operators. In Ref. [126], this problem was
removed by introducing an additional reasonable approximation. We fix Q|," %”|,” Q, to

its value at the equilibrium geometry: it is not only the inactive coordinates but also the
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active coordinates that are fixed in the correction. This (approximate) correction term was

provided by TNUM [68] and reads:

92
Teorrr = 0.0000019889 —

DR
o 0 o 0
— 0.0000138299 —— —— — 0.0000138299 —— ——
8R2 8R5 8‘Rl 8‘R5
0? 0?
+ 0.0000480826 775 + 0.0000480826 75577

(243)

where atomic units are assumed.

An improvement, in the future, could be to make a Taylor expansion of Q\OT )3 |0_1 Ql,
using the numerical values given by TNUM or to calculate this term analytically and to refit
it, with Mathematica for instance, as a sum of products of mono-mode operators. In Ref.
[126], it was shown that the effect of this correction on the dynamics is small. This study
emphasizes that 'the general structure’ of the polyspherical coordinates should be kept in
mind when choosing the active coordinates. In other words, when the active coordinates
are a subset of polyspherical coordinates, it is straightforward to obtain the part of the
KEO that carries the essential part of the physics and in a form that can be very easily

implemented.

3. General strategies for very large systems

(i) The example of the cationic complex [CpRh(PHs)H(CoH,)|™

In Section IV A, we have presented a rigorous way to derive the KEO of systems
subjected to constraints, i.e. for which the dynamics is performed within a subset of active
coordinates. We have explained, in Section IV B, why it is advantageous to combine the
constraints with the polyspherical approach. Finally, we have given some illustrations in

Section IV C. If we summarize our findings, we can say that:

(1) the constrained operator can be split into two parts: the 'main’ term and the
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"correction’.

(2) If the choice of the coordinates, active and inactive, is judicious, the 'main’ term
carries the dominant part of the physics and the correction is numerically smaller. However,

this correction must be taken into account if one wants to reach high accuracy.

(3) It is advantageous to choose the active coordinates as a subset of polyspherical
coordinates. Indeed, (i) the polyspherical coordinates straightforwardly provide the main
term in a form that can be very easily implemented. (ii) If one chooses a judicious set of
polyspherical coordinates, for instance a parametrization of Jacobi vectors combined with
the separation into subsystems of Section II D, one strongly minimizes the coupling between
the active and the inactive coordinates and, therefore, the effect of the ’correction’ of the

KEO on the dynamics.

The latter point is illustrated in the present Section: if one focuses on the dynamics
within a small part of a very large molecular system, it is judicious to successively divide
the whole molecule into smaller subsystems. In other words, one applies the ’separation
into subsystems’ of Section IID several times so that the subset of the active coordinates
is almost decoupled from the rest of the molecule in the KEO. In Ref. [198], this strat-
egy was adopted to calculate the KEO in order to undertake a first quantum dynamical
study of migratory insertion and hydrogen elimination in a representative metal complex
[CpRh(PHs3)H(CyH,)]". As for ethene, it was first necessary to identify a set of relevant
coordinates. This is achieved by screening the relevant stationary points of the potential
energy surface. The choice of the active coordinates therefore depends on the potential oper-
ator and not on the KEO, but it is always advantageous to translate them into the "language
of the polyspherical coordinates’, i.e. to identify a subset of polyspherical coordinates as
active coordinates.

The system is depicted in Figure 23 and separated into two subsystems 1’ (HRhCyHy)
and "2’ (PH3CsHs). RTQ = CTG; is the Jacobi vector joining G; the center of mass of the
subsystem "1’ (HRhCyHy) to Gy the center of mass of the subsystem 2’ (PH3C5Hj;).

For the whole system (HRhCoH,PH3C5Hjs), the exact kinetic energy operator then reads
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FIG. 23: Successive separation into subsystems of the metal complex [CpRh(PH3)H(CyHy)]". Go

is the center of mass of the subsystem (PH3CsHj).
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The subsystem ’1’ can also be separated into two new subsystems: RhH and CyH, that are
linked by a Jacobi vector R joining Ggogg the center of mass of CoHy to Grpy the center
of mass of RhH, which can be approximated as Ggrpy ~ Rh (see Figure 23). The kinetic
energy 1T'0) reads

M _ PEPR+P£HPRH L'L .

27 + 5— + 2T c2m4
% KRy Pry Ry,
2, 2 ) 5 2 2
(JT=(L +J)-(J=(L+JT))
. 246
+ e (246)



— _— =
L is the angular momentum associated with RhH, J' is the total angular momentum of CoHy,
the vector RIhH is described by three spherical coordinates: Ry, 6, and . In addition, we
have

_ MRrHMCyH,

fp = —————— (247)
MRhHCyH,

iRy is the mass of the H atom. The kinetic energy operator of T¢,p, could be directly
derived in terms of polyspherical coordinates from the general expression given by Egs.
(111,C4). If we keep only six internal polyspherical coordinates, as suggested in Ref. [198],
Ru, 0, ¢, R (the length of m% Ree (the distance between the two C atoms in CoHy),
and 7 (the third Euler angle of the subsystem CyHs that is depicted in Figure), the 'main’
term of the final KEO for total J = 0 reads

r* 0? R? 0 R 92

2T = ——— - _
HH 8R%{ ur OR?  poc 8R200
1 1 1 0 0 1 92
— B2 Y sne o
(mHRz%I - MRRQ)(siné’@H St 00 + sin 62 8g02)
| (2, — ihcoty)ih(- cos o +sinpcot §2)
prR?
1 1 1 0 0
— I + — —siny—
(IUC’CR%«C ppR? (smv 0y 787)
v P ! N -

: + -
sin” 7 HRee R%C prR? prlt?
cot ypy,(cos ¢ cot Op, + sin ¢py) + (cos ¢ cot Op,, + sin ppg) cot Yp,
prR? ’

(248)
with the following volume element:
dr =dRy dRdRcc dydy sinf df . (249)

In Ref. [198], the ’correction’ and the extra-potential term were neglected. The successive
separation into subsystems and the use of Jacobi vectors joining the different subsystems
(ﬁlg, ﬁ) allows the active coordinates to strongly decouple the active coordinates from
the rest of the system in the KEO. The use of the polyspherical coordinates yields a final

expression of the 'main’ term that is not too complicated.
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(ii) Large van der Waals clusters

In this last Section, we sketch how it is possible to combine the polyspherical coordinates
with other families of coordinates when the system is separated into subsystems. Under
particular conditions, it is indeed possible to directly make use of KEOs published in the
literature within the polyspherical approach: the KEO in hyperspherical coordinates for
a tri-atomic system and the Watson KEO in normal coordinates. In this Section, the
separation into active and inactive coordinates does not play a major role. However, since
we use almost all the results presented before (the properties of the angular momenta
highlighted in Section IIB 2, the separation into subsystems, the rigid and flexible rotors,

etc...), it is sensible that this Section appears at the end of the review.
(1) Introduction of hyperspherical coordinates in NHj:

Before carrying on, it is important to be made clear that the polyspherical approach
possesses properties that can be (and have been) exploited for other kinds of coordinates
than polyspherical coordinates. One example is the calculation of the vibrational levels
of NHj reported in Ref. [77]. For ammonia, the system had been separated into two
subsystems: the N atom and the Hs subsystem. If the system is parametrized by the set of
three Jacobi vectors as shown in Figure 24, in view of Eqs. (125,126), the KEO reads

~
=

2, T N
o — PR1PR1 4+ o7 4 (JT - JW ) (J — J(l))
i vt ’

A ~

(250)

with

.I>

2

~N1) R k k k

200 = N +27(1) 1 (251)
k=1 Hi k=1 Hy Ry,

However, in Ref. [77, 199], we preferred to

mgm 1 m 1 m
('ul - 3§nHH+mNN’ ’ug) - TH’ 'ug) - 2TH)

parametrize the H3 subsystem in terms of hyperspherical coordinates [200, 201] instead of
polyspherical coordinates. The hyperspherical coordinates have the advantage that the three
atoms are treated fully equivalently. The KEO in hyperspherical coordinates for a tri-atomic

system is well-known [200, 201] and is given by:
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FIG. 24: Jacobi description of NHg: Gpgo is the center of mass of Hy, Ggg is the center of mass of

the Hs subsystem.

1
H R
RS S
N« /GH3 H
HY—
1
R,®
« h? 0 .0 h? 4 0 0 1 02
T(l) = ——5—Q5—— 2[.——811129——'—7—2]
200° 0o~ Qo 2ue? sin 260 06 90 sin® Oy
I jilp)AQS J;}D)Azs jﬁ}a)AQS _ thcost 2(1) g
po*(1—sinf)  po?(1+sinf)  2uesin®0  pe?sin’0 = "0y’
(252)
with
0 <o,
0 <6< 7/2,
0 <p< 2,
no="k,

where PAS denotes the instantaneous principal axis system of Hs. p and {0, ¢} define the

size and the shape of the Hj triangle, respectively. They are defined such as

Ry, pas/d
Ry pas/d
Ry pas x d
Ry

yPAS * d

= pcos(0/2 —7/4)cosp,
= —psin(0/2 — 7 /4)sing,
= pcos(0/2 —m/4)singp,
= psin(0/2 —n/4)cos g,
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with d a scaling factor that is equal to 1.07457 for an equal mass tri-atomic system [200, 201]
(Hs is a ’equal mass system’ since the three atoms have the same mass). JW is a function
of three internal Euler angles a(V, /6(1),7(1) allowing the localization of the Hz PAS with
respect to the F, frame. Since Hj is not involved in the definition of the Ey frame (the Ej
frame is specified by R, only), the Es-components of JW have a regular expression and after

applying the three Euler rotations (see Egs. (69,70)), one obtains:

_ - _ (16 ]
~ cos~(1) . i Oa(l)
JSP)AS —sing(l) siny®  cot B cot M)
O | | sing® D _ cot 8O sin 4D (253)
yPAS sin 3 COS7y cot 1 sin~y 1 o
i 9pM
51
T | |0 0 1 11
L i97™D

The third Euler angle is chosen such that v = a(!) (Note that, for the first time, we no
longer use the definition of the BF frame as in Sec. IIC1 (i)). The KEO is given by Egs.
(250,252,253): the expression of the PAS-components of J (Eq. (253)) is unaffected
by the choice v = aMand the BF-components of JU) are obtained from Eq. (253) along
with Egs. (69,70). The fact that we use the KEO in hyperspherical coordinates for a
tri-atomic system for T and that we do not change the rest of the KEO comes from the
fact that R, originates from the center of mass of Hz. The correctness of the final KEO
(Egs. (250,252,253)) was checked by using the expression of Podolsky from Eq. (2) along
with Mathematica. The hyperspherical coordinates were introduced in order to keep the
full symmetry of the system and to work in each irreducible representation of the Ds;,(M)?
permutation inversion group of the molecule [202]. In addition, R; provides a good reaction

coordinate for the umbrella inversion (see Ref. [77] for how to distinguish the two isomers),

and p a good coordinate to describe the symmetric stretching mode of vibration.
(2) Introduction of hyperspherical coordinates for the water trimer:

Similarly, in Ref. [82], for the water trimer, we proposed to parametrize the three relative

positions of the subsystems (what we called the 'remaining’ vectors in Sec. IID (i)) by hyper-
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spherical coordinates instead of polyspherical coordinates. Indeed, all the parametrizations
proposed in Sec. IID for the water trimer (see Figures 8, 9, 10, 11) break the symmetry of
permutation of the three monomers. If one wants to keep this symmetry, a solution is to start
from the Jacobi vectors of Figure 8 (or Figure 9) and to parametrize the three remaining’
vectors by hyperspherical instead of polyspherical coordinates. The KEO in Jacobi poly-
spherical coordinates is given by Egs. (125,126) with n = 3. Now, it should be emphasized
that the three 'remaining’ vectors originate from or point towards the centers of mass of the
three subsystems: there is no coupling in the matrix M between the n-1 'remaining’ vectors
and the vectors of the subsystems (like in Eqgs. (130,131)). Consequently, T Z?’ T0)

formally, 1dent1cal to the KEO of a system of three particles except that J is replaced by
J L with L Z j (we recall that J ) is the total angular momentum of the j-th
subsystem). The three 'particles’ are not three atoms but three ’fictitious’ particles, Gy, Go
and Gj (we recall that G; is the center of mass of the j-th subsystem). The mass associated
with G; is equal to the mass of the j-th subsystem : mo + 2mpg. Therefore, if we use
hyperspherical (instead of polyspherical) coordinates to parametrize the three 'remaining’
vectors, we simply have to rewrite Eq. (125) in terms of the hyperspherical coordinates

associated with G1, G, G3. Therefore, the new KEO reads

7 h? 0 58 ﬁ2[ 4 85':(12(98—1— 1 02
et - — ——|——— — S1 —_— — e
240 8@ do  2up? sin 26 06 00 sin?f 0>

S a2 L
(J = L) ras | (J=L) ypas  (J=L) pas  ihcosd
po*(1 —sinf) = po*(1+ sin ) 2/102sin%0 o2sin®0

n if(a‘)7
j=1

A 0
(J — L)ZPAS%

(254)

with
0 <o,
0 <0< 7/2,
0 <¢<  2m,

_ 2myg+mo

H=""Vs
In Eq. (254), PAS denotes the instantaneous principal axis system of {G1, G2, G3}, which
is chosen as the BF frame of the system. p and {6, ¢} define the size and the shape of the
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{G1, G5, G5} triangle, respectively. T@ is given by Eq. (126) or by Egs. (B5,B6,B7) if each
subsystem is parametrized by non-orthogonal vectors. T could also be a rigid (flexible)

rotor of each monomer if the intramolecular motions are rigidly (adiabatically) constrained.

Again, we repeat that 7' — Z?Zlf(” in Eq. (254) is simply the KEO of a system of
three particles in hyperspherical coordinates [200, 201] except that:

(1) the total angular momentum .J is replaced by J — L = J — Z?Zl J,

(2) the three ’particles’ are not three atoms but three 'fictitious’ particles, Gi, Gy and

Ggs. The mass associated with Gj is equal to the mass of the j-th subsystem : mo + 2mpy.

The introduction of the hyperspherical coordinates that describe the relative positions of
the three monomers allows the full symmetry of the system to be preserved. In particular,
the definition of the BF frame for the whole system is different from the definition in the
original formulation of the polyspherical approach (Sec. IIC1 (i)). The BF frame is now
the instantaneous principal axis system of {G1, Gs, Gi3}: the symmetry of permutation of
the three monomers is kept since no molecule plays a particular role in the definition of the
BF frame. The overall rotation of each subsystem is parametrized by three Euler angles
with respect to the new BF frame and, since the vectors in each subsystems play no role in
the definition of the BF frame (as before), the expression of the projections of f(j ) onto the
BF frame is given by the usual formulae (Eq. (128)). Finally, let us mention that it could
be possible to use, instead of the three hyperspherical coordinates, Pekeris coordinates
(corresponding to the three distances between the three 'fictitious’ particles, Gy, Gy and

Gs) as proposed by Wang and Carrington for van der Waals trimers [203, 204].
(3) Generalization of the previous results:

The results presented above are of general character and can be used to combine the
polyspherical coordinates with other families of coordinates. For instance, for large van der
Waals clusters, it is possible to envision the use of normal coordinates to describe the relative

motions of the centers of mass of the different subsystems, since the normal coordinates
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simplify the final expression of the KEO. Let us separate the system into n subsystems as
in Sec. 1ID.
In the formulation that follows two conditions must be satisfied (note that they were

already satisfied for the water trimer in (2)):

(i) when the system is separated into subsystems, there is no coupling in the matrix M
between the n-1 'remaining’ vectors J% and all the vectors of the subsystems. It corresponds
to the case (2) of Sec. IID. In other word, the n-1 'remaining’ vectors and the vectors in
each subsystem can be orthogonal or non-orthogonal vectors but the 'remaining’ vectors
must originate from or point towards the centers of mass of the subsystems. (The matrix

M has a block-diagonal form as in Eq. (132) of Sec. IID.)

(ii)) The BF frame is defined by the n-1 ’remaining’ vectors and the vectors in each
subsystems play no role in its definition (before and after the coordinate transformation

from the polyspherical coordinates to the new coordinates).

The condition (i) entails that 7' — > i1 TG is, formally, identical to the KEO of an n-
atomic system except that T is replaced by J— L with L — > JU) (we recall that T is
the total angular momentum of the j-th subsystem). The centers of mass (G;, j =1,...,n)
play the role of the ’atoms’ and the mass associated with G; is M;, the total mass of the
j-th subsystem. A simple coordinate transformation from the polyspherical coordinates
parametrizing the n-1 'remaining’ vectors to the normal coordinates associated with the

centers of mass (G;, j = 1,...,n) leads to the new KEO

1 1o~ & 1
o R I (I o ek oy S
a,f=z,y,z k=1 a=x,y,z
+ T(j) ’
j=1
(255)
where
3n—6
pop=T") 50 Tag=Tag+ D Culon@iQr, (256)
k,lm=1
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and where I3 is the inertia tensor and ¢}, are Coriolis parameters defined for example in

[88]. The vibrational angular momentum terms, m,, are

3n—6

0
fra=—i) GiQnga (257)

k=1

The BF frame is specified by the positions of the centers of mass of the subsystems: in Eq.
(255) its choice is free (it could be, for instance, the Eckart frame [111] of the {G4,..., Gy}
system). Eq. (255) is the Watson KEO [88] except that (1) the total angular momentum j
is replaced by f —i = j —> i f(j ). (2) The normal coordinates are the normal coordinates
associated with G;j = 1,...,n (the centers of mass of the subsystems).

In addition, since the BF frame is specified only by the position of the centers of mass
of the subsystems and, therefore, since the vectors in each subsystem play no role in the
definition of the BF frame (condition (ii) above), the expression of the projections of J0)
onto the BF frame is given by the usual formulae (Eq. (128)).

TG could be given by Eq. (126) or by Eqs. (B5,B6,B7). T could also be a rigid
(flexible) rotor of each monomer if the intramolecular motions are rigidly (adiabatically)

constrained.

Finally, for very large van der Waals clusters, it becomes possible to forget the separation

of the overall rotation from the internal motions. The KEO simply reads
. g 0
M= D D My ONST ONST

(258)

where { X5 VST Z5F) are the Cartesian coordinates of the i-th 'remaining’ vector in the
SF frame. M;; are the elements of the mass matrix M of Eq. (54). TG could be given by
Eq. (126) or by Eqs. (B5,B6,B7). As above, T) could be a rigid (flexible) rotor of each

monomer if the intramolecular motions are rigidly (adiabatically) constrained.
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V. CONCLUSION AND OUTLOOK

In the last decades, important progress has been made in the development of quantum
dynamics simulations. This has been made possible by the increase in computer power and,
as importantly, the development of new efficient algorithms. In this context, the growing
interest in systems presenting large amplitude motions calls for correct quantum-mechanical
expressions of KEOs in curvilinear coordinates. The polyspherical approach recently
developed and reviewed in the present paper was devised in order to obtain these operators
in a systematic way. Numerous applications have already been performed using KEOs
obtained from this approach (see Part III for an non-exhaustive list). These applications
demonstrate conclusively that this approach can live up to its early promise of being
capable of providing compact expressions of KEOs in a form well-adapted to the numerical

approaches used in dynamics.

Looking ahead, we can say that the next step in the development of the polyspherical
approach will probably be the implementation of the results presented in Part II of the
present review, by way of an automatic procedure. Indeed, it should be possible to write
a program that uses the polyspherical approach combined with the (successive) separation
into subsystems. This program could give the explicit analytical expression of the KEO for
any particular case and could even directly implement the operator in a code used to solve

numerically the Schrédinger equation.

The polyspherical approach has given rise to many applications chiefly in the field of
Infra-red spectroscopy (see Part III). Another goal will be the study of chemical processes
for instance in photochemical reactivity involving conical intersections. As explained in
the introduction of Part IV, the number of quantum mechanical simulations with curvi-
linear coordinates for these systems is rather limited because it is difficult to obtain the
corresponding correct KEO. The results presented in Part IV could bring an important

contribution in order to generalize the use of curvilinear coordinates in this domain.
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APPENDIX A: PROPERTIES OF THE PARTIAL ANGULAR MOMENTA

When defining the conformation of an N-particle system by N-1 vectors, one unavoidably
comes across several angular momenta: not only the total angular momentum of the system
but also the various partial angular momenta corresponding to the motion of the various
vectors. All these momenta can, in addition, be referred to a variety of reference frames
such as the so-called Body-Fixed (BF) frame whose origin coincides with the center of mass
and whose axes rotate in a conventional manner when the particles move. The introduction
of the projections onto the BF-axes is necessary when using the BF coordinate (see Sec.
IIB2), but raises a new technical problem: while the projections of the angular momenta
onto the SF-axes satisfy the usual commutation relations, and their action onto a basis set of
spherical harmonics in terms of the SF spherical coordinates is well known (see for instance
Ref. [109]), the projections of the same angular momenta onto the axes of a moving frame
may satisfy anomalous, non-definite commutation relations [81].

We have shown elsewhere [81] that two cases must be distinguished: whether the vector is
involved in the definition of the BF or not. Indeed, if a vector is not involved in the definition
of a frame F, the expression for the projection of the corresponding angular momentum onto
the F-axes expressed in the coordinates in this frame is identical to the usual one in a SF
frame [58] (it should be stressed that this result is not trivial at all, see below). To be more
specific, if ﬁj is not involved in the definition of the BF frame, the projections of Ej onto

the BF-axes and expressed in terms of the BF-Cartesian coordinates are given by:

S 1 0
ijBF RJmBF ZaRJ zBF
T — 1__0
Lj yBF - Rj yBE | X | 3 OR; bR : (Al)
» . 19
i LJ »BF | i Rj »BF | i R, .57

Consequently, the usual commutation relations are verified.
If the vector is involved in the definition of the BF frame, the previous results are no
longer true. The projections have to be calculated explicitly and the commutation rela-

tions are non-definite. Several examples can be found in Sec. IIC1 (Eq. (84)) and Ref. [81].
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Let us return to the first case, namely when the vector is not involved in the definition
of the BF. It would be altogether mistaken to suppose that Eq. (A1) refers to an angular
momentum computed in the BF frame. Indeed, Eq. (A1) is nothing but the exact quantum

mechanical counterpart of the classical expression [58]

[ aTSF
Lj,sr R Br OR; .BF
- 6TSF
Lj yBF | = Rj yBF X —6Rj 5F . (A2>
L, sr R, . BF ﬂ
Jz ]z i 8Rj Br |

It is important then to notice that (£ is the Lagrangian of the system)

orst oL oTBr

: S — : : A3
8Rj)\BF aRjABF 7£ 8Rj)\BF ( )

i.e. that 8}8_{ng are not the components of a momentum computed in the BF frame, i.e.
i \NBE

they are not computed from velocities relative to the BF frame. Consequently, the angular

momentum operator in Eq. (A1) turns out to be the angular momentum computed in the
SF frame, projected onto the BF-axes and expressed in terms of BF coordinates. For the

sake of completeness, let us add that

SF
or.— _ o 1 9 (Ad)
8Rj A\BF 8RJ \BF (4 8R] \BF
is the only correct quantization rule [57] and not
oTBY 1 0
(A5)

D — - .
8R] A\BF ? aR] ABF

To explain the origin of these results, let us point out that Eq. (A1) and Eq. (A2) result
from the vector ﬁj being not involved in the definition of the BF frame, which can also be
mathematically expressed as follows (a systematic parallel between classical and quantum

mechanics is made to highlight the physical meaning of the operators):
(i) by means of Poisson brackets:

{Rax, Ljpsr} =0, (A6)
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(i) or commutation relations:

[Raw, Lypsr| =0, (A7)

(with (A, N, p = z,y, 2) and R(a, §,7) the Euler rotation matrix) We then have in classical

mechanics

ijBF ijSF
Lipr | = RY(@.09) | Lyyer )
LjZBF L]ZSF
6TSF
R; ,sF OR, ,sF
SF
= (R7(@.0.7) | Riysr |)x (RT(@.0.7) | 550 |)
R' o aTSF
iz OR, sF
oTSF
R; o OR; 51
o SF
— RijF X (RT(O{7B77) aRtijF ) ’
R‘ . aTSF
jz OR. _sp

Jz

and in quantum mechanics
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ijF
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RinF
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1_ 98
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An important question to ask is the following: is it true that
aTSF aTSF
OR, sF OR, pr
T aTsF aTsF
(R OF, o O, e (A12)
8TSF 6TSF
OR, sF OR, pr
or
10 10
i OR, _sr i OR, pr
T|1_ o 19
(R 7 8Rj ySF 7 8Rj yBF (A13>
10 19
i 8Rj _SF i 8Rj ,BF

or, in other words, that the conjugate momentum associated with the BF coordinates (which

is not a 'BF conjugate momentum’ in the sense of a momentum computed in the BF frame)
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can be identified with the projection of the SF conjugate momentum? The explicit calcula-

tion of the projections shows that the answer is yes and comes directly from Eq. (A6) and

(A7), i.e. from the fact that the vector is not involved in the definition of BF.

We thus get

L, Br

j
L, br

JY

Lj 2BF

and

>

j xBF

‘bw

BF

>

szF

R, 5F

7

R;sr

J

R; br

J

R; .8r

J

R' BF

7Y

R, brF

J

6TSF
3Ri BF

6TSF
5RZ~ yBF

6TSF
R, BF

iz

Jjx

1 0

i OR; pF

(A14)

(A15)

if the vector ﬁj is not involved in the definition of the BF frame.
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APPENDIX B: GENERAL EXPRESSION OF THE KEO IN ANGULAR MO-
MENTA FOR NON-ORTHOGONAL COORDINATES

In Section ITC1, we have derived the expression of the KEO in angular momenta for

orthogonal vectors (Eq. (92)). Now, what happens if non-orthogonal vectors are used?

Whereas orthogonal vectors diagonalize the kinetic energy in Eq. (63), non-orthogonal
vectors give rise to off-diagonal terms, also called 'mass polarization’ terms: J%TMZ-]-]% with
1 # j. Since the conjugate momentum can be separated into a radial and angular term as:

€; X Ez

Pi= Prdi - S (B1)

)

with €; = R} /R; a unit vector along ﬁi; pR,L., the radial momentum and E,-, the angular

momentum; and its adjoint as

T
5 T ~ ‘ [/Z X €;

. (B2)

(B3)

All the different terms appearing in Eq. (B3) have to be explicitly calculated. Taking into
account that

A N_2 A

Inoa=J-S "L, (B4)

i=1

and that L ~n—2 has a particular behavior, it is straightforward, but tedious to show that [78§]
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N-1 DT 1 N-1
) P} Pr,

Ty, = Z M;; 2 + Z M;;(sin 077 sin 67" cos(of " — @P"") + cos 67" cos efF)PRiﬁRj

i=1 ij=1;<j
N—2
P L..sr
- nBF . nBF _: BF BF R Hjz
E {M;;sin 0;7" sin 07" sin(¢;”" — ¢; )(T)
i,j=15i#j J

- BF —ipBF 7 ipBF 7
MZ] COS 9] _ MiN—l e i Lj+BF — e Lj BF

P sin 05 ( )( —)}
i -
Rj RN—l 21
N-—-2 _ i BF 2 . BF 2
Pg, sin ;7 ( , )
R ' ! 2
=1 ~N-1 !
N-1 . BF 2 . BF %
M., e i L..pr—e"% L. Br
Y Py, cos 07" sin 07" ( A —)
-~ Ry 2i
i,j=15i#j
N-2
Mza BF BF 1 —ipBF . ABF ioBF .  )BF
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‘ "R;R; 2
1,J=1;1<J

MiN—l GBF . MjN—l HBF MN—IN—I }([A/i-i-BFlAfj—BF)
J
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1 L BF
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E { ] (cos OPF COSOBF+ 26’% sm@ZBFe 3 sm@fF)

1,j=1;1<j

7MZN_1 cos OBF — 7MJN_1 cos BF My—1n—1 }(Li_BFLjJ’BF)
R;Rn_4 ! RiRyN_4 J R% | 2

N-2 M,
Z m sin #PF sin QJ-BF(Q_i(@?F—HP?F)Li_FBFLj+BF 4 @O BFL

i,j—l;i<]

My_1n— Mm M;n_q cos HZBF 505
Z{ 7 o - HEIL)
2R 2Rz RZRN—I

My_1in-1+; -
E { ” - sin 07" sin 07" cos(P" — pPT) + T}ListszsF
1,J=1;1<J N-1
N-2 _ioBF 2 . BF
®; !
sin 07" (— cos 0" + )( )L, BF
L R.R; R:Ry_1 2
1,J=1;1<g
N-2 —ipBF 7 2 ioBF 7 2
. BF MZ] BF MiN—l e i LZ'ZBFLJ'+BF + e LiZBFLj_BF
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The previous equations should be used along with

9]\/ 1—<PN 1—<PN 2—0
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since Ry is parallel to the zB7 axis and Ry_ is parallel to the ((zBF,28F): 2BF > 0)
half-plane. Even if this does not appear explicitly for each term, it is emphasized that
the operator in Eq. (B5) is Hermitian. This operator is correct for the case in which the
wave functions are normalized with an Euclidean convention of normalization, i.e. with the
volume element given by Eq. (73). All the equations (75), (77), (83), and (99) given in Sec.

IIC1 remain true.
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APPENDIX C: GENERAL EXPRESSION OF THE KEO IN CONJUGATE MO-
MENTA

This Appendix is devoted to the explicit expression of the coefficients Gy, I'\x, and
C)q appearing in the KEO in Egs. (106) and (111). Here, {g;;i = 1,...,3N — 6} =
{(R;i=1,....,N—=1), (uzi=1,....N =2), (¢PFi=1,...,N=3)} and \, N = 2,9, 2.
The sub-matrices are all symmetrical, i.e. Gggq, = Ggng» Inv = Ty, and Cyg, = Cga.
The following equations should be used along with 057 = ©BF — ©BF —  since Ry_,

is parallel to the zB7 axis and Ry_» is parallel to the (2B, 28F); BF > 0) half-plane. We

recall that

u; = cos OPF (C1)
and that
cot 9P = 4 (C2)
Vg
with

v; = /1 —u? = sin P, (C3)

(i) General case:
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Vibrational terms:

Grr, = Mi;(sin 67" sin 077 cos(p" — oF7) + cos 077 cos 077

. QBF BF BF _ _BFY\ _ BF . aBF
L GBF(M--Sin cos 07 cos(ip; @7 ) — cos 07" sin 0;
GRiu; = —sinb; ij ‘
R;

sin 077 cos(pF — oPF)
R )
sin(pf" — ") sin 08% sin B
R;sin OPF i
sin 077 (sin " cot 57, + cot 0P sin(pPF — pF))
Ry ’
cos BP7 cos OPF cos(pP" — P) + sin 6P sin 457

R.R;

—M;n—

sin OBF
GRi@]BF — Mij

- BF
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Gupu; = sin OB sin GfF(MZ-»

A S8 0F" cos(pPF — oFF)
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cos 07" cos(pfF — oFF) u cos(pP" — pPr)
—Mjin_1 RRn s + My_1n-1 R%_. ),
] — —
G e — —sin QBF(M..COS 07" sin(pP" — 7") Moy L8 OB sin pPF
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R;Ry_1
Ry sin(go}gp — pBF) M sin pBF
N1 RjRN_l sin QJBF N=2N=1 RN_QRN_l sin 9552
u cot 8P sin(pfF — oPF) — sin P cot O3,
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i R;R;sin 07" sin 0 R, Rn_osin 07" sinfy”,

cos P
R;Ry_osin 6P sin 657,
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Rotational terms:

BF BF \2
r - M 1 Y, 2cot On", M (cot On"5)
2z = Mpy_an-—2 VTR N-2N—1 = B N-IN-1"p3
(Rn_osinfy’,) N-—2ltN—1 N—2 No1
1
Fyy =T = MN—IN—I R2 )
N-1
1 cot HRE,
[y = —My_an1 — s t My N1
RN_QRN_l Sin HN 2 RN—I
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(C5)
Coriolis terms:
sin Q;BF sin @fF
CIERJ' = - jN—l R )
N-1
sin HfF cos QO;BF
Cyr; = Mjn—1 R ;
N-1
. QBF o BF . BF i BF BF
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(ii) Orthogonal coordinates :

In the particular case of orthogonal coordinates, Eqs. (C4, C5, C6) reduce to p; =

d;j = 01if i # j, 1 otherwise)

Vibrational terms:

dij
GR@RJ' = _Z7 GR@’U,J' = 0? GRlcpJBF = 07
5.
Guu, = sin 077 sin 077 cos(pP" — P + —L5(sin 6P7)?,
n T T e e g
G, ,BF = — sin 0PF (cot 08 sin (P — ©PF) — sin P cot 65F,) |
'LSDj ,LLN—IR?V_l ( J ( ] ) N 2)
1
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6ij 1
T 2 BF 2 o 29BF "

Rotational terms:
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1
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Coriolis terms:
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APPENDIX D: KEO FOR HCF3; IN VALENCE COORDINATES

Let us parametrize a penta-atomic system such as fluoroform, CHF3, by four

vectors as shown in Figure 17. The corresponding matrix M reads

RTINS S 1 1
mc my mc mc mc
1 141 1 1
— mc mc mp mc mc
M = :
1 1 1 1 1
mgc mgc mc mpg mgc
N N S N
L mg mg mc mg mp

and if the following volume element is used in normalizing the wave functions

dT/ = dR4 ng dRQ de dU3 dUQ dul dQOQBFd(plBF s

the KEO of Egs. (111,C4) yields

T = TRLRJ +‘/extra+T i P

+ TRZ'UJ‘ + TRiapj + Tuiuj + Tuz Pjo

with

3

. 1 o2 w, 0 1
Trim; + Veotra = = ; 2u; OR? ; mc((‘)RiaR4 + R,-R4)
vivacos (1 — o) + u1U2( 0? N 1 )
mcgc 8R18R2 R1R2
B Z V;U3 COS P; + uiU3( 0? N 1 )
- mc 8R28R3 RZRg ’

=1

and with (we use ¢; instead of pPF and 6; instead of §5% to lighten the notations)
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and
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L Z { 0 ’U'[Ui sin (¢; — ¢i) L sing;  wy(cot 0 sin (¢ — ;) + cot O5 sin ;)
v i ou; " 2meRiR;v; 2mcR; Ravs 2mcR; Ry
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0 u; sin @; u; cot O3 sin p; sin ; sin ¢; cot 03, 0
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We recall that

u; = cos b; (D10)
and that

cotd;, = % (D11)
with
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