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McKay correspondence and the branching law
for finite subgroups of SL3C

Frédéric BUTIN[], Gadi S. PERETS]

Abstract
Given I' a finite subgroup of SL3C, we determine how an arbitrary finite dimensional irreducible representation
of SL3C decomposes under the action of I'. To the subgroup I' we attach a generalized Cartan matrix Cr. Then,
inspired by B. Kostant, we decompose the Coxeter element of the Kac-Moody algebra attached to Cr as a product
of reflections of a special form, thereby suggesting an algebraic form for the McKay correspondence in dimension 3.

1 Introduction

1.1 Framework and results

Let I' be a finite subgroup of SL3C. In this paper, we determine how the finite dimensional irreducible
representations of SL3C decompose under the action of the subgroup I'. These representations are
indexed by N2. For (m, n) € N2 let V(m, n) denote the corresponding simple finite dimensional module.
Let {70,-.., 7} be the set of irreducible characters of I'. We determine the numbers m;(m, n) — the
multiplicity of the character ~; in the representation V(m, n). For that effect we introduce the formal
power series:

Pr(t, u); = Z Zmi(m, n)t"mu".

m=0n=0

We show that m; (¢, u) is a rational function. We determine the rational functions which are obtained in
that way for all the finite subgroups of SL3C.

The proof uses an inversion of the recursion formula for the numbers m;(m, n). The recursion formula is
obtained through the decomposition of the tensor product of V(m, n) with the natural representation of
SL3C. The key observation which leads to this inversion is that a certain pair matrices are simultaneously
diagonalizable. The eigenvalues of the matrices are values from the character table of the group I'. This
leads to the proof that the power series

Pr(t, u); = Z Zmi(m, n)t"mu"

m=0n=0

is rational. The actual calculation of this rational function then reduces to matrix multiplication.

This method applies indeed to the SLoC case. It gives a complete (very short) proof of the results ob-
tained by B. Kostant in [Kos87], [Kos0f], and by Gonzalez-Sprinberg and Verdier in [[GSV83], and leads
to an explicit determination of all the above multiplicities for the finite subgroups of SL,C.

Although the results for SLoC are not new, the explicit relation of the rational functions with the
eigenvalues of the Cartan matrix attached to the finite subgroup of SLoC doesn’t seem to appear in the
literature. In [[Kos8 this is established through the analysis of the orbit structure of the Coxeter element.

The construction of a minimal resolution of singularities of the orbifold C?/T' centralizes a lot of inter-
est. It is related to the geometric McKay correspondence, cf. (for example) [BKRO1], [GSV83. In this

LUniversité de Lyon, Université Lyon 1, CNRS, UMRS5208, Institut Camille Jordan, 43 blvd du 11 novembre 1918,
F-69622 Villeurbanne-Cedex, France, email: butin@math.univ-lyonl.fr

2Université de Lyon, Université Lyon 1, CNRS, UMR5208, Institut Camille Jordan, 43 blvd du 11 novembre 1918,
F-69622 Villeurbanne-Cedex, France, email: gadi@math.univ-lyonl.fr



framework Gonzalez-Spriberg-Verdier [ use the Poincaré series determined above in their explicit
construction of minimal resolution for singularities for V' = C2/T" when T is a finite subgroup of SLC.
Following that approach the results of our calculation could be eventually used to construct explicit syn-
thetic minimal resolution of singularities for orbifolds of the form SLsC/T" where I is a finite subgroup
of SL3C. This might clarify the description of the exceptional fiber of the minimal resolution of SL3;C/T

(see [GNSTA)).

An essential ingredient of the approach of B. Kostant in [[Kos8]] is the decomposition of a Coxeter element
in the Weyl group attached to the Lie algebra corresponding to a subgroup I' of SL2C through the McKay
correspondence as a product of simple reflections belonging to mutually orthogonal sets of roots.
Inspired by this approach, we attach to each finite subgroup I' of SL3C a generalized Cartan matrix
Cr. We then factorize this matrix as a product of elements in the Weyl group of the Kac-Moody Lie
algebra corresponding to Ct. These elements are products of simple reflections corresponding to roots in
mutually orthogonal sets.

1.2 Organization of the paper

In Section 2 we treat the SLoC case. We show that the formal power series of the multiplicities is
a rational function by showing that it is an entry in a vector obtained as product of three matrices,
two of which are scalar matrices the third one being a matrix with rational entries, by a scalar vector.
We calculate the matrices for each finite subgroup of SL3zC. We give then the rational functions obtained.

In Section 3 we apply the above method for the finite subgroups of SL3C. Here we use the notations of
[YY93] in which a classification of the finite subgroups of SL3C is presented.

Here again we prove the rationality of the formal power series of the multiplicities by showing that each
such a series is an entry in the product of three matrices, two of them are scalar matrices and the third
being a matrix with rational entries, with a scalar vector.

For each finite subgroup of SL3C we give the the matrices involved in the product. To each subgroup
I' we attach a generalized Cartan matrix Cr (McKay correspondence in dimension 3) we show its graph
and its decomposition as a product of elements in the Weyl group of the Kac-Moody Lie algebra g(Cr).

Then, for the series A, B, C ([@] notation) we give all the rational functions explicitly, As for the
series D we give the results for some specific examples because the description of the matrices engaged,
in full generality doesn’t have a simply presentable form.

For the exceptional finite subgroups of SL3C the numerators of the rational functions tend to be very
long and we give them explicitly only for the cases where they are reasonably presentable. In all the cases
we give the denominators explicitly. This is done in Section 4.

2 Branching law for the finite subgroups of SL,C

2.1 The formal power series of the multiplicities is a rational function

e Let ' be a finite subgroup of SLoC and {7y, ..., 71} the set of equivalence classes of irreducible finite
dimensional complex representations of I', where 7 is the trivial representation. We denote by x; the
character associated to 7;.

Consider v : I' — SLsC, the natural 2—dimensional representation. Its character is denoted by x. We
have then the decomposition v; ® v = @220 a;jy; for every j € [0, I]. This defines an (I 4+ 1) x (I + 1)
square matrix A := (aij)(i,j)e[[o, 2
e Let h be a Cartan subalgebra of sloC and w; be the corresponding fundamental weight, and V (ncoy)
be the simple slo-module of highest weight nw;. This give rise to an irreducible representation m, :
SL;C — V(nwy).



The restriction of 7, to the subgroup I, is a representation of I', and by complete reducibility, we have a
decomposition 7, |p = 692:0 m;(n)y;, where the m;(n)’s are non negative integers. Let £ := (eq, ..., €])
be the canonical basis of C!*1, and

l

Z mi(n)e; € CH1L

=0

Up

As g is the trivial representation, we have vg = eg. Let us consider the vector (with elements of C[t] as
coefficients)

Pr(t) := i vt™ € (CIED',

and denote by Pr(t); its j—th coordinate in the basis £. The series Pr(t)o is the Poincaré series of the
invariant ring. Note also that Pr(t) can also be seen as a formal power series with coefficients in C'*+1.
We proceed to calculate Pp(t) .

e We get by Clebsch-Gordan formula that : m, ® m = 741 ® Tr—1, S0 we have Av, = vpy1 + Vp—1.
From this we deduce the relation

(1 —tA+t3)Pr(t) = vo.
Let us denote by {Co,..., Ci} the set of conjugacy classes of I', and for any j € [0, I], let g; be an
element of C;. So the character table of I' is the matrix T € M;41C defined by (I1):,; := xi(9g;)-
For all the finite subgroups of SLoC we have that, Tt is invertible, and A := T~ L ATy is diagonal, with
Ajj = x(95)-
Set © := (Ago, - -, Ay). We deduce from the preceding formula that

Tr(1 — tA + )T Pr(t) = vo.
Let us define the rational function
f: C* — C@)

1
d

1—td+t2
Then
Pp(f) = TF A(f) Tl—Tl’UO = (TF A(f) TF) (T;2’U0),

where A(t) € M;11C(¢) is the diagonal matrix with coefficients in C(t), defined by A;;(t) = f(A;j;).
Consequently, the coefficients of the vector Pr(t) are rational fractions in t.
Hence we get:

Proposition 1
For each i € [0, 1], the formal power series Pr(t); is a rational function.

2.2 The results for the finite subgroups of SL,C

e The complete classification up to conjugation of all finite subgroups of SLyC is given in ] It
consists of two infinite series (types A, D) and three exceptional cases (types Eg, E7, Eg).

We set ¢; := e . Foro e Sio, j—1], We then define the matrix Q7 := (52(1)) )
’ (k,0)€[0,5—1]

2.2.1 Type A — Cyclic groups

e Here, we take I' = Z/jZ. The natural representation and the natural character of ' are

v : Z/jZ — SLoC X @ Z/jZ — SLyC
_ ck 0 _ X k
k — ( 6 C;k ko— G+



Let o0 be the permutation
1 TFQO'

The character table is the Vandermonde matrix T = (Ckl)(k De[o. 1"
0 € S, j_1] defined by 0(0) =0 and Vi € [0, j — 1], o(i) = j —i. Then T¢ = j Q, i.e. Tf -
:CJ’?-}-Q“J._k,forke [0, 5 — 1]. Then

1= C””
Ez:: (1—tC")(1—1¢7)

Note that (1 —#7)(1 — t?) is a common denominator of all the terms of the preceding sum.

The eigenvalues of A are the numbers x (k)

Pr(t)i =~ (TrAOTr Q7)o

Ql}—l

2.2.2 Type D — Binary dihedral groups
The binary dihedral group is the subgroup {(a,, b) of SLyC, with

_f Gn O (0 4
(G &) (2 0)

The order of I is 4n. The n + 3 conjugacy classes of I' are

S
Sw

Class id|ab|b|al|an|a
Cardinality || 1 | n |n| 1 | 2

[\
[\
1\333

The character table of I' is

111 1 1 ) ,
I A G -1 1 (-
1 -1 -1 1 1 1 )

S e Gon + Gar) Gt G B G )
200 Gt G Gl + G Gy e
20 0 (-T2 L+ Cz e e (n=)(n=1) 4 (7 (n=Dn-1)

The natural character x of T is given by (x(go0), - - -

@:@ =
= [2’ 0’ 0’

3n —

Pr(t)y = <d1+d2+d3+d4+225k
k=1

8n?
o

Pr(t)l = SZT
n—1
+(=1)" Sz <d1+( 1)™(

+ i(il)l n4;21

<d1+(

[tr(id), tr(a,b), tr(b), tr(a

n—1

, x(g1))

n)s tr(an), tr(
727 CQn + C;nla 42271 + C;n27 CQn + CQn 9.

Set Diag(dl, dg, d3, d4, 51, 62,...

= O, with

D! (dy + ds) + dy +

1"dy — i"ds + d4) + 2 Z Ok
k=1

<d1+l do —i"d3 + (— "d4+22

k=1

n —

8n?

n—1

n—1

<d1 + (=14 (i"dy — i"d3) + (—1)"dy + ni(*
k=1

<d1 + (=1)"(d2 4+ d3) + ds + 2 Z(—

ay);- - tria;™")]

nl
’ 2n +<2( )]

, On—1) := A(t). We deduce the formula for the series Pr(t) that :

Jror

n—1

k=1

(G + ¢, “C)@)

JF Coy lk)5k>



and then Pr(t)s (resp. Pr(t)2) is obtained by replacing in Pr(t)o (resp. Pr(t):) d2 by —ds and ds by
—ds.
Finally, for ¢ € [1, n — 1], we have

3n—1
Pr(t)iys = 8T(2d1+2 d4+2z +C2
nt—1 1 ik —ik
D" g | 2+ 2(- d4+2z (Com + Can )0
n—1
yn—1 kz
+l;(—1) o <2d1+2 )idy +Z L GO (L + G ))

2.3 Exceptional cases
2.3.1 Type Es — Binary tetrahedral group
The binary tetrahedral group is the subgroup {(a?, b, ¢) of SLoC, with

_( G 0 (0 _ 1 (& &
(5 )0 (20 - 5(§ )

The order of I is 24. The 7 conjugacy classes of I' are

Class idla*=—id|blc| 2| —c| =
Cardinality || 1 1 6144 4 4

The character table Tt of I' and the matrix A are

11 1 1 1 1 1 0001000
11 1 45 3 5 4 00 00 100
11 1 32 5 5% 000 O0O0T1O0

rT=|2 -2 0 1 -1 -1 1 |,A=[1 00 000 1|,
2 -2 0 4 -5 —-j j° 01 00 0 01
2 -2 0 42 -5 =42 00 1 0 0 0 1
3 3 -1 0 0 0 0 0001 1 10

and the eigenvalues are © = (2, —2, 0, 1, —1, —1, 1).

The series Pr(t); = 22Wi are given by Dr(t) = (1 — t°)(1 — t8), and

Dr(t)

Nr(t)g = t2+1, Nr(t)s = 2 +t7 +15+ 13,
Nr(t); = 8+t4 Nr(t)s = 2 +17 +1° + 13,
Nr(t), = 8+t4 Nr(t)e = 10+ 4206 +¢* +¢2
Nr(t)s = 447 +5+¢,

2.3.2 Type E; — Binary octahedral group

The binary octahedral group is the subgroup (a, b, ¢) of SLoC, with a, b, ¢ defined as in the preceding
section. The order of I' is 48. The 8 conjugacy classes of I' are

Class idla*=—id|ab|b |2 |c|ald®
Cardinality || 1 1 126 | 8 | 8|6]| 6




The character table Tt of I' and the matrix A are

11 1 1 1 1 1 1 00010000
1 1 -1 1 1 1 -1 -1 00001000
2 2 0 2 -1 -1 0 0 00 0O0O0O0O0 1
TF_27200711\/57\/§ A_10000100
2 =2 0 0 -1 1 —v2 v2 |~ |o1000010]
33 -1 -1 0 0 1 1 000100 01
33 1 -1 0 0 -1 -1 000010 0 1
4 =4 0 0 1 -1 0 0 001 00110
and the eigenvalues are © = (2, —2, 0, 0, —1, 1, V2, —V2).
The series Pr(t); = % are given by Dr(t) = (1 —t8)(1 — t!2?), and
Nr(t)y = t¥4+1, Nr(t)s = 8341 447 4+ 45,
Nr(t)y = 2415, Nr(t)s = 10412 4410 148 4 46 142
Nr(t)y = tM+8904+8 444 | Np(t)e = M4+ t12 4410 448 446 4 ¢4,
Nr(t)s = T+t +47+t, | Np(t)y = P2+ 41 4269 47 445 + 43,

2.3.3 Type Eg — Binary icosahedral group
The binary icosahedral group is the subgroup (a, b, ¢) of SLyC, with

_ [ ¢ 0> _<0 1) 1 <<5+c51 1 >
a: ( 0 -2 , b 1 0 )¢ C§+C§2 1 7§57<5_1 .

The order of I' is 120. The 9 conjugacy classes of I' are

Class id | V> =—id | a | a®|a®|a* | abc| (abc)® | b
Cardinality || 1 1 12 112 | 12|12 | 20 20 30

The character table Tt of I' and the matrix A are
1 1 1 1 1 1 1 1 1

0 01 0 00 0 0O
2 2 56 A LA LB o1 0 000001000
2 -2 5 s 15 s 100100000
3 3 1+2\/5 172\/5 1—2\/3 1+2\/5 0 0 -1 0 01 00 0 1 0O
Tr := - - A= 1
T 3 3 12\/5 1+2\/5 1+2\/5 12\/5 0 0 -1 , 0 00 0 0 0 0 O s
4 4 -1 —1 -1 -1 1 1 0 010000001
4 -4 1 -1 1 -1 -1 1 0 000100010
5 5 0 0 0 0 -1 -1 1 000000 1 01
6 —6 —1 1 -1 1 0 0 0 coo0oo01 1010
and the eigenvalues are © = (2, -2, 1+2\/5, 7“2”/5, 1’2‘/3, 715‘/5, 1, —1, O).
. Nr(t); .
The series Pr(t); = DFF((?) are given by Dr(t) = (1 —t'?)(1 — ¢?°), and
NF(t)O — 2«/.30_*_17 NF(t)4 — ﬁ24+ﬁ20+t16+t14+t10+t6,
NF(t)l — t23+t17+t13+t7, NF(t)E) — t24+t22+t18+t16+t14+t12+t8+t6,
NF(t)Q — t29+t19+t11+t, NF(t)G — t27+t21+T19+t17+t13+t11+t9+t3,
NF(t)B — t28+t20+t18+t12+t10+t27



t26+t22+t20+t18+t16+t14+t12+t10+t8+t4,
NF(t)8 — t25+t23+t21 +t19+t17+2t15+t13+t11 +t9+t7+t5

—
—~
~+
~—
3

3 Branching law for the finite subgroups of SL;C

e Let I' be a finite subgroup of SL3C and {~o,..., 71} the set of equivalence classes of irreducible finite
dimensional complex representations of I', where g is the trivial representation. The character associated
to v; is denoted by ;.

Consider v : I' — SL3C the natural 3—dimensional representation, and «* its contragredient representa-
tion. The character of v is denoted by x. By complete reducibility we get the decompositions

l l
viclo 1], vey=Eay and v @9 =@Pal v

i=0 i=0
This defines two square matrices A1) := (az(-jl-)) and A := (az(-?)) of M;+1N.
(i,5)€lo,1]? (i,5)€lo,1]?

e Let h be a Cartan subalgebra of slgC and let w;, wy be the corresponding fundamental weights, and
V(mwy + nws) the simple sl3C module of highest weight mw; +nws with (m, n) € N2, Then we get an
irreducible representation 7, ,, : SL3C — GL(V (mwi + nws)). The restriction of 7, ,, to the subgroup
I is a representation of I', and by complete reducibility, we get the decomposition

l

Tm,n |F - @ mi(ma n)’%a

i=0
where the m;(m,n)’s are non negative integers. Let £ := (eo, ..., ;) be the canonical basis of C'*!, and

l

Umyn o= Zmi(m,n)ei e CH,
i=0

As 7o is the trivial representation, we have vy o = eg. Let us consider the vector (with elements of C[[¢, u]
as coefficients)

o0 o0
Pr(t, u) := Z vaﬂntmu” € (C[t, u]])l+1,
m=0n=0
and denote by Pr(t, u); its j—th coordinate in the basis £. Note that Pr(¢, u) can also be seen as a
formal power series with coefficients in C'*!. The aim of this article is to compute Pp(t, u).

3.1 The formal power series of the multiplicies is a rational function

Here we establish some properties of the series Pr(¢, u), in order to give an explicit formula for it. The
first proposition follows from the uniqueness of the decomposition of a representation as sum of irreducible
representations.

Proposition 2
o AR = tA(),

e AW and A® commute, i.e. AY) is a normal matriz.

Since A is normal, we know that it is diagonalizable with eigenvectors forming an orthogonal basis.
Now we will diagonalize the matrix A(Y) by using the character table of the group I'. Let us denote by
{Cy, ..., Ci} the set of conjugacy classes of I', and for any j € [0, [], let g; be an element of C;. So the
character table of I' is the matrix Tt € M;4+1C defined by (17); ; := xi(g;)-



Proposition 3
For k € [0,1], set wy := (xo(gr);---, xi(g9x)) € C*L. Then wy, is an eigenvector of A?) associated to
the eigenvalue x(gy). Similarly, wy, is an eigenvector of AN associated to the eigenvalue x(gp).

We will see in the sequel that W := (wo, ..., w;) is always a basis of eigenvectors of A®M and A®) | so
that 75 ' AMTr and T AT are diagonal matrices.
Now, we make use of the Clebsch-Gordan formula

71,0 & Tm,n = Tm+1,n S Tm,n—1 b Tm—1,n+1, 70,1 & Tm,n = Tm,n+1 S Tm—1,n @ Tm+1n—1- (1)

Proposition 4
The vectors vy, n satisfy the following recurrence relations

A(l)vm,n = Um+1,n + Um,n—1 + Um—1,n+1,

A(2)Um,n = Um,n+1 + Um—1,n + Um+1,n—1-

Proof:
.. ! 1 1
The definition of vy, ,, reads vy, = >, mi(m,n)e;, thus A(l)vmﬁn =i (Z] 0 mj (m,n)a; ( ))
l 1 l
Now (Tm,n @ T1,0)|[r = Tmnlr ® v = ijo m;(m,n)y; @y =73, (Z] —omj(m,n) Vis
l

and T4 1n|0 + Tmn—1|0 + Tm—1n+1l0 = 2o (Mi(m + 1,n) + mi(m,n — 1) + mz(m —1,n+1)).

By uniqueness, Zé‘:o m;(m, n)a%) =m;m+1,n)+mi(mn—1)+m;(m—-1,n+1). R

Proposition 5
The series Pr(t, u) satisfies the following relation

(1 —tAW 4424 _ t3) (1 —uA® 4240 — u?’) Pr(t, u) = (1 — tu)vg,o.
Proof:

e Set x := Pr(t, u). Set also vy, —1 := 0 and v_;, := 0 for (m, n) € N, such that, according to the
Clebsch-Gordan formula, the formulae of the preceding corollary are still true for (m, n) € N. We have

o0 oo o0 o0
tuAVz = tu Z Z AWy, " = Z Z(Umﬂ,n + U1 + Vm—1,nq1)t"

m=0n=0 m=0n=0
oo oo
Now Z z:vaant””‘“u”Jr1 U Z va atMut = ux—quo au”
m=0n=0 m=1n=0
oo oo oo oo
Z z:1),,17"_119"“1/1'|r1 = tu? Z vam_ltmu”_l = tu’x,
m=0n=0 m=0n=1
o0 o0 oo oo oo o0
and Z va,17n+1tm+1un+1 = ¢ Z va,17n+1tm_1u"+1 = ¢? Z va7n+1tmu"+1
m=0n=0 m 1n 0 m=0n=0
oo
= tQZvant u” ftQvaot x—tQvayotm
m=0n=0 m=0
o oo
Therefore twAV g = (u+ tu? + )z —u Z Vo pu" — Z U, 0t™. (2)

n=0 m=0

We proceed likewise to obtain  tuAd®z = (t +tu® +u)x —t Z V0t — u? Z vo,nu™. (3)

m=0 n=0



e By using Equations (f]) and (ff), we have tuAPz — tu?AYz = t(1 — )z + (Pu —t) Z U, 0t™,
m=0

ie. (1 —uA® 4 42AM — ug) x=(1—tu) Z Um,0t™. (4)

m=0
Besides AN vy, 0 = Um41,0 + Um—1,1, and AP v, 10 =v_11 + Vp_2,0, hence

1 2
Al )Um,o = Um+1,0 + Al )’Umfl,O — Um—2,0-

o0
Set y := Z Um,ot"". Then
m=0
o0 o] o]
tADy = > v ot™T H AP v g ot =Y v g ot

m=0 m=1 m=2

o0 o0 o0
- Z Vm,ot™ + 12 A Z vm ot — 1 Z Umot™ = y —vo + 12ADy — 3y
m=1 m=0 m=0
So (1 —tAW 424 _ t3) Y =00 (5)

Combining Eq. [] and f, we have (1 —tAM + 242 —3) (1 — uA® 4+ w2 AN — ) 2 = (1 — tu)vgo. B

We may inverse the relation obtained in Propositionﬁ and obtain an explicit expressionﬁ for Pr(t, u) as
well as an explicit formula for the vector vy, . But, for the explicit calculations of Pr(¢, u), we will use
an other fundamental formula (we inverse complex numbers instead of matrices). We need the rational
function f defined by

f: C? —  C(t, u)

1—tu
(dla d2)

(1 — tdl + t2d2 — tg)(l — udg + ’U,le — u3) '

The complete classification up to conjugation of all finite subgroups of SL3C is given in [] It consists
in four infinite series (types A, B, C, D) and eight exceptional cases (types E, F, G, H, I, J, K, L).
In all the cases, the character table Tp is invertible, and AV := T;l AD T and A®) .= T;l A T are

diagonal matrices, with AS-) = x(g;) and Agi) = x(g;j). According to Proposition E, we may write

Tr (1 —tAD 420 — t3) (1 —uA@ 42D — ug) T ' Pr(t, u) = (1 — tu)vo.o.

We deduce that
Pr(t, u) = Tr A(t, u) Tr tvo 0 = (Tr A(t, w) Tr) (T *vo,0), (6)

where A(t, u) € M;+1C(¢, u) is the diagonal matrix defined by A(t, u);; = f(Aj;, Ajj) = f(x(97), x(g7))-
Let © := (Aélo), ceey Al(ll)) be the list of eigenvalues of A™).

As a corollary of the preceding formula we get:

3Pp(t, u) = (1 — tu) ( o0 (U3 +uA® — u2A(1))p) (2310 (3 +tAM — tQA(Q))q) 00,0-
For z € R, let [z] be the smallest integer that is greater or equal to z, and set {r, s} := {1, 2}. For m € N, set

m min(3g—m,
(r) ._ e j (3a—m—j 3qg—m 4(r)34==T 4(s)20—3a+m
o)=Y > cic (-1) A A

=I51\ j=r3™

Then vm,n = vo,0 if m =n = 0; aﬁf)m,o if m=0, n#0; aﬁ})vo,o ifn=0, m#0; («

ONORINORNG)

10, 1)v0,0 otherwise.



Proposition 6
The coefficients of the vector Pr(t, u) are rational fractions in t and u, hence the formal power series of
the multiplicities is a rational function.

We will denote them by
_ Nr(t, u);

PF(t, U)l = m,

i€ 0,1]
where Nr(t, u); and Dr(t, u); are elements of C[¢t, u] that will be explicitly computed in the sequel.
Finally, we introduce a generalized Cartan matrix that we will study for every finite subgroup of SL3C.

Definition 7
For every finite subgroup of SL3C, we define a generalized Cartan matrixz by the following formula:

Cr:=21—AM —*AM 1 2 Diag(AW).

For k € [0, 1], the matriz of the reflection sy associated to the k—th root of g(Cr) the Kac Moody algebra
attached to Cr is defined by ‘
(s6)ij = 8] — (Cr)k307-

For each finite subgroup, we will give a decomposition of the set of simple reflections S = {so,..., s;} in
p sets (with p minimal), i.e.
S=5U---USp_1,

such that roots corresponding to reflections in those sets form a partition of the set of simple roots to
mutually orthogonal sets. We denote by 7; the (commutative) product of the elements of S;. Then we
deduce the following decomposition of Cr:

p—1
CF :pI—ZTk.
k=0

Remark 8

Along this section we will present matrices that have only —2, —1, 0, 1, 2 as entries. For a clearer ez-
position, we represent the non-zero entries by colored points. The correspondence is the following: dark
grey = —2, light grey = —1, white = 1, black = 2, empty = 0.

3.2 Explicit results for the infinite series — Types A, B, C, D
3.2.1 The A Series

In this section, we consider I' a finite diagonal abelian subgroup of SL3C. Then T is isomorphic to a
product of cyclic groups:
D ~Z/}Z X - X Z]jiZ.

If T is a finite subgroup of SL,C, then I' is a small subgroup of GL,C, i.e. no element of I' has an
eigenvalue 1 of multiplicity » — 1. In fact, if g € I" has an eigenvalue 1 of multiplicity » — 1, then the last
eigenvalue of ¢ is different from 1 and the determinant of g is also different from 1, which is impossible.
Then, according to a lemma of [DHZO0T| (p.13), I’ has at most r — 1 generators. So, for a subgroup I' of
type A, we may assume that k < 2, i.e. we have two cases:

(A1) T = Z/4Z,

(AQ) '~ Z/]lZ X Z/]QZ, with jl > j2 > 2.

10



3.2.2 Type A3

e Here, we take I' = Z/jZ. The natural representation and the natural character of ' are

v : Z/jZ — SL3C X : Z/jZ — SL3C
¢t o 0
- 0 1 0 E o= 14+ R
0 0 ¢* !

<

The character table of ' is T = (g’?l)(k Defo,i—1]° Let 0 € &g, ;1) be the permutation defined by
oc(0)=0andVie€[0,j—1], o(i) =j—i. Then Tp' =1 7 TrQ?. The eigenvalues of AM are the numbers

x(k) =1+ Cj’-“ + Cj_k, for k € [0, 7 — 1]. According to Formula B,

- (;p(lftu)
z:: (1= )1 = t¢)) (1 =171~ w)(1 = u) (1 — ug; ")’

Pr(t, u); =

m|>—l

- (TP A(t, w)TrQ7), —%

Note that (1 —#7)(1 —?)(1 —u?)(1 —u?) is a common denominator of all the terms of the preceding sum,
which is independent of 4.

e The matrix A € M,C is

1 1 1

A(l):(é ?) ifj=2 a0 =| 1 " if j > 3.
.
1 1 1

Then the set of reflections S may be decomposed in two (resp. three) sets if j is even (resp. odd).

> If j is even, we have 79 = s¢s4...8j-2, 71 = 8183...5;—1, and Ca, (j) =2L;_1 — (10 + T1)-

> If j is odd, we have 79 = s284...5;_1, T1 = S183...S8j_2, T2 = So, and Ca, (j) = 3L; — (10 + 71 + T2).
The graph associated to Cy, (j) is a cyclic graph with j vertices and j edges.

3.2.3 Type A,

e We now consider the case I' = Z/j1Z x Z/j2Z, with j; > jo > 2. The natural representation and the
natural character of I' are

v i ZJpZ x L)jsZ — SLsC X : Z/j1Z X Z]jsZ — SL3C
g0 0
(b B) = | 0 Gz 0 (i, k2) = GG GG

0 0 glklgj;kz

The irreducible characters of I' are the elements of the form x; ® x2, where x; and o are irreducible
characters of Z/j17Z and Z/ j27Z, i.e. the irreducible characters of T are, for (11, l2) € [0, j1 —1] x [0, j2—1],

Xiids : Z/J1WZ x Z]j2Z — SL3C
(i, ko) > Clalighats -

For k € {1, 2}, let us denote by T} the character table of the group Z/j;Z. Then the character table
of I' = Z/j1Z x 7/ j2Z is the Kronecker productﬂ Tr =T ® Ty. Let o € &g, j, 1) be the permutation

4Recall that the Kronecker product of two matrices A € M;,C and B € M,,C is the block-matrix A ® B € MynC
defined by the formula:
v (iy .]) € [17 m]]7 (A® B)’LJ = GZ]B
An important property of the Kronecker product is the relation
tr(A ® B) = tr(A)tr(B).
The equality Tt = T1 ® T is implied by this relation

11



defined by 0(0) =0 and Vi € [0, jx — 1], ox(i) = jr — i. We have
1

T = (T T ' =
r ( ! 2) J1J2

1
(71 @ T5)(Q7 ® Q72) = E(TlQ‘”) ® (T2Q7).
The eigenvalues of A are the numbers x(k1, ko) = j;kl + Cj;kZ + Cfllg“fj, for (ki1, ko) € [0, j1 — 1] x
[[Oa j2 - 1]]
Let us denote by A(Y) := Diag (Agl), cee A(l)) the diagonal block-matrix defined by

Ji

(A oy = Xk, k) = G+ ¢+ (gl

1

According to Formula [, for (m, n) € [0, j1 — 1] x [0, j2 — 1], we have

PF(tv u>mj2+n
1 Ji—1lj2—1

E oD GG ) (1= UG+ G+ ) G+ G+ GG — )T

2 150 1o

1
-1

(1=l + ¢, + GG + (¢ + G+ ¢ ) — )

e The matrix A is a block-matrix with j? blocs of size ja, and we have

sz tQP2 [jz 0 1
AW = 1,414, if ji = jo =2, and AV = T it >2, Q%= | 1
. .otQre S
Q> L, Q" 1o

So, we may write AV = I;, ® Q”* + Q" @ I, + Q" ® tQr=.
Note that Diag(A™M) = 0. Then Ca,(j1, j2) = I;, W + Q™ @ S + Q™ @ *S.

e Now, let us decompose the matrix AM):

If j1 = jo = 2, then the decomposition of Cy, (2, 2) is C4,(2, 2) =414 — (so + s1 + S2 + 83).

Now, we assume that j; > 3. For (i1, i2) € [0, j1 — 1] x [0, j2 — 1], let s;, 4, be the reflection associated
to the (i1j2 + i2)—th root. Then the set S may be decomposed into p sets where p € {4, 6, 9}.

For il S [[0, jl — 1]], define Sil = {Sil,Ov ey Si17j2,1} .

> If j; is odd, we set

Io=10,2,....0-3}, [ ={1,3,..., 51 — 2}, Io = {j1 — 1}.
> If 77 is even, we set R ~
Io:={0,2,...., 51 =2}, [ :=={1,3,..., 1 — 1}.

Then, the roots associated to the reflections of distinct §; ’s for i1 belonging to a same IAk are orthogonal.
Now, we decompose each S;, , i.e. S;; = i, ol - LS}, 4—1, such that ¢ € {2, 3} and for every k € [0, ¢—1],
the roots associated to the reflections belonging to S;, i are orthogonal:
> If jo is odd, then Si1 = 55,004 Sil,l L Si1,2a with

Si1,0 = {8i1,0, 8i1,2, -+ +» Siy jo—3}, Si,1 = {Sis,1, S35+ 5 Sivn—2}, Sir2 = {Siy jo—1}
> If jo is even, then 371 = /il\,o U Sfil\,l, with

— —

Siv,0 = {8i1,0, Sir,25 -+ St go—2)s Siz,1 = {Six 15 Siy, 355 Siy jo—1}-

Finally, for (k, [) € {0, 1, 2}2, we set
Sk,1 = H Siy i

i1 GIAk

12



and we denote by p € {4, 6, 9} the number of non-empty sets S, and by 75 ; the commutative product
of the reflections of Sy ;. Then, we have

Ca, (i1, J2) = 21,5, — AV = "AD 4 2 Diag(AY) =p L5, - Y 7
(k,1)e{0,1,2}2

e If j; > 3, the graph associated to I is a j;—gone, such that every vertex of this j; —gone is a js—gone,
and every vertex of each jo—gone is connected with exactly 2 vertices of both adjacent jo—gones (for
j1 = j2 = 2, see Remark E)

Remark 9

In the cases j1 = 2, jo = 2 and j1 = 3, jo = 2, we obtain full matrices and complete graphs. Moreover
the complete graphs with 4 and 6 vertices are the unique complete graphs that we can obtain for the type
As (the complete graphs with 2 and 3 vertices are the unique complete graphs that we can obtain for the

type A1).

Example 10

We consider the case where j1 = 6 and jo = 5. Then the decomposition of the Cartan matriz is
Ca,(6,5) =61I30 — (10,0 + 701 + To,2 + Ti,0+ 7,1+ T1,2),

where the matriz Ca, (6, 5), the 7, ;’s and the graph associated to Ca, (6, 5) are given by Figure I]

70,0 *= (50,050 2)(52,052,2)(84,054,2)
70,1 ‘= \S0,150 3)(82,152,3)(84,154,3)

= (
(
70,2 ‘= (80 4 (82 4)(84,4)
(
(
(

71,0 := (81,081 2)(83,053,2)(35,05512)’
T1,1 = (51,181 3)(83,18373)(85118513)’
71,2 = (81 4)(5374)(55»4)'

Figure 1: Matrix C4,(6, 5) and corresponding graph.

3.3 The B series

In this section, we study the binary groups of SL3C.

We give a general formula for the types BDa, BT a, BO and BI. In all these cases, the group I' contains
two normal subgroups I'y and T’y such that T'y N Ty = {id}, and |T'y| - [T'2| = |T|, so that T' = T'sT"; and
I' ~ Ty x I';. The group T'; is isomorphic to a binary group of SLoC and T's is isomorphic to Z/mZ. So,
we can deduce the results for I' of the results obtained for the group I';.

If we denote by Ty, the character table of the group I'y, the character table of the direct product I' = 'y xT'y
is the Kronecker product Tr = To®T4. The matrix T is given in Section 2.2.1 (Type A — Cyclic groups),
and the matrix 7T} is given in the section dealing with the corresponding binary group of SLoC. We also
have TF_1 T_1 QT ! = ( 2Q%2) @ Ty *, where o2 is the permutation matrix defined by 02(0) = 0,
and Vi € [0, m — 1], 02(i) = m —i.

Let us denote by h the number of conjugacy classes of I'y. The columns of Tt give a basis of eigenvectors
and the eigenvalues of A are the numbers X7, (4, j) € [0, m — 1] x [0, h — 1] where x;; is the value
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of the natural character of T" on the (¢, j)—th conjugacy class.
Let us also denote by A() the diagonal block-matrix with m x m blocks of size h x h defined by

AW .= Diag (Ag”, o AE}}_I) L (AMy,; =
According to Formula ﬁ,
Pr(t, ) = TrA(t 0)T5 00 = - (T © T)A(, 0)(T:Q7) @ (T )uo,
where A(t, u) is the diagonal block-matrix defined by
A(t, u) = Diag (A(t, u)(o), ooy A(t u)(m_l)) ,

; 1—tu
ith A®w)' = f(Gg xij) = =: fij-
with A w); f 63 x4) (1 —txi; + xi5 — 12)(1 — uxij + u’Xij — u?) T

The decomposition of the matrix A and the description of the associated graph are made in the same
way for the binary tetrahedral, octahedral and icosahedral groups: the results are collected in .

3.3.1 The BDa subseries — Binary dihedral groups

e For (¢, m) € N2, let tpoq, T and ¢, be the following elements of SL3C:
1 0 0 100 G2 00
thog=1 0 (¢ O , 7= 0 0 i |, ¢omp = 0 Cm O
00 ¢ 0 i 0 0 0 Gom

In this sectionﬂ, we assume that 1 < g <n,nAqg=1,and m :=n—q¢ =1 mod 2, and we consider
_m=1

the subgroup I' := (24, T, ¢2m) of SL3C. Note that ¢, = ¢gq¢m >, so that T' = (2q, T, &m).

Set I'1 := (o4, 7) and I'y := (@) ~ Z/mZ. Then I' ~ 'y x I'y. With the notations used for SLoC, 12,

(resp. T) represents aq (resp. b), where (a4, b) is the binary dihedral subgroup of SLyC.

The natural character of T' is given by x = (Xi)i=0...m—1, with

Xi = [Xi,O, X’i,lv Xi,2; X’i,37 Xi,4; X’i,57 Xi,Ga"'? Xi,q+2]
= [r(6h), @), (), (Ght,), (), (U, (), (i)

= [C,;”H@‘im o G G = 200 G G (g + Gag )y G GGy G
Gt + Gy + G G+ Gl + G,

We deduce the following formula for the series Pr(¢, u):

< (T)+d(r) d(r)+dr)+225(r>

k=1

1

Pr(t, w)i(qg4+3) = — Z C“Tl

m
q—1

8q

(1)1~ <d<” (-1)9(dy” +dS7) +df + 23 (—1)ks

qg—1
+
l:l

k_l

.Q

( (T) + (- ) (d(T) + d(T) )+ d(T) Z + C2 (T)> ‘| 7

k=1

5The other case — the type BDb —is 1 < g<n,nAq=1,and m :=n—¢=0 mod 2. This group is not a direct
product, the general expression for groupes in this subseries is unclear.
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1 3 r T T 77/ T - .
Po(t, Wi qusy1 = _Zgnrlq <d()+z"d() i"d + (~1)md) + 23 (~1)ks )

m
k=1

8¢?

q—1

q— r .n 4(r .n 4(r r r

AN — <d() (—n)@rdy” —ird” +dY) +2Z§,§>
k=1

q—

q—1 1
+ (d(T) (—1 )l(i"dgr) . indgr)) (T) + Jr oy lk)é‘(ﬂ) ]

l:l k=1

and Pr(t);, (g4+3)+3 (resp. Pf‘(t)il(q+3)+2) is obtained by replacing in Pr(t);, (q+3) (resp. Pr(t)s, (g+3)+1)
dy by —ds and d3 by —ds. Finally, for is € [1, ¢ — 1], we have

m—1
1 ; 3g—1 r i T 12 12 T
Pr(t, w)i,(q+3)+is+3 = oo Z G’ [(]87 <2d§ ) 4 2(-1 Zd( st 22 Ck + Coq M )5( )>
q— r 12 T 12 iz T
+(71)q 8q <2d( )+ 2 d( )+2Z k +<2 k)(g( )
q—1 q
+ <2d(7“) + 2 zgd(T Z kio + C2qk7/2 ’l“) (Cégé + Cqul)) ‘| )
l:l

e We now make the matrix A" explicit: A is a block-matrix with m x m blocks of size (¢+3) x (¢ +3).
> If m > 5, then the matrices A1) and Cp := 2T — A — tAM) are defined by

2 —-B -1 -1 -B
0 I B -B 2 -B -I -1
-1 -B 2I -B -1
B . .
A(l): I ) CF: _I _B )
-1 . . —-B I
1
I B 0 -1 . —-B 2I -B
-B I -1 —-B 2I
with
0 00j0O1 0 0 O
0 0 0|0 O 0O 0 1
00 0 0 1 0 0 0j0O O 0O 0 1
00 0 0 1 0 0 0jO1 0O 0 O
B=]0 00 0 1 |,ifg=2, and B= 1 0 01 0 1 0 O ifg>3
00 0 0 1
1111 0 0 0 0|0 1 O 0
00 0[O0 O " 1
01 1j]0 0 0 1 0O

> If m = 3, then the matrices A and Cr := 2T — A — tAM are defined by

0 0 B
A= B 0 0 |, Cr=
0 B 0

3o
oW
o
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with

1 00/01 0 0 0
010/00 0 0 1
10001 00 1/00 0 0 1
01001 0 00[1 1 0 0 0
B=|o0o0101],if¢g=2andB=]1 0 01 1 1 0 0 |ifg>3.
00011
L1111 00001 1 0
00000 " 1
01 1/00 0 1 1

> If m = 1, then the matrices A and Cr are AM) = B and Cp := 2T — A — AN 1 2 Diag(AM),
with B defined as in the case m = 3.

e For i; € [0, m — 1] and iz € [0, g + 2], let s;, 4, be the reflection associated to the (i1(q + 3) + i2)—th
root. Then the set S may be decomposed in p sets where p € {2, 3, 4, 5}:

— If m > 3, then:

>Ifm =0 mod 3, set S; 1= {S3k+lyi2 / (k, i2) S [[0, %71]]X[[0, q+2]]} forl e [[0, 2]] Then § = S0|_|Sl|_|S2,
p=3,and Cr =3 — 19 — 71 — To.

> If m = 1 mod 3, set S; = {sspqri, / (k,i2) € [0, 251 — 1] x [0, ¢ + 2]} for I € [0, 2], and
S3 1= {Sm,11i2 /7:2 S [[0, q+2]]} Then S = SoUSUS,USs, p=4,and Cr =41 — 19 — 71 — 0 — T3.
> If m = 2 mod 3, set S; = {sspyri, / (k,i2) € [0, 252 — 1] x [0, ¢ + 2]} for I € [0, 2], and
Sg = {5m72,i2 / i2 € [[0, q + 2]]}, S4 = {Sm,11i2 / i2 € [[0, q+ 2]]} Then § = SO (] Sl (] SQ (] Sg (] S4,
p=>5,and Cr =5 — 19— T4 — To — T3 — T34.

— If m =1, then:

> Ifq = 2, set SO = {8070, 50,1, S0,2 8013} and Sl = {8014}. Then § = S()|_|S1, p= 2, and CF = 2]77’077’1.
> If q > 3 and q is even, set SO = {8070, 50,1, 8012} and Sl = {8013, ey SO,qul}a SQ = {8014, ey 507q+2}.
Then S = SoUS1USy, p=3,and Cr =21 — 19— 11 — 71.

> If ¢ > 3 and ¢ is odd, set So := {s0,0, S0,1, So,2} and S1 := {s0.3,..., S0,q+2}, S2 := {S0,4,- -, S0,q+1}-

ThenS:SOI_IleISQ,p:Z’),andCF:21—7'0—7‘1—7'1.

o If m =1, the graph associated to I' is the following:

o ©

yd
@/ ®\@

If m > 2, the graph associated to I' consists in ¢ + 3 m—gones that are linked together.

3.3.2 The BTa subseries — Binary tetrahedral groups
Let ¢4, 7, n, ¢2m be the elements

1 0 0 1 00 L (V2 0 0 G 00
a0 G 0= 000 =0 PG | bem= 0 Gm O
00 ¢! 0 i 0 2V o0 @ G 0 0 Com

In this sectionﬂ, we assume that m = lor5 mod 6, and we consider the subgroup I := (¥4, 7, 7, P2m)
_m=—1
of SL3C. Note that ¢o;, = 3¢ 2 , so that T := (¢y, 7, 1, ¢m). Set I'y := (4, 7, n) and I'y :=

6The other case — the type BTb — is m = 3 mod 6. This group is not a direct product.
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(pm) = Z/mZ. Then we have I' ~ Ty x I'y.

With the notations of the binary tetrahedral subgroup of SLoC, v4 (resp. 7, n) represents a? (resp. b,
c). T'1 =~ (a?, b, ¢) is the binary tetrahedral subgroup of SLyC. Representatives to its 7 conjugacy classes
are

{id, a* = —id, b, ¢, ¢*, —c, —c*},

and its character table is the matrix given in Section 2.3.1 (Type Eg — Binary tetrahedral group).
The natural character of I is given by

Xio = X)) = G2, | xia = X(@nm?) = (=
Xit = X(¢n f; = 20, | xis = x(onvin) = GG,
)

Xiz = xX(@L7) = P | Xie X(@Lvin®) = GG
Xiz = x(@Ln) = P+,

Finally, we obtain the series Pr(t, u): for p € [0, m — 1], we get

m—1

1
Pr(t, wrp = 50— > ChE(fo + fea + 6 frz+4 foa+ 4 fua+4 fis+4 fro).
k=0
m—1

1 . )
Pr(t, w)rppr = am Z CEF(fr0 + fr +6 oo+ (4 foz +4 frs) i+ (4 fra+4 fre) 5°),

m—

ZCPk 2fko—2fk1+4fes—4fea—4frs+4fre)

1

Pr(t
F( ; U)7P+3 2 m

m—1
1 ) .
Pr(t, wrpra = 50— D2 fr0 =2 e+ (4 s — 4 frs) i+ (=4 fra+4 fre) 5°),
k=0

m
1 m—1
Pr(t, wrp+o = 5~ > CPEB fro+ 3 fra — 6 fr2),
k=0

and Pr(t, u)7p+2 (resp. Pr(t, u)7pys) is obtained by exchanging j and j2 in Pr(¢, u)7p+1 (vesp. Pr(t, u)7pta).

3.3.3 The BO subseries — Binary octahedral groups
For m € N such that m A6 =1, let ¥g, 7, 1, a2, be the elements

1 0 0 10 0 V2 0 0 G 00
1/}8 = 0 Cg 0 , T = 0 0 ¢ y = —= 0 g g ) ¢2m = 0 C?m 0 ’
0 0 ¢ 0 i 0 V2 @ s 0 0 Gm

m—1

and consider the subgroup I' = (s, 7, 7, ¢am) of SL3C. Note that ¢om, = ¥id, > , so that I' :=
(g, T, M, dm). Set I'1 := (g, 7, 1) and 'y := () ~ Z/mZ.

Then I' ~ FQ X Fl.

With the notations of the binary octahedral subgroup of SLyC, g (resp. 7, n) represents a (resp. b, ¢).
I'y ~ (a, b, ¢) is the binary octahedral subgroup of SL2C. Reperesentatives of its 8 conjugacy classes are

{id, a* = —id, ab, b, 2, ¢, a, a®},

and its character table is the matrix given in Section 2.3.2 (Type E7 — Binary octahedral group).
The natural character of I is given by

Xio = X)) = G20, | xia = x(@n?) = G -G
Xia = xX(@nv5) = P20 | xis = x(¢nn) = GF G,
Xiz = X(@hust) = (. s = x(@ts) = G+
Xiz = x(@n1) = 7 Xim = X(@vd) = P -GV2
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Finally, we obtain the series Pr(t, u): for p € [0, m — 1], we have

m—1

1
D CE(fro+ fra +12 fra+6 fra+8 fra+8 frs + 6 fr + 6 frr),
0

Pp(t, U)gp = M
k=

m—1

Z CP¥(2 fro+2 frn +12 frs — 8 fra — 8 frs),

k=0

1

Pr(t, u)spyo = Bm

-1

3

1

Pr(t, u)spts = ———

e CP*(2 fro — 2 frn — 8 fra+ 8 frs +6V2fns — 6V2f17),

g
il
oy

i

Pr(t, u)spss = ry. CP¥(3 fro + 3 fra — 12 fr2 — 6 fr3 + 6 fre + 6 fi7),

m—1

Pr(t, u)sper = ZCﬁf 4 fro —4 i+ 8 fra— 8 frs),

and Pr(t, u)sp+1 (resp. Pr(t, u)sp+a, Pr(t, U)gp+6) is obtained by replacing fx 2, fr6, fr,7 by their op-
posite in Pr(t, u)sp (resp. Pr(t, u)sp+s, Pr(t, u)sp+s)-

3.3.4 The BI subseries — Binary icosahedral groups
For m € N such that m A 30 =1, let i, 7, 1 be the elements

1 0 0 1 0 0 ) ¢G-¢G7 0 0
p=0 -G 0 |, r=0 0 1|, n=5— 0 -Gt 1 :
0 0 - 0 -1 0 G =G 0 1 G5 — !

and consider the subgroup I' = (u, 7, 7, ¢a,,) of SLsC.

Note that ¢o,, = n?dm > , so that T := (u, 7, 1, ¢m). Set I'1 := (u, 7, ) and Iy := (¢,,) ~ Z/mZ.
Then I' ~ FQ X Fl.

With the notations of the binary icosahedral subgroup of SLoC, p (resp. 7, 1) represents a (resp. b, c).
'y ~ (a, b, ¢) is the binary icosahedral subgroup of SLoC. Representatives of its 9 conjugacy classes are

{id, b* = —id, a, d®, a®, a*, abe, (abc)?, b},

and its character table is given in Section 2.3.3 (Type Fs — Binary icosahedral group).
The natural character of I' is given by

Xio = x(¢,) = P42, Xi5 = X(47,1%) (R — LB i
Xt = x(¢,7) = P -2, Xi6 = ( WhTn) = (G 21+<z
Xiz = X0hw) = GEHIREG I = x@hmn)?) = G-,
xiz = X( m ) = C&Ql_ﬁ-%ﬁgn Xig = x(oh, 1) = G
Xia = x(Git) = G HIRRE,
Finally, we obtain the series Pr(t, u): for p € [0, m — 1], we have
1 m—1
Pr(twop = o0 D (o + it +12 fra +12 fioa +12 fia 12 fis + 20 fius + 20 fir + 30 fies),
k=0
1 m—1
Pr(t, woprr = 150~ > 2 fro =2 fr1+ (6—6V5) fro+ (=6 = 6V5) fra+ (6+6V5) fra
k=0

+(=6 4 6V5) frs + 20 fr.6 — 20 fr7),
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m—1

1
Pr(t, w)op+3 20m Z CP*(3 fr0 + 3 frq + (6 4+6V5) fro + (6 —6V5) frz + (6 — 6V5) fra
k=0
+(646V5) fis — 30 frs),
m—1
1
Pr(t, uopts = T20m D A fro+ A fr1 =12 oo — 12 frs — 12 fra — 12 frs + 20 frg + 20 fi7)

k=0

1 m—1

Pr(t, wopsr = 150~ > CPE(5 fro +5 fr1 — 20 fre — 20 fr7 + 30 fis)
k=0
1 m—1
Pr(t, w)oprs = T20m > CPE(6 fro — 6 fra — 12 frp + 12 frz — 12 fra + 12 fr5),

and Pr(t, u)opra (vesp. Pr(t, u)op42) is obtained by replacing 61/5 by its opposite in Pr(t, u)op+3
(resp. Pr(t, u)opt+1), and Pr(t, u)gp+e is obtained by replacing fr1, fr2, fr4, fre by their oppo-
site in PF (t, u)9p+5.

3.3.5 Decomposition of Cr for the subseries BTa, BO, BI

e For the subseries BT a (resp. BO, BI), we set n =7 (resp. n = 8, n = 9). We now make the matrix

AWM explicit: A is a block-matrix with m x m blocks of size n x n.
> If m > 5, then the matrices A1) and Cp := 2T — AM — tAM) are defined by

2 -B, -I -I —-B,
0 I B, -B, 2I —-B, -—I -1
-I -B, 2I —-B, -I
By
A = ;| Cr= - =B 7
-1 -B, —I
I L
I B, 0 -1 . —-B, 2I -—B,
-B, —I -I -B, 2I
with
001 00O0O0O0
00 010000
000 0O0 100
00 001000
00 0 1000 1 00 1 0000
001 0O0UO0T10
06 000O0OT1QO0 1 00 00100
Br=| 10000 0 1 ]|,Bs= ,Be=| 0 0 0 0 0 0 0 O
01 000 0 1 01 0 0 0 0O 1 o
00100 01 01 00000 O
0001000 1
0001110 000 1 00TO0 1
00001001
000 0O0O0T10
00100110
0000110 1

> If m = 1, then the matrix A®Y is A® := B, + I, and Cr is defined by Cr := 21 — AM @) 4
2 Diag(AM), i.e. Cr = 2I — 2B,,.

e The decomposition of Cr is the following: for i1 € [0, m — 1] and iz € [0, n— 1], let s;, ;, be the reflec-
tion associated to the (ni;+iz)—th root. Then the set S may be decomposed in p sets where p € {2, 4, 5}.

— If m > 5, then:
> If m = 1 mod 3, set S; := {sspt14, / (K i2) € [0, 25 — 1] x [0,n — 1]} for I € [0, 2], and
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S3 1= {Sm—l,i2 /’iQE [[0,71—1]]}. Then S =SoUS;USsUSs, p=4,and Cr =41 — 19 — 71 — T2 — T3.
> If m = 2 mod 3, set Sy := {sspyri, / (k,i2) € [0, 252 — 1] x [0, n — 1]} for I € [0, 2], and
S3 = {5m72,i2 / 19 € [[0, n— 1]]}, Sy = {Sm,17i2 / 19 € [[0, n— 1]]} Then S = Sy LU Sy U Se LS5 U Sy,
p=5,and Cr =5l —19 — T4 — T — T3 — T4.

—Ifm=1,then S=5,US51, p=2, and Cr = 2] — 79y — 71, with

> If n = 7, S() = {S()_’(), 8071, 5072, 50,6} and Sl = {8073, 8074, 8075}.

>Ifn= 8, S() = {S()_’(), 50,1, 50,25 S0,5, 50,6} and Sl = {8073, 50,4, 5077}.

> If n = 9, S() = {S()_’(), 8073, 5074, 5075, 5077} and Sl = {8071, 8072, 50,67 50,8}-

o If m =1, the graph associated to I' is the following;:

n==177 n=38 n=29

OZON O OZON
O-0-O JOZO) JOR05 0502020
OnO=0) ®

If m > 5, the graph associated to I' is a graph of type BTa (resp. BO, BI), m = 1, such that every
vertex is a m—gone.

3.4 The C series
Let H ~ 7Z/j1Z X 7] joZ be a group of the series A, with eventually j; = 1 or jo = 1, and consider the

010
matrix T:= | 0 0 1 |, that is the matrix of the permutation (1, 2, 3) of G3. In this section, we
1 0 0

study T' := (H, T, the finite subgroup of SL3C generated by H and T. The subgroup N of I" which
consists of all the diagonal matrices of I' is a normal subgroup of I'. By using the Bezout theorem,

i 0 0
N =< gy ky i= 0 (ke 0 / (k1, ko) €0, m —1]2 3 . (7)
0 0 (¢ fh

Moreover, we have N N (T') = {id} and |N(T)| = DL — 332 = |1'|. So, T is the semi-direct product
'~ N x(T) ~ (Z/mZ)* x (T).

We will obtain all the irreducible characters of I' by induction; we distinguish two cases corresponding to
the two following subsections.

3.4.1 Series C' — m non divisible by 3

e Set n/ := ngfl, so that |[N| = 3n’ + 1 and |G| = 3m? = 3(3n/ + 1). The conjugacy classes of I' are:

Cardinality || 1 | m? | m? 3

Class id | T | T7'| ge N\{id}(n' classes) ‘

For each element g, 1, € N\{id}, the conjugacy class of g is the set {gr, ky» Gho,—k1—kss I—k1—ksky }- 100
order to obtain a transversal of N\{id}, i.e. a set containing exactly one representant of each conjugacy
class of N\{id}, we represent the elements of N\{id} by points (ki, k2) of [0, m — 1]?.

So, we search a transversal for the set of elements of the form (ki, ko), (k2, —k1, —ke mod m) and
(71€1, 7]62 mod m, kl), with (kl, kg) € IIO, m — 1]]2

A solution is the following: for a given conjugacy class, its three elements are on the edges of a triangle (see
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Figure E), with exactly one element on each edge of the triangle. Therefore we may take as transversal
the set of all points that belong to the vertical edges minus the nearest point of the diagonal. More
precisely, a transversal for N\{id} is the set F.. defined by

{(0, k3) / k2 € [1, m — 1]}
LJ {(kl, k/’g) / ki€ [[1, L%J]], ko € [[k/’l, m—1— le]]}
U {(kn ko) [ By € [m— 2], m—1], ks € [20m — k1) + 1, k1]

Figure 2: Conjugacy classes and irreducible characters for m = 11.

We choose the usual lexicographic order on E.., so that we can number its elements: E.. = {c1, ¢a,..., Cn2_1 },
3

with ¢; = (cz(-l), 052)) € [0, m — 1]

e The group I is generated by R := g1, and T, which verify the relations R™ = (RT)? = T2 = id. As
m is not divisible by 3, the irreducible characters of degree 1 are %! : R+ 1,T + j! for I € [0, 2]. We
have [G : N] = 3 with N abelian, so the possible degrees of the irreducible characters are 1, 2, 3. The
irreducible characters x;, 1, induced by the irreducible characters of N are given by

Class | [id] | [T] | [T7] 9], 9 € N\{id}

Value || 3 | 0 | 0 | clbithals g (Chimkbithls | kol (=ki—ka)l:

The characters x, 1, with (I1, l2) # (0, 0) are represented by points (1, I2) of [0, m — 1]2. The points
that are associated to the same character are on a triangle or on a “trident ., with exactly one point
on each edge (see Figure [). So the set of irreducible characters x;,.1, with (I3, ly) # (0, 0) is obtained
by taking the following set F;. of indexes:

{(0, k/’g) / ko € [[1, m — 1]]}
L {(k/’l, kg) / ki€ [[1, L%J]], ko € [[2k1 +1,m— kl]]}
L {(kl, k2) / kl S [[m— L%J, m — 1]], k2 € [[mfkl, 2]{31 —m — 1]]}

We choose the usual lexicographic order on E;., so that we can number its elements: E;. = {di, da,..., d2_.1 },
3
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with d; = (dV, d{*) € [0, m — 1]2, and the character table Tt is

1 1 1|1 1
1 45 45201 1
1 452 411 1
ITr=13 0 0 ;
: C
3 0 0
where the general term of C € M2, C is
3
D 4P (1 _o@)gM) 4 o) g @) (M 2y m2—1
Cz,] = Cm Z +£’r(n g ) ‘ CJ ‘ +C’rcr{ ¢ ( E i ) ‘ 5 (Z, j) (S [[17 T]]Q

e The values of the natural character x of I' are

Class || [id] | [T] | [T~"]| lg], g € N\{id}
Value 3 0 0 Crlf«f + Cr]ff + Cr;krkz

Therefore the diagonal matrix A(t, u) is Diag (51, €9, €3, A/(t\,/u)), with g1 := f(3,3), 2 = &3 :=

f(0, 0), and the general term of A(t, u) € M2, C is
3

(1) _ (2 (1) (2) (1) (2) (1) (2 2 _ 1
5 + N . ¢ : . m
w-f<Cm’ Flm? A T G A Cn Al > jel

Then, by setting

m2-1 m2—1

3 3

= E Vo> Zl = E
p=1 j=1

we obtain the formula for Pr(t, u):

PaD4ePa?  (—e—e)aP 4N a? DD (e —P)a?
(Cm +Cm I ¢ H N I

5(m+1)(m—1)+ 2(m+1)(m—1)
Pr(t,u)y = o 2(32] +e1+exte3)— - o2 (61 —e2 —e3)
m+ 1)( Ny
A 51+52+63+vacp, :
q=1 p=1
5(m+1)(m . . 2m+1)(m —1 . .
Pr(t,u)r = ( )9(m4 (32 +e1+jea + jles) — ( 9 )(2 )(51 — jea — je3)
m2—1 m2-1
2m+1)(m—1) & . . >
P2 DD S e e 3 |

g=1 p=1
and Pr(t, u) is obtained by exchanging j and 52 in Pr(t, u)1, and for i € [1, %]],

Pr(tvu)i-i-Q = 5(m+1)( _1)+1(3Ez _6(m+1)(m_1)51

Im4 9m?2

m+1
L2

m<—1 m —1

3e1 + Z VpCi,pCp, q

q=1 p=1
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3.4.2 Series C — m divisible by 3

e Set n' := WTZ, so that |N| = 3n/ and |G| = 3m? = 3(3n’). Set a := R% = Diag(j, j, 7). The conjugacy

classes of T" are:

Class id|{a|a®>| T |T7' | RT | RT™'| R®T | R*T~' | g € N\{id, a, a®}(n’ — 1 classes)
Cardinality || 1 | 1 S P e R R 3

For each element g, 1, € N\{id, a, a®}, the conjugacy class of g is the set { gk, k»» Gka.—ky —kos> G—ky—ks k1 }-
Its three elements are on the edges of a triangle, with exactly one element of each edge of the triangle.
So, a transversal of N\{id, a, a®} has the same form as in the case where 3 does not divide m, i.e. a
transversal for N\{id, a, a®} is the set E.. defined by
{(0, k/’g) / ko € [[1, m — 1]]}
[ {(kl,kQ)/kle[[l,%fl]], kQG[[kl,mflkal]]}
L {(k/’l, kg) / ki € [[’I’I’L— % +1,m-— 1]], ko € [[Q(m— kl) +1, /{31]]}

e As m is divisible by 3, the irreducible characters of degree 1 of " are, for (k, [) € [0, 2]?, the nine

elements
YR s gk
T — jh

As for the case where m is divisible by 3, the set of irreducible characters xi, i, with (I3, I2) # (0, 0) is
obtained by taking the following set E;. of indexes:

{(0, kg) / ko € [[1, m — 1]]}
L {(kl, kg) / ki € [[1, % — 1]], ko € [[2]{31 +1, m— kl]]}
L {(kl,kzg)/kzle[[m—%—i—l,m—l]], kzge[[m—kzl,Qk:l—m—l]]}.

We choose the usual lexicographic order on E,.. and Ej;., so that we can number its elements:

Ecc = {Cl, Coy ey CT’?—'Q—I}’ Eic = {dl, dg,..., d 2_1},

m
3

with ¢; = (c;l)7 c

table Tr of T':

;-2)) € [0, m — 1]?, and d; = (dgl), d§2)) € [0, m — 1]?, and we deduce the character

11 1 1 1|1 1 1
1 1 1 i a3t i 1
1 1 1 A |
1 1 1 1 1 514 52 42
11 1 | 2 21 1 | gat-e?
11 1|2 5 1|52 4 1

Tr=|T 1 111 727 ,
11 1|5 2 1] 52 1|t
11 12 5 jl1 1 4
3 8 g 1o o oo 0
: C
3 9 g% 1o 0o o|lo 0 o0
m2_ 1 “ml_y
where C' € M m2 _,Cis a block-matrix with general term
A B I o R i e A R B R RO N PR AN 13

3
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2
1 AW L g g g@ D) g () 2 MW o9g@ _gMiog® o M _ 4@ m
g ;) +d;” | i=2d; )+ dit —2d} J() 2d +2d; 4 di" +2d; +32di 47 e 1, . _1]]2.

i = i i 2 1.{-]1 ,

e The values of the natural character x of I' are

Class |id | a | a®> |T |T V| RT |RT ' | R®T | R®*T-'| g€ N\{id, a, a*}

Value || 3 |35 [352|0| 0 0 0 0 0 [ I I e R

Therefore the diagonal matrix A(¢, u) is Diag(A(t, u), A(t, u)), with

A(ta u) = Diag(ﬁla 627 535 547 sy ﬁ4) = D’Lag f(37 3)7 f(3.727 3])7 f(SJa 3j2)7 f(oa O)a (RS f(07 0)

6 terms 6 terms

e~

and the general term of A(¢, u) € M2 Cis
3
eV R N I S D@ . m2
:f(gm +Cm +§m aCm +§m +Cm ! ),36[[1,?—1]].

For (i, r) € {1, 2} x {1, 2, 3}, and (s, q) € {1, 2} x [1, mTZ — 1], let us define

2 2

)

1 "1
nr) .— Z ij(rfl)(cgt.:;})), ol .— Z Jlgi)vpj(rq)(c;}hcg)),
p=1 p=1
E(‘S) B Z J(é) < DM e +C(icg)7622))615’1)“2’1)%2) e c@dM 4(—c <2>)d§f>)
m m I
€i=(-1,-1,2,-1,-1,2, -1, 1,2, ..., =1, -1,2, =1, -1, -1, =1, 2, -1, =1, 2, ..., -1, —1, 2).
e N——— N—— N—— N N—— N——
1 2 3 B )
Then, we may give the expression of the series Pr(¢, u):
5 +1 6(2)* -2
Pr(t,u)o = ((3;—)(:@“) + B1 4 B2+ B3 + 681) + %(@“” + 0% 128 + 2065 + 263 + 1264)
2
3 % M ¢ 2(c( ) el )) T
Z Bi+Bo+ B+ 350~ B+ 3 T+ prcpq :
q=1 p=1
3(5(2 1)+1 6(2)% —2
Pr(t,u)y = %T)(SE(U + B+ B2+ B3 — 364) + (33) — (@) + @Y 128, + 28, + 265 — 644)
m_2_1 —2—1
3(m)2 -1 3 S ORI ) 9 oD @
t=E e D & | Bt ot B+ (2 75 T Ba+ (27 + )72 g, 4 Z ToCra | »
q=1
35(2)2 —1)+1 6(m)% —2
Pr(t,u)s = %(32(” +B1 4 B2+ B3) + %(@“2) + 02 128, + 208, +2063)
3(2)% —1 C 1 _ @ ) T 1) _ @
= — 1 2 (2 1 2
FEEL T N [ Bt e+ @) B (27 4 ) B S i,
q=1 p=1
35(2) -1 +1 6(2)% —2
Pr‘(t, u)5 — ((3?{37)( 2(2)—‘,—,61-}—,624—,63) (3)74((13(12)+¢(22)+2ﬂ1+2ﬂ2+253)
m? m?
3(m)2 -1 3 3 D@
+3mi4 qu B+ B2+ PBs + Z'Yp]p ¥ Cpg |
q=1 p=1
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g=1

6(2)* —2

3m4

1) _ @ NONS
ST G [ Bt Bat Bat (24 57)5 T Ba+ (24 + 5252

(2

(@M + o3 128, 428, + 23)

m?2 1

) 3 e
Pt 3 s
p=1

(1) _ (2

and Pr(t, u)2 (resp. Pr(t, u)s, Pr(t, u)g) is obtained by exchanging the coefficients 25 + j2 and 2j2 + j
(resp. 2+ 7 and 252+ 7, 2+ 52 and 25+ j2) in Pr(t, u); (vesp. Pr(t, u)s, Pr(t, u)g); Pr(t, u)7 is obtained
by j2(c§’1)_ci’2)) in Pr(t, u)s.

by replacing () by

2

i)

and j o

Finally, for ¢ € [1, mTZ — 1], we have

PF(t7 u)i+8 =

+3(

3

m)2_ 3

> &

m4

4

3(5(2)° —1)+1
3Im

m?2 1

q=1

3.4.3 Decomposition of Cr

1) —cf)

(361 + J§1)52 + Ji@)ﬁ?, +3%) + (?37

7 )2_2
m4

m?2 1

3
301 + Ji(l)ﬂz + Ji(z)ﬂa + Z YpCi,pCp,q

p=1

(681 + 2 Bs + 272 85 + 51 + 2P

We now make the matrix AM explicit: the form of the matrix A is nearly the same in the case where
m is divisible by 3 as in the other case. The main difference between these two cases is due to the fact
that in the case where m is divisible by 3, there are 9 irreducible characters of degree 1 instead of 3.
| otherwise. The matrix A() is a block-matrix with

Set Ky, := & — 1 if 3 divides m, and Kk, := L

3

m

3

(24 26m) X (24 2Ky,) blocks: for example, if m = 16, the matrices AM and Cr are matrices of size 88.

A

v

3T

=T

N

™

o If m =2, then A = (

o If m = 3, then A

(

Figure 3: The matrices A1) and Cr for m = 16.

03,3
113

09,9
1og

131
2

19\7’2
A

), and Cr = 3] — 19 — 11 — T2, With 79 := s¢s2, 71 := s1, T2 := s3.

).

A=

(

0 0
3 0
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e Now, we assume that m > 4. For i; € {0} U [1, fp] U [m — £m, m — 1], we define the set S;, by:

{8071'2 / i9 € [[1, m — 1]]} if i1 =0,
Si1 = {Sil,iQ / 19 € [[il, m—1-— 211]]} if i1 € [[1, Iim]],
{Sil,iQ /’LQ € [[2(7’)1711)4’1,11]]} if 17 € [[m—fim,m—l]].
Then, we distinguish two cases:
> If K,y is odd, we set Iy := {0,2,4,..., km—1, m—Km, m—Km+2,...,m— 3},

IAl::{l,Z}, 5,...,lim,m—nm+1,mfnm+3,...,m72},f2::{m—l}.
> If Koy iseven,wesetfo::{(), 2,4, ..  kmy,m—FKm+1,m—kKy,+3,...,m—3},
IAl::{l,Z}, 5,...,mm—l,mfnm,mfnm+2,...,m72},f2::{m—l}.

Then, the roots associated to the reflections of distinct §; ’s for i1 belonging to a same IAk are orthogonal.
Now, we decompose each S;,, i.e. S;; = Si;oU---US; g—1, such that ¢ € {1, 2, 3} and for every

k € [0, ¢ — 1], the roots associated to the reflections belonging to S;, 5 are orthogonal:
> If i1 = 0, then

o If m—11is odd, then,S\’S:S/’OBI_IS/’O:I_Ik%,\g,With
S/(O,\O = {80,1, 50,3y So,m_g}, 5): = {80,2, 50,49+ 50,m—2}7 S/'O,\g = {SO,m—l}-
o If m —11is even, then%:%}u%:, with
S/(O,\O = {8071, 50,35+ So,m_g}, S/(O,\l = {80,2, 80,49+ SO,m—l}-

> If 41 € [1, k], then we have §; = /1-1\70 I_IS/Z-; I_IKS”/Z;Q7 with:

(o If m — 311 iS Odd7 then S/Z':() = {Sil7i1’ Sil,i1+27 ceey 5i17m72i173}7

‘Sfil\,l = {5i1,i1+17 Si1,i14+35 -+ Sil,m—2i1—2}; ‘5711\,2 = {Sil,m—Qil—l}-
o If m— 3’i1 is even, then 5/1'1\70 = {5i1,i17 Siq,i1 4250 3i1,m—2i1—4};

‘Sfil\,l = {5i1,i1+17 Si1,i14+35 -+ s Sil,m—Qil—l}; ‘5711\,2 = {Sil,m—2i1—2}-

> If i1 € [m — K, m — 1], then we have S\’; = Si,0USi, 1 US;, 2, with:

o If 3i1 —2m is Odd7 then S/z'-l\,O = {5i1,2(m—i1)+17 Si1,2(m—i1)+3a ey Silyilfg},

S/n\,l = {Sil,Q(m—il)-i-Qv Siy,2(m—i1)+4y - -+ Sil,ilq}, S/z\lz = {Sil,il}-
o If 3iy — 2m is even, then S:—:O = {8i1,2(m—i1)+1s Si1.2(m—i1)+31 > Sir,iz—1}5

S/n\,l = {Sil,Q(m—il)-i-Qv Siy,2(m—i1)+4r - -+ Sil,i172}; S/z\lz = {Sil,il}-

Note that some sets S/h\k can be empty for k € {1, 2}.

Finally, we set St = [I, .1 Sa, for (k, 1) € {0, 1, 2\ {(2, 2)}, and S5 := (Hnefz si-;)u{s,l,o, ey S},
with r = 8 if 3 divides m, and r = 2 otherwise. We denote by p € [1, 9] the number of non-empty sets
Sk, and by 73, the commutative product of the reflections of S ;. Then, Cr =p I — Z(k,l)e{o, 1,232 Thil-

Example 11

For m = 16, we have the following decomposition:
70,0 = (80,150,3 s 50,13)(52,282,4 s 52,8)(54,4)(511,11)(513,7513,9513,11) 70,2 = (So 15)(52,10)(54,6)(513,13)
70,1 = (80,280,4 cee 80,14)(82,382,5 ce 82,11)(84,584,7)(813,8813,10813,12) T1,2 = (81 13 (83 9)(812,12)(814,14)
T1,0 = (81,181,3 e 81,11)(83,383,583,7)(85,5)(812,9812,11)(814,5814,7 e 814,13) 72,0 = (815 3515,5 - -515,13)
T1,1 = (81,251,4 ce- 51,12)(53,483,653,8)(512,10)(514,6514,8 .- ~S14,12) T2,1 = (515 4515,6 - ~S15,14)
72,2 = (515,15)(571,0571,1871,2)
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3.5 The D series

A group of type D is generated by a group of type C' and a matrix

a 0 0
Q=10 0 b |,
0 ¢ O
with abc = —1. This group is not a direct product. We can’t give a general formula for this group and
we only give a simple example.
Example 12
Consider the group
1 0 0 0 1 0 -1 0 0
F:<0—10,001,001>.
0o 0 -1 1 00 0 1 0

This group is isomorphic to the symmetric group &4, so I' has b conjugacy classes.
The series Pr(t, u) verifies

Vielo, 4], Prt, u); = (1 —tu)——2
with D(t) = (¢t — 132+t + 1)(t* + 1)(t + 1), and

N(t,u)g = toub+t5ud —t5u® — 3ub + 503 + 2%t + 305 + t4u® + 3ut + 16 + du + 242 + 4 343
F22ut +tud +uS + B3 + 2 + Bu+ 22+t — P — - tu 41,

N(t,u)y = t5u® + tPut + t4u® + t3u + t2u? + ttut + 3u® + t9u? + t4ud + 3ut + t2ud + t*u? + 2u?
+ttu + t3u? + 203 + tut + Bu 4+ 20 4 tud + 13+ P+ e+ ud,

N(t,u)e = (t*u? +3ud + 20t + B3u? + 20 + Bu 4+t + Pu+ e + 2+ tu+u?) (24 1) (u? +1),

N(t,u); = (" 4+ + 20 +u+tud + 2 +tu+u?) (P +t+1) (P +u+1),

N(t,u)y = (t*u? 4+ But — tt? — 3u® — 2ut + thu + 2830 + 2420 + tut — t3u — tud + 13 + 2120

2t +ud -2 —tu—u?+t+u) (P +t+1) (wP+ut1).

4 Exceptional subgroups of SL;C — Types £, F, G, H, I, J, K, L

For every exceptional subgroup of SLsC, we begin by making the matrix A®) explicit. Then we give
a decomposition of Cp := 2T — AN — A®) 4 2 Diag(AM) as a sum of p elements, with p € {3, 4}, so
that Cr = pI — (190 + -+ - + 7p—1), and we give the graph associated to Cr. We also write the list © of

eigenvalues of AW,
Nr(t
Finally, we compute the sum of the series Pr(t, u) = % In all the cases, the denominator is of
rit, u
the form Dr(¢, u); = Dr(t);Dr(u);. Moreover, we will take the lowest common multiple Dr(t) of the
Dr(t);’s in order that all the denominators are the same and have the form Dr(¢)Dr(u), i.e.
M, (tv u)z
r U)

Vielo,1], Pr(t, u); = (1 ftu)l)r(l;ﬁ.

Because of the to big size of the numerators, only the denominator and the relations between the numer-
ators are given in the text: all the numerators may be found on the web.
We also give the Poincaré series of the invariant ring Pr(t) := Pr(¢, 0)g = Pr(0, t)o.
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4.1 Type E
The group of type E is the group (S, T, V), with

1 0 O 0 1 0 i 1 1 1
s=(0o¢ o, 7=loo0o1 |, vet|1 ¢ 2|.
00 G 100 VBl1 @ ¢

Here l+1 = 145 rank(A(l)) = 127 0= (37 7(35 7(325 05 07 717 437 15 4327 17 §37 3C3a 4327 3C3Q)a p= 35

and T0 ‘= S0515253512513, T1 ‘= 5557510511, T2 ‘= S545658S59.

g

O OO
o O @)
O © SOOC
:EH
Hy e
De(t)=(t—1° (2 +t+1)° (2 +1) (t* =2+ 1) (¢t +1)* (-t + 1)
R *t18+t15*t12*t6+t3*1
Pp(t) = 3 3 2 2"
=12 +t+ 1) @R+ 1) =2+ 1) (t+1)2 (22—t +1)
4.2 Type F

The group of type F is the group (S, T, V, P), with S, T, V as for the type E, and

1 (1 1 g%)
P=—|1 &G G |.
V=3 s 1 ¢

Herel+1: 167 I‘&Ilk(A(l)) = 157 0= (37 7437 7(325 07 717 §37 17 437 15 437 15 4327 §§54325 3C3a 3§§)7
p =3, and 7o := 8051525354815, T1 := S55759511513, T2 := S658510512514-

@)

[OH OHON®

OHON® (%J;
[OHONONO)

Det)=(t -1 (B +t+1)° (B+1) (=2 +1) t+ 1) (P —t+1)°

. 8 {415 49 43

Pr(t) = 3 3 2 2
(=1 (R +t+1)° R+ 1) =2+ 1)+ D2 (12—t +1)
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4.3 Type G
The group of type G is the group (S, T, V, U), with S, T, V as for the type F, and

G 0 0
U= 0 ¢ o
0 0 (2

Here [ + 1 = 24, rank(A™M) = 21,
0= (37 _C3a _C327 07 07 _an _C;Jla Cg—’—gga 0) _§S7 _§92)C92+§S7 _17 C3a 17 C327 3C3; 3C32;

—2¢ -G, G -G, G -2, G+, 28 +E, G+24),

p =3, and Tg := 50515253545556519520521, T1 1= 575859513514515522, T2 = 510511512516517518523-

H © Mg(t, U)2 = Mg(’u, t)l

OOO Mg(f, u)5 = Mg(u, t)4

N d Me(t, u)io = Ma(u, t)o
(®) 5 o) O MG(t, u)11 = MG(U, t)7
o °q Mg(t, u)12 = Ma(u, t)s
% 4 M (t, w6 = Ma(u, )15
© 9 OC § Mg(t, ’U,)lg = Mg(u, ﬁ)14

© Q OO Q q M~ (t = M,

Sl g G( ) U)Ql G(Ua t>20
© fos Sl e Mc(t, u)az = Mg (u, t)2o

Da(t)=(t =1 ([t =3+ 1) (2 +t+1)° ¢+ 1> (2 +1) (=2 +1) (22—t +1)* (15 + 2 +1)°
5 (0) = 418 _ 436 _
T DO B D)@ ) ()T ) (- 2 D) (2 -t )P (4 634 1)

4.4 Type H
The group of type H, isomorphic to the alternating group s, is the group (S, U, T), with

1 0 0 -1 0 0 1
S=10¢ 0 |,U:= 0o 0 -1 |,7:=—
0 0 ¢ 0 -1 0 V5

—_

1 1
G+¢ G+
G+C G+

Here l + 1= 5’ rank(A(l)) = 4) A(l) is Symmetrica 6 = (37 _17 _CE% - gga _C5 - gé; 0);
p =3, and 7p := 50983, T := S1S2, T2 := S4.

N DN

0 1 0 O

0
00 0 1 1 D)= (t—17° (P +t+1) (*+ 3+ 2+t +1) (t+1)°
AM =11 o

N
Lo 1 i _

_ 8t Tttt P —t—1
(t—1)3 (E24+t+1) (A +3 2+t +1) (¢+1)2

Pr(t)

o o
= =
= o
= =
- =

29



4.5 Type !l
The group of type I is the group (S, T, R), with

G 0 0 01 0 G- G-¢ a-¢
S=(0 ¢ o0 |, T=[001], R=—0|CG-¢ G-¢ ¢-¢&
0 0 ¢ 100 VI\G-¢ d-¢ ¢-¢

Here I +1 =6, rank(AM) = 5,0 = (3, 0, 1, ¢z + G +¢F, F+ G2 +¢F, —1),
p=4, and 19 := S580, T1 := S1S4, To := Sg, T3 := S3.

o 1 0 0 0 O
0 0 1 100 -G Dr(t)=(t—=1)> (2 +t+1) (2 +1) (t+1)°
@ — 0 0 0 0 1 @/ \® S+ + P+ 3 +2+t4+1)
"o 0o 1 0 1 1 ~ s
00 0 1 1 1 Oa0 Miy(t, u)o = My (u, t),
o 1 0 1 1 1
Brt) e A e S A S A A A T A
I =
=1 (24 t+ 1)+ O+t + B3+ 2+t +1) (2 4+1) (t+1)°
4.6 Type J

The group of type J is the group (S, U, T, W), with S, U, T as for the type H, and W := Diag(j, j, j)-
It is the direct product of the group of type H and the center of SL3C. Here [+ 1 = 15, rank(A(l)) =12,
0= (’?’a -1, 7§527<:53a 7§57§§a 7§§7 —(35 3C3, — llé - lléa *4125741857 3§§7 *41757 115?7

— (15 — (i, 0, 0, 0), p=3, and 79 := S25557510513, T1 ‘= 515658511514, T2 = 50535459512

MJ(t, ’LL)Q = MJ(’LL, t)l
MJ(t, u)s = MJ(’LL, t)5
MJ(t, u)g = MJ(’LL, t)7
MJ(t, u)11 = M.](u, t)lO
MJ(t, u)14 = M.](u, t)lg

Dyt) = (P + B+ 2+t 4+1) (B =T+ —t 48—t 4 1)+ 12 (P —t+ 1)t — 1P (B +t+1)°
R _t24_t12_1

PJ(t): 4 3 2 8 7 5 4 3 2 (42 2 3 (42 3
(t + 1>+t —I—t—l—l)(t —tr 4t —tr 4t —t+1)(t+1) (t —t+1) (t—l) (t +t+1)

4.7 Type K

The group of type K is the group (S, T, R, W), with S, T, R as for the type I, and W := Diag(j, j, ).
It is the direct product of the group of type I and the center of SL3C. Here [ + 1 = 18, rank(A™M)) = 15,

0= (35 05 05 05 3§37 3§§7 15 §7+<'?+§’4715 §$+§’?+C$a 715 g??v §221+§281+§21117 §37
Cor + G+ Gofy B+ G + Y, GF + G+ G —Gy =)
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p =3, and Tg := 518556511514517, T1 := S0535459512515, T2 := 525758510513516-

q ° B oA
@) ) O g / \ — MK(ta U)Q i MK(U; t)l
O o @ (@) MK(ta U)4 - MK(U; t)g
0 5 o 0 Mg (t, u)7 = Mk (u, t)s
o Q Mg (t, u)g = Mk (u, t)s
°l o OOO ~o 'O M (t, u)11 = Mk (u, t)10
Mk (t, =M ,t
b %o o 7 p (t, wha = Mic(u, his
O ] O. O M (t, u)ir = Mk (u, )16
Qg o. P ~
o “o o () \
/\ / \ / N
Dr(t)=(t =12 (2 +t+1)> (2 +1) (1 =2+ 1) (S + 5+t + 5+ 2+t +1)
(B2 =t S 6 — 13—t 1) (b4 1) (12—t +1)°
ﬁ t _ 7t367t1871
K (t) = (t=1)3(t2+t+1)3 (124 1) (t2—124+1) (L0 +5 2 +3 12+ +1) ($12 =t 11449 — 18 4+46 — 44 +43 — ¢+ 1) (¢ +1)2 (12—t +1)?
4.8 Type L
The group of type L is the group (S, U, T, V), with S, U, T as for the type H, and
1 0 0 -1 0 0 1 1 1 1 1 1 A A\
S=10 ¢ 0 , U= 0 0 -1 |, T=—12 s t |, V=—| 2 s t
0 0 0 -1 0 AR Vilan, ¢ s

where s := (2 + (3, t .= (5 + (3, M\ = ’1%@, and Ay 1= ’1%“/6. Here Il +1 =17, rank(A(l)) =15,
p =3, and 7o 1= S0555659510511514, T1 := 515257512515, T2 := S535458513516-

©=(3, =G, —G3, 3¢3, 3¢, —1, (3, G, 1, —(T5 — CT5, —Cis — (s, —Cis — (3, —Cls — (18, —¢3 — G2,

— (5 —¢2, 0, 0).

@)
O O ©
° OO i Mp(t, u)s = Mp(u, t):
o M (t, u)s = ML(t, u)s
O 5 d“ My (t, u)s = Mr(u, t)7
. - Q 0 Mr(t, u)13 = Mr(u, t)12
O C OO C ML(lf, u)16 = ML(’LL, t)15
g o.Q
(@) O 0D
O OC\’UO O(\ q

Dr(t)= (=1 (2 4t+1)° (241) (1 =2 +1) (1 + 3+ 2+ 1+ 1)
(B =T+t —t 83—t 1) (t+ 1) (2 —t+1)°

. —430 4415 _1
PL(t) T = D)3(2 D)3 (124 1) (A — 12+ 1) (tA 3 F 2t 1) (B8 —tT 5 —tA 3 —t+ 1) (¢+1)2 (12 —t+1)2
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