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McKay correspondence and the branching law

for finite subgroups of SL3C

Frédéric BUTIN1, Gadi S. PERETS2

Abstract

Given Γ a finite subgroup of SL3C, we determine how an arbitrary finite dimensional irreducible representation

of SL3C decomposes under the action of Γ. To the subgroup Γ we attach a generalized Cartan matrix CΓ. Then,

inspired by B. Kostant, we decompose the Coxeter element of the Kac-Moody algebra attached to CΓ as a product

of reflections of a special form, thereby suggesting an algebraic form for the McKay correspondence in dimension 3.

1 Introduction

1.1 Framework and results

Let Γ be a finite subgroup of SL3C. In this paper, we determine how the finite dimensional irreducible
representations of SL3C decompose under the action of the subgroup Γ. These representations are
indexed by N2. For (m, n) ∈ N2, let V (m, n) denote the corresponding simple finite dimensional module.
Let {γ0, . . . , γl} be the set of irreducible characters of Γ. We determine the numbers mi(m, n) — the
multiplicity of the character γi in the representation V (m, n). For that effect we introduce the formal
power series:

PΓ(t, u)i =
∞∑

m=0

∞∑

n=0

mi(m, n)tmun.

We show that mi(t, u) is a rational function. We determine the rational functions which are obtained in
that way for all the finite subgroups of SL3C.

The proof uses an inversion of the recursion formula for the numbers mi(m, n). The recursion formula is
obtained through the decomposition of the tensor product of V (m, n) with the natural representation of
SL3C. The key observation which leads to this inversion is that a certain pair matrices are simultaneously
diagonalizable. The eigenvalues of the matrices are values from the character table of the group Γ. This
leads to the proof that the power series

PΓ(t, u)i =

∞∑

m=0

∞∑

n=0

mi(m, n)tmun

is rational. The actual calculation of this rational function then reduces to matrix multiplication.

This method applies indeed to the SL2C case. It gives a complete (very short) proof of the results ob-
tained by B. Kostant in [Kos85], [Kos06], and by Gonzalez-Sprinberg and Verdier in [GSV83], and leads
to an explicit determination of all the above multiplicities for the finite subgroups of SL2C.
Although the results for SL2C are not new, the explicit relation of the rational functions with the
eigenvalues of the Cartan matrix attached to the finite subgroup of SL2C doesn’t seem to appear in the
literature. In [Kos85] this is established through the analysis of the orbit structure of the Coxeter element.

The construction of a minimal resolution of singularities of the orbifold C3/Γ centralizes a lot of inter-
est. It is related to the geometric McKay correspondence, cf. (for example) [BKR01], [GSV83]. In this
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framework Gonzalez-Spriberg-Verdier [GSV83] use the Poincaré series determined above in their explicit
construction of minimal resolution for singularities for V = C2/Γ when Γ is a finite subgroup of SL2C.
Following that approach the results of our calculation could be eventually used to construct explicit syn-
thetic minimal resolution of singularities for orbifolds of the form SL3C/Γ where Γ is a finite subgroup
of SL3C. This might clarify the description of the exceptional fiber of the minimal resolution of SL3C/Γ
(see [GNS04]).

An essential ingredient of the approach of B. Kostant in [Kos85] is the decomposition of a Coxeter element
in the Weyl group attached to the Lie algebra corresponding to a subgroup Γ of SL2C through the McKay
correspondence as a product of simple reflections belonging to mutually orthogonal sets of roots.
Inspired by this approach, we attach to each finite subgroup Γ of SL3C a generalized Cartan matrix
CΓ. We then factorize this matrix as a product of elements in the Weyl group of the Kac-Moody Lie
algebra corresponding to CΓ. These elements are products of simple reflections corresponding to roots in
mutually orthogonal sets.

1.2 Organization of the paper

In Section 2 we treat the SL2C case. We show that the formal power series of the multiplicities is
a rational function by showing that it is an entry in a vector obtained as product of three matrices,
two of which are scalar matrices the third one being a matrix with rational entries, by a scalar vector.
We calculate the matrices for each finite subgroup of SL3C. We give then the rational functions obtained.

In Section 3 we apply the above method for the finite subgroups of SL3C. Here we use the notations of
[YY93] in which a classification of the finite subgroups of SL3C is presented.
Here again we prove the rationality of the formal power series of the multiplicities by showing that each
such a series is an entry in the product of three matrices, two of them are scalar matrices and the third
being a matrix with rational entries, with a scalar vector.
For each finite subgroup of SL3C we give the the matrices involved in the product. To each subgroup
Γ we attach a generalized Cartan matrix CΓ (McKay correspondence in dimension 3) we show its graph
and its decomposition as a product of elements in the Weyl group of the Kac-Moody Lie algebra g(CΓ).

Then, for the series A, B, C ([YY93] notation) we give all the rational functions explicitly, As for the
series D we give the results for some specific examples because the description of the matrices engaged,
in full generality doesn’t have a simply presentable form.

For the exceptional finite subgroups of SL3C the numerators of the rational functions tend to be very
long and we give them explicitly only for the cases where they are reasonably presentable. In all the cases
we give the denominators explicitly. This is done in Section 4.

2 Branching law for the finite subgroups of SL2C

2.1 The formal power series of the multiplicities is a rational function

• Let Γ be a finite subgroup of SL2C and {γ0, . . . , γl} the set of equivalence classes of irreducible finite
dimensional complex representations of Γ, where γ0 is the trivial representation. We denote by χj the
character associated to γi.
Consider γ : Γ → SL2C, the natural 2−dimensional representation. Its character is denoted by χ. We
have then the decomposition γj ⊗ γ =

⊕l
i=0 aijγi for every j ∈ [[0, l]]. This defines an (l + 1) × (l + 1)

square matrix A := (aij)(i,j)∈[[0, l]]2 .

• Let h be a Cartan subalgebra of sl2C and ̟1 be the corresponding fundamental weight, and V (n̟1)
be the simple sl2-module of highest weight n̟1. This give rise to an irreducible representation πn :
SL2C −→ V (n̟1).
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The restriction of πn to the subgroup Γ, is a representation of Γ, and by complete reducibility, we have a
decomposition πn|Γ =

⊕l
i=0mi(n)γi, where the mi(n)’s are non negative integers. Let E := (e0, . . . , el)

be the canonical basis of Cl+1, and

vn :=

l∑

i=0

mi(n)ei ∈ Cl+1.

As γ0 is the trivial representation, we have v0 = e0. Let us consider the vector (with elements of C[[t]] as
coefficients)

PΓ(t) :=
∞∑

n=0

vnt
n ∈ (C[[t]])l+1,

and denote by PΓ(t)j its j−th coordinate in the basis E . The series PΓ(t)0 is the Poincaré series of the
invariant ring. Note also that PΓ(t) can also be seen as a formal power series with coefficients in Cl+1.
We proceed to calculate PΓ(t) .

• We get by Clebsch-Gordan formula that : πn ⊗ π1 = πn+1 ⊕ πn−1, so we have Avn = vn+1 + vn−1.
From this we deduce the relation

(1 − tA+ t2)PΓ(t) = v0.

Let us denote by {C0, . . . , Cl} the set of conjugacy classes of Γ, and for any j ∈ [[0, l]], let gj be an
element of Cj . So the character table of Γ is the matrix TΓ ∈ Ml+1C defined by (TΓ)i,j := χi(gj).
For all the finite subgroups of SL2C we have that, TΓ is invertible, and Λ := T−1

Γ ATΓ is diagonal, with

Λjj = χ(gj).
Set Θ := (Λ00, . . . , Λll). We deduce from the preceding formula that

TΓ(1 − tΛ + t2)T−1
Γ PΓ(t) = v0.

Let us define the rational function

f : C2 → C(t)

d 7→ 1

1 − td+ t2
.

Then
PΓ(t) = TΓ ∆(t)T−1

Γ v0 = (TΓ ∆(t)TΓ) (T−2
Γ v0),

where ∆(t) ∈ Ml+1C(t) is the diagonal matrix with coefficients in C(t), defined by ∆jj(t) = f(Λjj).
Consequently, the coefficients of the vector PΓ(t) are rational fractions in t.
Hence we get:

Proposition 1

For each i ∈ [[0, l]], the formal power series PΓ(t)i is a rational function.

2.2 The results for the finite subgroups of SL2C

• The complete classification up to conjugation of all finite subgroups of SL2C is given in [Sp77]. It
consists of two infinite series (types A, D) and three exceptional cases (types E6, E7, E8).

We set ζj := e
2iπ

j . For σ ∈ S[[0, j−1]], we then define the matrix Qσ :=
(
δ

σ(l)
k

)
(k,l)∈[[0, j−1]]

.

2.2.1 Type A — Cyclic groups

• Here, we take Γ = Z/jZ. The natural representation and the natural character of Γ are

γ : Z/jZ → SL2C χ : Z/jZ → SL2C

k 7→
(
ζk
j 0

0 ζ−k
j

)
k 7→ ζk

j + ζ−k
j .
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The character table is the Vandermonde matrix TΓ =
(
ζkl
j

)
(k,l)∈[[0, j−1]]

. Let σ be the permutation

σ ∈ S[[0, j−1]] defined by σ(0) = 0 and ∀ i ∈ [[0, j− 1]], σ(i) = j − i. Then T 2
Γ = j Qσ, i.e. T−1

Γ = 1
j
TΓQ

σ.

The eigenvalues of A are the numbers χ(k) = ζk
j + ζ−k

j , for k ∈ [[0, j − 1]]. Then

PΓ(t)i =
1

j
(TΓ∆(t)TΓQ

σ)i0 =
1

j

j−1∑

p=0

ζip
j

(1 − tζp
j )(1 − tζ−p

j )
.

Note that (1 − tj)(1 − t2) is a common denominator of all the terms of the preceding sum.

2.2.2 Type D — Binary dihedral groups

The binary dihedral group is the subgroup 〈an, b〉 of SL2C, with

an :=

(
ζ2n 0
0 ζ−1

2n

)
, b :=

(
0 i
i 0

)
.

The order of Γ is 4n. The n+ 3 conjugacy classes of Γ are

Class id anb b an
n an a2

n a3
n · · · an−1

n

Cardinality 1 n n 1 2 2 2 · · · 2

The character table of Γ is

TΓ :=

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1 1 1 1 1 1 · · · 1
1 in −in (−1)n −1 1 · · · (−1)n−1

1 −in in (−1)n −1 1 · · · (−1)n−1

1 −1 −1 1 1 1 · · · 1

2 0 0 −2 ζ2n + ζ−1
2n ζ2

2n + ζ−2
2n · · · ζn−1

2n + ζ
−(n−1)
2n

2 0 0 2 ζ2
2n + ζ−2

2n ζ4
2n + ζ−4

2n · · · ζ
2(n−1)
2n + ζ

−2(n−1)
2n

...
...

...
...

...
...

...

2 0 0 (−1)n−12 ζn−1
2n + ζ

−(n−1)
2n ζ

2(n−1)
2n + ζ

−2(n−1)
2n · · · ζ

(n−1)(n−1)
2n + ζ

−(n−1)(n−1)
2n

1

C

C

C

C

C

C

C

C

C

C

C

C

A

The natural character χ of Γ is given by (χ(g0), . . . , χ(gl)) = Θ, with

Θ = Θ = [tr(id), tr(anb), tr(b), tr(a
n
n), tr(an), tr(a2

n), tr(a3
n), . . . , tr(an−1

n )]

= [2, 0, 0, −2, ζ2n + ζ−1
2n , ζ

2
2n + ζ−2

2n , ζ
3
2n + ζ−3

2n , . . . , ζ
n−1
2n + ζ

−(n−1)
2n ].

Set Diag (d1, d2, d3, d4, δ1, δ2, . . . , δn−1) := ∆(t). We deduce the formula for the series PΓ(t) that :

PΓ(t)0 =
3n− 1

8n2

(
d1 + d2 + d3 + d4 + 2

n−1∑

k=1

δk

)
+ (−1)n n− 1

8n2

(
d1 + (−1)n(d2 + d3) + d4 + 2

n−1∑

k=1

(−1)kδk

)

+

n−1∑

l=1

(−1)l n− 1

4n2

(
d1 + (−1)l(d2 + d3) + d4 +

n−1∑

k=1

(ζlk
2n + ζ−lk

2n )δk

)
,

PΓ(t)1 =
3n− 1

8n2

(
d1 + ind2 − ind3 + (−1)nd4 + 2

n−1∑

k=1

(−1)kδk

)

+(−1)n n− 1

8n2

(
d1 + (−1)n(ind2 − ind3 + d4) + 2

n−1∑

k=1

δk

)

+
n−1∑

l=1

(−1)l n− 1

4n2

(
d1 + (−1)l(ind2 − ind3) + (−1)nd4 +

n−1∑

k=1

(−1)k(ζlk
2n + ζ−lk

2n )δk

)
,
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and then PΓ(t)3 (resp. PΓ(t)2) is obtained by replacing in PΓ(t)0 (resp. PΓ(t)1) d2 by −d2 and d3 by
−d3.
Finally, for i ∈ [[1, n− 1]], we have

PΓ(t)i+3 =
3n− 1

8n2

(
2d1 + 2(−1)id4 + 2

n−1∑

k=1

(ζki
2n + ζ−ki

2n )δk

)

+(−1)n n− 1

8n2

(
2d1 + 2(−1)id4 + 2

n−1∑

k=1

(−1)k(ζik
2n + ζ−ik

2n )δk

)

+

n−1∑

l=1

(−1)l n− 1

4n2

(
2d1 + 2(−1)id4 +

n−1∑

k=1

(ζki
2n + ζ−ki

2n )δk(ζkl
2n + ζ−kl

2n )

)
.

2.3 Exceptional cases

2.3.1 Type E6 — Binary tetrahedral group

The binary tetrahedral group is the subgroup 〈a2, b, c〉 of SL2C, with

a :=

(
ζ8 0
0 ζ7

8

)
, b :=

(
0 i
i 0

)
, c :=

1√
2

(
ζ7
8 ζ7

8

ζ5
8 ζ8

)
.

The order of Γ is 24. The 7 conjugacy classes of Γ are

Class id a4 = −id b c c2 −c −c2
Cardinality 1 1 6 4 4 4 4

The character table TΓ of Γ and the matrix A are

TΓ =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 1 1 1 1 1 1

1 1 1 j j2 j j2

1 1 1 j2 j j2 j

2 −2 0 1 −1 −1 1

2 −2 0 j −j2 −j j2

2 −2 0 j2 −j −j2 j

3 3 −1 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

1 0 0 0 0 0 1

0 1 0 0 0 0 1

0 0 1 0 0 0 1

0 0 0 1 1 1 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

and the eigenvalues are Θ = (2, −2, 0, 1, −1, −1, 1).

The series PΓ(t)i = NΓ(t)i

DΓ(t) are given by DΓ(t) = (1 − t6)(1 − t8), and

NΓ(t)0 = t12 + 1, NΓ(t)4 = t9 + t7 + t5 + t3,
NΓ(t)1 = t8 + t4, NΓ(t)5 = t9 + t7 + t5 + t3,
NΓ(t)2 = t8 + t4, NΓ(t)6 = t10 + t8 + 2t6 + t4 + t2.
NΓ(t)3 = t11 + t7 + t5 + t,

2.3.2 Type E7 — Binary octahedral group

The binary octahedral group is the subgroup 〈a, b, c〉 of SL2C, with a, b, c defined as in the preceding
section. The order of Γ is 48. The 8 conjugacy classes of Γ are

Class id a4 = −id ab b c2 c a a3

Cardinality 1 1 12 6 8 8 6 6
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The character table TΓ of Γ and the matrix A are

TΓ =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 1 1 1 1 1 1 1

1 1 −1 1 1 1 −1 −1

2 2 0 2 −1 −1 0 0

2 −2 0 0 −1 1
√

2 −
√

2

2 −2 0 0 −1 1 −
√

2
√

2

3 3 −1 −1 0 0 1 1

3 3 1 −1 0 0 −1 −1

4 −4 0 0 1 −1 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

1 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 1

0 0 1 0 0 1 1 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

and the eigenvalues are Θ = (2, −2, 0, 0, −1, 1,
√

2, −
√

2).

The series PΓ(t)i = NΓ(t)i

DΓ(t) are given by DΓ(t) = (1 − t8)(1 − t12), and

NΓ(t)0 = t18 + 1, NΓ(t)4 = t13 + t11 + t7 + t5,
NΓ(t)1 = t12 + t6, NΓ(t)5 = t16 + t12 + t10 + t8 + t6 + t2,
NΓ(t)2 = t14 + t10 + t8 + t4, NΓ(t)6 = t14 + t12 + t10 + t8 + t6 + t4,
NΓ(t)3 = t17 + t11 + t7 + t, NΓ(t)7 = t15 + t13 + t11 + 2t9 + t7 + t5 + t3.

2.3.3 Type E8 — Binary icosahedral group

The binary icosahedral group is the subgroup 〈a, b, c〉 of SL2C, with

a :=

(
−ζ3

5 0
0 −ζ2

5

)
, b :=

(
0 1
−1 0

)
, c :=

1

ζ2
5 + ζ−2

5

(
ζ5 + ζ−1

5 1
1 −ζ5 − ζ−1

5

)
.

The order of Γ is 120. The 9 conjugacy classes of Γ are

Class id b2 = −id a a2 a3 a4 abc (abc)2 b
Cardinality 1 1 12 12 12 12 20 20 30

The character table TΓ of Γ and the matrix A are

TΓ :=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 1 1 1 1 1 1 1 1

2 −2 1−
√

5
2

− 1+
√

5
2

1+
√

5
2

−1+
√

5
2

1 −1 0

2 −2 1+
√

5
2

−1+
√

5
2

1−
√

5
2

− 1+
√

5
2

1 −1 0

3 3 1+
√

5
2

1−
√

5
2

1−
√

5
2

1+
√

5
2

0 0 −1

3 3 1−
√

5
2

1+
√

5
2

1+
√

5
2

1−
√

5
2

0 0 −1

4 4 −1 −1 −1 −1 1 1 0

4 −4 1 −1 1 −1 −1 1 0

5 5 0 0 0 0 −1 −1 1

6 −6 −1 1 −1 1 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

1 0 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1

0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 1 0 1

0 0 0 0 1 1 0 1 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

and the eigenvalues are Θ =
(
2, −2, 1+

√
5

2 , −1+
√

5
2 , 1−

√
5

2 , −1−
√

5
2 , 1, −1, 0

)
.

The series PΓ(t)i = NΓ(t)i

DΓ(t) are given by DΓ(t) = (1 − t12)(1 − t20), and

NΓ(t)0 = t30 + 1, NΓ(t)4 = t24 + t20 + t16 + t14 + t10 + t6,
NΓ(t)1 = t23 + t17 + t13 + t7, NΓ(t)5 = t24 + t22 + t18 + t16 + t14 + t12 + t8 + t6,
NΓ(t)2 = t29 + t19 + t11 + t, NΓ(t)6 = t27 + t21 + T 19 + t17 + t13 + t11 + t9 + t3,
NΓ(t)3 = t28 + t20 + t18 + t12 + t10 + t2,
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NΓ(t)7 = t26 + t22 + t20 + t18 + t16 + t14 + t12 + t10 + t8 + t4,
NΓ(t)8 = t25 + t23 + t21 + t19 + t17 + 2t15 + t13 + t11 + t9 + t7 + t5.

3 Branching law for the finite subgroups of SL3C

• Let Γ be a finite subgroup of SL3C and {γ0, . . . , γl} the set of equivalence classes of irreducible finite
dimensional complex representations of Γ, where γ0 is the trivial representation. The character associated
to γj is denoted by χj .
Consider γ : Γ → SL3C the natural 3−dimensional representation, and γ∗ its contragredient representa-
tion. The character of γ is denoted by χ. By complete reducibility we get the decompositions

∀ j ∈ [[0, l]], γj ⊗ γ =

l⊕

i=0

a
(1)
ij γi and γj ⊗ γ∗ =

l⊕

i=0

a
(2)
ij γi.

This defines two square matrices A(1) :=
(
a
(1)
ij

)
(i,j)∈[[0, l]]2

and A(2) :=
(
a
(2)
ij

)
(i,j)∈[[0, l]]2

of Ml+1N.

• Let h be a Cartan subalgebra of sl3C and let ̟1, ̟2 be the corresponding fundamental weights, and
V (m̟1 +n̟2) the simple sl3C module of highest weight m̟1 +n̟2 with (m, n) ∈ N2. Then we get an
irreducible representation πm,n : SL3C → GL(V (m̟1 + n̟2)). The restriction of πm,n to the subgroup
Γ is a representation of Γ, and by complete reducibility, we get the decomposition

πm,n|Γ =

l⊕

i=0

mi(m,n)γi,

where the mi(m,n)’s are non negative integers. Let E := (e0, . . . , el) be the canonical basis of Cl+1, and

vm,n :=
l∑

i=0

mi(m,n)ei ∈ Cl+1.

As γ0 is the trivial representation, we have v0,0 = e0. Let us consider the vector (with elements of C[[t, u]]
as coefficients)

PΓ(t, u) :=

∞∑

m=0

∞∑

n=0

vm,nt
mun ∈ (C[[t, u]])l+1,

and denote by PΓ(t, u)j its j−th coordinate in the basis E . Note that PΓ(t, u) can also be seen as a
formal power series with coefficients in Cl+1. The aim of this article is to compute PΓ(t, u).

3.1 The formal power series of the multiplicies is a rational function

Here we establish some properties of the series PΓ(t, u), in order to give an explicit formula for it. The
first proposition follows from the uniqueness of the decomposition of a representation as sum of irreducible
representations.

Proposition 2

• A(2) = tA(1).
• A(1) and A(2) commute, i.e. A(1) is a normal matrix.

Since A(1) is normal, we know that it is diagonalizable with eigenvectors forming an orthogonal basis.
Now we will diagonalize the matrix A(1) by using the character table of the group Γ. Let us denote by
{C0, . . . , Cl} the set of conjugacy classes of Γ, and for any j ∈ [[0, l]], let gj be an element of Cj . So the
character table of Γ is the matrix TΓ ∈ Ml+1C defined by (TΓ)i,j := χi(gj).
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Proposition 3

For k ∈ [[0, l]], set wk := (χ0(gk), . . . , χl(gk)) ∈ Cl+1. Then wk is an eigenvector of A(2) associated to
the eigenvalue χ(gk). Similarly, wk is an eigenvector of A(1) associated to the eigenvalue χ(gk).

We will see in the sequel that W := (w0, . . . , wl) is always a basis of eigenvectors of A(1) and A(2), so
that T−1

Γ A(1)TΓ and T−1
Γ A(2)TΓ are diagonal matrices.

Now, we make use of the Clebsch-Gordan formula

π1,0 ⊗ πm,n = πm+1,n ⊕ πm,n−1 ⊕ πm−1,n+1, π0,1 ⊗ πm,n = πm,n+1 ⊕ πm−1,n ⊕ πm+1,n−1. (1)

Proposition 4

The vectors vm,n satisfy the following recurrence relations

A(1)vm,n = vm+1,n + vm,n−1 + vm−1,n+1,

A(2)vm,n = vm,n+1 + vm−1,n + vm+1,n−1.

Proof:

The definition of vm,n reads vm,n =
∑l

i=0mi(m,n)ei, thus A(1)vm,n =
∑l

i=0

(∑l
j=0mj(m,n)a

(1)
ij

)
ei.

Now (πm,n ⊗ π1,0)|Γ = πm,n|Γ ⊗ γ =
∑l

j=0mj(m,n)γj ⊗ γ =
∑l

i=0

(∑l
j=0mj(m,n)a

(1)
ij

)
γi,

and πm+1,n|Γ + πm,n−1|Γ + πm−1,n+1|Γ =
∑l

i=0 (mi(m+ 1, n) +mi(m,n− 1) +mi(m− 1, n+ 1)) γi.

By uniqueness,
∑l

j=0mj(m,n)a
(1)
ij = mi(m+ 1, n) +mi(m,n− 1) +mi(m− 1, n+ 1). �

Proposition 5

The series PΓ(t, u) satisfies the following relation

(
1 − tA(1) + t2A(2) − t3

)(
1 − uA(2) + u2A(1) − u3

)
PΓ(t, u) = (1 − tu)v0,0.

Proof:
• Set x := PΓ(t, u). Set also vm,−1 := 0 and v−1,n := 0 for (m, n) ∈ N, such that, according to the
Clebsch-Gordan formula, the formulae of the preceding corollary are still true for (m, n) ∈ N. We have

tuA(1)x = tu

∞∑

m=0

∞∑

n=0

A(1)vm,nt
mun =

∞∑

m=0

∞∑

n=0

(vm+1,n + vm,n−1 + vm−1,n+1)t
m+1un+1.

Now

∞∑

m=0

∞∑

n=0

vm+1,nt
m+1un+1 = u

∞∑

m=1

∞∑

n=0

vm,nt
mun = ux− u

∞∑

n=0

v0,nu
n,

∞∑

m=0

∞∑

n=0

vm,n−1t
m+1un+1 = tu2

∞∑

m=0

∞∑

n=1

vm,n−1t
mun−1 = tu2x,

and

∞∑

m=0

∞∑

n=0

vm−1,n+1t
m+1un+1 = t2

∞∑

m=1

∞∑

n=0

vm−1,n+1t
m−1un+1 = t2

∞∑

m=0

∞∑

n=0

vm,n+1t
mun+1

= t2
∞∑

m=0

∞∑

n=0

vm,nt
mun − t2

∞∑

m=0

vm,0t
m = t2x− t2

∞∑

m=0

vm,0t
m.

Therefore tuA(1)x = (u+ tu2 + t2)x− u
∞∑

n=0

v0,nu
n − t2

∞∑

m=0

vm,0t
m. (2)

We proceed likewise to obtain tuA(2)x = (t+ tu2 + u2)x− t

∞∑

m=0

vm,0t
m − u2

∞∑

n=0

v0,nu
n. (3)
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• By using Equations (2) and (3), we have tuA(2)x− tu2A(1)x = t(1 − u3)x + (t2u− t)

∞∑

m=0

vm,0t
m,

i.e.
(
1 − uA(2) + u2A(1) − u3

)
x = (1 − tu)

∞∑

m=0

vm,0t
m. (4)

Besides A(1)vm,0 = vm+1,0 + vm−1,1, and A(2)vm−1,0 = vm−1,1 + vm−2,0, hence

A(1)vm,0 = vm+1,0 +A(2)vm−1,0 − vm−2,0.

Set y :=

∞∑

m=0

vm,0t
m. Then

tA(1)y =

∞∑

m=0

vm+1,0t
m+1 +A(2)

∞∑

m=1

vm−1,0t
m+1 −

∞∑

m=2

vm−2,0t
m+1

=

∞∑

m=1

vm,0t
m + t2A(2)

∞∑

m=0

vm,0t
m − t3

∞∑

m=0

vm,0t
m = y − v0,0 + t2A(2)y − t3y.

So
(
1 − tA(1) + t2A(2) − t3

)
y = v0,0. (5)

Combining Eq. 4 and 5, we have
(
1 − tA(1) + t2A(2) − t3

) (
1 − uA(2) + u2A(1) − u3

)
x = (1 − tu)v0,0. �

We may inverse the relation obtained in Proposition 5 and obtain an explicit expression3 for PΓ(t, u) as
well as an explicit formula for the vector vm,n. But, for the explicit calculations of PΓ(t, u), we will use
an other fundamental formula (we inverse complex numbers instead of matrices). We need the rational
function f defined by

f : C2 → C(t, u)

(d1, d2) 7→ 1 − tu

(1 − td1 + t2d2 − t3)(1 − ud2 + u2d1 − u3)
.

The complete classification up to conjugation of all finite subgroups of SL3C is given in [YY93]. It consists
in four infinite series (types A, B, C, D) and eight exceptional cases (types E, F, G, H, I, J, K, L).
In all the cases, the character table TΓ is invertible, and Λ(1) := T−1

Γ A(1) TΓ and Λ(2) := T−1
Γ A(2) TΓ are

diagonal matrices, with Λ
(1)
jj = χ(gj) and Λ

(2)
jj = χ(gj). According to Proposition 5, we may write

TΓ

(
1 − tΛ(1) + t2Λ(2) − t3

)(
1 − uΛ(2) + u2Λ(1) − u3

)
T−1

Γ PΓ(t, u) = (1 − tu)v0,0.

We deduce that
PΓ(t, u) = TΓ ∆(t, u)T−1

Γ v0,0 = (TΓ ∆(t, u)TΓ) (T−2
Γ v0,0), (6)

where ∆(t, u) ∈ Ml+1C(t, u) is the diagonal matrix defined by ∆(t, u)jj = f(Λjj , Λjj) = f(χ(gj), χ(gj)).

Let Θ := (Λ
(1)
00 , . . . , Λ

(1)
ll ) be the list of eigenvalues of A(1).

As a corollary of the preceding formula we get:

3PΓ(t, u) = (1 − tu)
“

P∞
p=0

`

u3 + uA(2) − u2A(1)
´p

” “

P∞
q=0

`

t3 + tA(1) − t2A(2)
´q

”

v0,0.

For z ∈ R, let ⌈z⌉ be the smallest integer that is greater or equal to z, and set {r, s} := {1, 2}. For m ∈ N, set

α
(r)
m :=

m
X

q=⌈ m
3
⌉

0

B

@

min(3q−m, q)
X

j=⌈ 3q−m
2

⌉

Cj
qC

3q−m−j

j
(−1)3q−mA(r)3q−m−j

A(s)2j−3q+m

1

C

A

Then vm,n = v0,0 if m = n = 0; α
(2)
n v0,0 if m = 0, n 6= 0; α

(1)
m v0,0 if n = 0, m 6= 0; (α

(2)
n α

(1)
m −α

(2)
n−1α

(1)
m−1)v0,0 otherwise.
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Proposition 6

The coefficients of the vector PΓ(t, u) are rational fractions in t and u, hence the formal power series of
the multiplicities is a rational function.

We will denote them by

PΓ(t, u)i :=
NΓ(t, u)i

DΓ(t, u)i

, i ∈ [[0, l]]

where NΓ(t, u)i and DΓ(t, u)i are elements of C[t, u] that will be explicitly computed in the sequel.
Finally, we introduce a generalized Cartan matrix that we will study for every finite subgroup of SL3C.

Definition 7

For every finite subgroup of SL3C, we define a generalized Cartan matrix by the following formula:

CΓ := 2 I −A(1) − tA(1) + 2Diag(A(1)).

For k ∈ [[0, l]], the matrix of the reflection sk associated to the k−th root of g(CΓ) the Kac Moody algebra
attached to CΓ is defined by

(sk)ij = δj
i − (CΓ)k,jδ

k
i .

For each finite subgroup, we will give a decomposition of the set of simple reflections S = {s0, . . . , sl} in
p sets (with p minimal), i.e.

S = S0 ⊔ · · · ⊔ Sp−1,

such that roots corresponding to reflections in those sets form a partition of the set of simple roots to
mutually orthogonal sets. We denote by τl the (commutative) product of the elements of Sl. Then we
deduce the following decomposition of CΓ:

CΓ = p I −
p−1∑

k=0

τk.

Remark 8

Along this section we will present matrices that have only −2, −1, 0, 1, 2 as entries. For a clearer ex-
position, we represent the non-zero entries by colored points. The correspondence is the following: dark
grey = −2, light grey = −1, white = 1, black = 2, empty = 0.

3.2 Explicit results for the infinite series — Types A, B, C, D

3.2.1 The A Series

In this section, we consider Γ a finite diagonal abelian subgroup of SL3C. Then Γ is isomorphic to a
product of cyclic groups:

Γ ≃ Z/j1Z × · · · × Z/jkZ.

If Γ is a finite subgroup of SLrC, then Γ is a small subgroup of GLrC, i.e. no element of Γ has an
eigenvalue 1 of multiplicity r − 1. In fact, if g ∈ Γ has an eigenvalue 1 of multiplicity r − 1, then the last
eigenvalue of g is different from 1 and the determinant of g is also different from 1, which is impossible.
Then, according to a lemma of [DHZ05] (p.13), Γ has at most r − 1 generators. So, for a subgroup Γ of
type A, we may assume that k ≤ 2, i.e. we have two cases:
(A1) Γ ≃ Z/jZ,
(A2) Γ ≃ Z/j1Z × Z/j2Z, with j1 ≥ j2 ≥ 2.
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3.2.2 Type A1

• Here, we take Γ = Z/jZ. The natural representation and the natural character of Γ are

γ : Z/jZ → SL3C χ : Z/jZ → SL3C

k 7→




ζk
j 0 0
0 1 0

0 0 ζ−k
j


 k 7→ 1 + ζk

j + ζ−k
j .

The character table of Γ is TΓ =
(
ζkl
j

)
(k,l)∈[[0, j−1]]

. Let σ ∈ S[[0, j−1]] be the permutation defined by

σ(0) = 0 and ∀ i ∈ [[0, j−1]], σ(i) = j− i. Then T−1
Γ = 1

j
TΓQ

σ. The eigenvalues of A(1) are the numbers

χ(k) = 1 + ζk
j + ζ−k

j , for k ∈ [[0, j − 1]]. According to Formula 6,

PΓ(t, u)i =
1

j
(TΓ∆(t, u)TΓQ

σ)i0 =
1

j

j−1∑

p=0

ζip
j (1 − tu)

(1 − t)(1 − tζp
j )(1 − tζ−p

j )(1 − u)(1 − uζp
j )(1 − uζ−p

j )
.

Note that (1− tj)(1− t2)(1−uj)(1−u2) is a common denominator of all the terms of the preceding sum,
which is independent of i.

• The matrix A(1) ∈ MjC is

A(1) =

(
1 2
2 1

)
if j = 2, A(1) =




1 1 1

1
. . .

. . .

. . .
. . . 1

1 1 1




if j ≥ 3.

Then the set of reflections S may be decomposed in two (resp. three) sets if j is even (resp. odd).
⊲ If j is even, we have τ0 = s0s4 . . . sj−2, τ1 = s1s3 . . . sj−1, and CA1(j) = 2Ij−1 − (τ0 + τ1).
⊲ If j is odd, we have τ0 = s2s4 . . . sj−1, τ1 = s1s3 . . . sj−2, τ2 = s0, and CA1(j) = 3Ij − (τ0 + τ1 + τ2).
The graph associated to CA1(j) is a cyclic graph with j vertices and j edges.

3.2.3 Type A2

• We now consider the case Γ = Z/j1Z × Z/j2Z, with j1 ≥ j2 ≥ 2. The natural representation and the
natural character of Γ are

γ : Z/j1Z × Z/j2Z → SL3C χ : Z/j1Z × Z/j2Z → SL3C

(k1, k1) 7→




ζk1

j1
0 0

0 ζk2

j2
0

0 0 ζ−k1

j1
ζ−k2

j2


 (k1, k2) 7→ ζk1

j1
+ ζk2

j2
+ ζ−k1

j1
ζ−k2

j2
.

The irreducible characters of Γ are the elements of the form χ1 ⊗ χ2, where χ1 and χ2 are irreducible
characters of Z/j1Z and Z/j2Z, i.e. the irreducible characters of Γ are, for (l1, l2) ∈ [[0, j1−1]]×[[0, j2−1]],

χl1,l2 : Z/j1Z × Z/j2Z → SL3C

(k1, k2) 7→ ζk1l1
j1

ζk2l2
j2

.

For k ∈ {1, 2}, let us denote by Tk the character table of the group Z/jkZ. Then the character table
of Γ = Z/j1Z × Z/j2Z is the Kronecker product4 TΓ = T1 ⊗ T2. Let σk ∈ S[[0, jk−1]] be the permutation

4Recall that the Kronecker product of two matrices A ∈ MmC and B ∈ MnC is the block-matrix A ⊗ B ∈ MmnC

defined by the formula:
∀ (i, j) ∈ [[1, m]], (A ⊗ B)ij = aijB.

An important property of the Kronecker product is the relation

tr(A ⊗ B) = tr(A)tr(B).

The equality TΓ = T1 ⊗ T2 is implied by this relation
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defined by σk(0) = 0 and ∀ i ∈ [[0, jk − 1]], σk(i) = jk − i. We have

T−1
Γ = (T1 ⊗ T2)

−1 =
1

j1j2
(T1 ⊗ T2)(Q

σ1 ⊗Qσ2) =
1

j1j2
(T1Q

σ1) ⊗ (T2Q
σ2).

The eigenvalues of A(1) are the numbers χ(k1, k2) = ζ−k1

j1
+ ζ−k2

j2
+ ζk1

j1
ζk2

j2
, for (k1, k2) ∈ [[0, j1 − 1]] ×

[[0, j2 − 1]].

Let us denote by Λ(1) := Diag
(
Λ

(1)
0 , . . . , Λ

(1)
j1

)
the diagonal block-matrix defined by

(Λ
(1)
k1

)k2k2 = χ(k1, k2) = ζ−k1

j1
+ ζ−k2

j2
+ ζk1

j1
ζk2

j2
.

According to Formula 6, for (m, n) ∈ [[0, j1 − 1]] × [[0, j2 − 1]], we have

PΓ(t, u)mj2+n

=
1

j1j2

j1−1∑

k=0

j2−1∑

l=0

ζmk
j1
ζnl
j2

(1 − tu)
(
1 − t(ζ−k

j1
+ ζ−l

j2
+ ζk

j1
ζl
j2

) + t2(ζk
j1

+ ζl
j2

+ ζ−k
j1
ζ−l
j2

) − t3
)−1

(
1 − u(ζk

j1
+ ζl

j2
+ ζ−k

j1
ζ−l
j2

) + u2(ζ−k
j1

+ ζ−l
j2

+ ζk
j1
ζl
j2

) − u3
)−1

.

• The matrix A(1) is a block-matrix with j21 blocs of size j2, and we have

A
(1) = 14,4−I4, if j1 = j2 = 2, and A

(1) =

0

B

B

B

B

@

Qρ2 tQρ2 Ij2

Ij2

. . .
. . .

. . .
. . . tQρ2

tQρ2 Ij2 Qρ2

1

C

C

C

C

A

if j1 ≥ 2, Q
ρk :=

0

B

B

B

B

@

0 1

1
. . .

. . .
. . .

1 0

1

C

C

C

C

A

.

So, we may write A(1) = Ij1 ⊗Qρ2 +Qρ1 ⊗ Ij2 + tQρ1 ⊗ tQρ2 .
Note that Diag(A(1)) = 0. Then CA2(j1, j2) = Ij1 ⊗W +Qτ1 ⊗ S + tQτ1 ⊗ tS.

• Now, let us decompose the matrix A(1):

If j1 = j2 = 2, then the decomposition of CA2(2, 2) is CA2(2, 2) = 4 I4 − (s0 + s1 + s2 + s3).
Now, we assume that j1 ≥ 3. For (i1, i2) ∈ [[0, j1 − 1]] × [[0, j2 − 1]], let si1,i2 be the reflection associated
to the (i1j2 + i2)−th root. Then the set S may be decomposed into p sets where p ∈ {4, 6, 9}.
For i1 ∈ [[0, j1 − 1]], define S̃i1 := {si1,0, . . . , si1,j2−1} .
⊲ If j1 is odd, we set

Î0 := {0, 2, . . . , j1 − 3}, Î1 := {1, 3, . . . , j1 − 2}, Î0 := {j1 − 1}.

⊲ If j1 is even, we set
Î0 := {0, 2, . . . , j1 − 2}, Î1 := {1, 3, . . . , j1 − 1}.

Then, the roots associated to the reflections of distinct S̃i1 ’s for i1 belonging to a same Îk are orthogonal.

Now, we decompose each S̃i1 , i.e. S̃i1 = Ŝi1,0⊔· · ·⊔Ŝi1,q−1, such that q ∈ {2, 3} and for every k ∈ [[0, q−1]],

the roots associated to the reflections belonging to Ŝi1,k are orthogonal:

⊲ If j2 is odd, then S̃i1 = Ŝi1,0 ⊔ Ŝi1,1 ⊔ Ŝi1,2, with

Ŝi1,0 = {si1,0, si1,2, . . . , si1,j2−3}, Ŝi1,1 = {si1,1, si1,3, . . . , si1,j2−2}, Ŝi1,2 = {si1,j2−1}.

⊲ If j2 is even, then S̃i1 = Ŝi1,0 ⊔ Ŝi1,1, with

Ŝi1,0 = {si1,0, si1,2, . . . , si1,j2−2}, Ŝi1,1 = {si1,1, si1,3, . . . , si1,j2−1}.

Finally, for (k, l) ∈ {0, 1, 2}2, we set

Sk,l :=
∐

i1∈ bIk

Ŝi1,l,

12



and we denote by p ∈ {4, 6, 9} the number of non-empty sets Sk,l, and by τk,l the commutative product
of the reflections of Sk,l. Then, we have

CA2(j1, j2) := 2 Ij1j2 −A(1) − tA(1) + 2Diag(A(1)) = p Ij1j2 −
∑

(k,l)∈{0, 1, 2}2

τk,l.

• If j1 ≥ 3, the graph associated to Γ is a j1−gone, such that every vertex of this j1−gone is a j2−gone,
and every vertex of each j2−gone is connected with exactly 2 vertices of both adjacent j2−gones (for
j1 = j2 = 2, see Remark 9).

Remark 9

In the cases j1 = 2, j2 = 2 and j1 = 3, j2 = 2, we obtain full matrices and complete graphs. Moreover
the complete graphs with 4 and 6 vertices are the unique complete graphs that we can obtain for the type
A2 (the complete graphs with 2 and 3 vertices are the unique complete graphs that we can obtain for the
type A1).

Example 10

We consider the case where j1 = 6 and j2 = 5. Then the decomposition of the Cartan matrix is

CA2(6, 5) = 6 I30 − (τ0,0 + τ0,1 + τ0,2 + τ1,0 + τ1,1 + τ1,2),

where the matrix CA2(6, 5), the τi,j’s and the graph associated to CA2(6, 5) are given by Figure 1.

τ0,0 := (s0,0s0,2)(s2,0s2,2)(s4,0s4,2)
τ0,1 := (s0,1s0,3)(s2,1s2,3)(s4,1s4,3)
τ0,2 := (s0,4)(s2,4)(s4,4)
τ1,0 := (s1,0s1,2)(s3,0s3,2)(s5,0s5,2),
τ1,1 := (s1,1s1,3)(s3,1s3,3)(s5,1s5,3),
τ1,2 := (s1,4)(s3,4)(s5,4).

Figure 1: Matrix CA2(6, 5) and corresponding graph.

3.3 The B series

In this section, we study the binary groups of SL3C.
We give a general formula for the types BDa, BTa, BO and BI. In all these cases, the group Γ contains
two normal subgroups Γ1 and Γ2 such that Γ1 ∩ Γ2 = {id}, and |Γ1| · |Γ2| = |Γ|, so that Γ = Γ2Γ1 and
Γ ≃ Γ2 × Γ1. The group Γ1 is isomorphic to a binary group of SL2C and Γ2 is isomorphic to Z/mZ. So,
we can deduce the results for Γ of the results obtained for the group Γ1.
If we denote by Tk the character table of the group Γk, the character table of the direct product Γ = Γ2×Γ1

is the Kronecker product TΓ = T2⊗T1. The matrix T2 is given in Section 2.2.1 (Type A — Cyclic groups),
and the matrix T1 is given in the section dealing with the corresponding binary group of SL2C. We also
have T−1

Γ = T−1
2 ⊗ T−1

1 = 1
m

(T2Q
σ2) ⊗ T−1

1 , where σ2 is the permutation matrix defined by σ2(0) = 0,
and ∀ i ∈ [[0, m− 1]], σ2(i) = m− i.
Let us denote by h the number of conjugacy classes of Γ1. The columns of TΓ give a basis of eigenvectors
and the eigenvalues of A(1) are the numbers χi,j , (i, j) ∈ [[0, m− 1]] × [[0, h− 1]] where χi,j is the value
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of the natural character of Γ on the (i, j)−th conjugacy class.
Let us also denote by Λ(1) the diagonal block-matrix with m×m blocks of size h× h defined by

Λ(1) := Diag
(
Λ

(1)
0 , . . . , Λ

(1)
m−1

)
, (Λ

(1)
i )jj = χi, j .

According to Formula 6,

PΓ(t, u) = TΓ∆(t, u)T−1
Γ v0,0 =

1

m
(T2 ⊗ T1)∆(t, u)((T2Q

σ2) ⊗ (T1T
−2
1 ))v0,0,

where ∆(t, u) is the diagonal block-matrix defined by

∆(t, u) = Diag
(
∆(t, u)(0), . . . , ∆(t, u)(m−1)

)
,

with ∆(t, u)
(i)
jj = f(χi,j , χi,j) =

1 − tu

(1 − tχi,j + t2χi,j − t3)(1 − uχi,j + u2χi,j − u3)
=: fij .

The decomposition of the matrix A(1) and the description of the associated graph are made in the same
way for the binary tetrahedral, octahedral and icosahedral groups: the results are collected in 3.3.5.

3.3.1 The BDa subseries — Binary dihedral groups

• For (q, m) ∈ N2, let ψ2q, τ and φ2m be the following elements of SL3C:

ψ2q =




1 0 0
0 ζ2q 0
0 0 ζ−1

2q


 , τ =




1 0 0
0 0 i
0 i 0


 , φ2m =




ζ−2
2m 0 0
0 ζ2m 0
0 0 ζ2m


 .

In this section5, we assume that 1 < q < n, n ∧ q = 1, and m := n − q ≡ 1 mod 2, and we consider

the subgroup Γ := 〈ψ2q, τ, φ2m〉 of SL3C. Note that φ2m = ψq
2qφ

−m−1
2

m , so that Γ = 〈ψ2q, τ, φm〉.
Set Γ1 := 〈ψ2q, τ〉 and Γ2 := 〈φm〉 ≃ Z/mZ. Then Γ ≃ Γ2 × Γ1. With the notations used for SL2C, ψ2q

(resp. τ) represents aq (resp. b), where 〈aq, b〉 is the binary dihedral subgroup of SL2C.

The natural character of Γ is given by χ = (χi)i=0...m−1, with

χi = [χi,0, χi,1, χi,2, χi,3, χi,4, χi,5, χi,6, . . . , χi,q+2]

=
[
tr(φi

m), tr(φi
mψ2qτ), tr(φ

i
mτ), tr(φ

i
mψ

q
2q), tr(φ

i
mψ2q), tr(φ

i
mψ

2
2q), tr(φ

i
mψ

3
2q), . . . , tr(φ

i
mψ

q−1
2q )

]

=
[
ζ−2i
m + 2ζi

m, ζ
−2i
m , ζ−2i

m , ζ−2i
m − 2ζi

m, ζ
−2i
m + ζi

m(ζ2q + ζ−1
2q ), ζ−2i

m + ζi
m(ζ2

2q + ζ−2
2q ),

ζ−2i
m + ζi

m(ζ3
2q + ζ−3

2q ), . . . , ζ−2i
m + ζi

m(ζq−1
2q + ζ

−(q−1)
2q )

]
.

We deduce the following formula for the series PΓ(t, u):

PΓ(t, u)i1(q+3) =
1

m

m−1∑

r=0

ζi1r
m

[
3q − 1

8q2

(
d
(r)
1 + d

(r)
2 + d

(r)
3 + d

(r)
4 + 2

q−1∑

k=1

δ
(r)
k

)

+(−1)q q − 1

8q2

(
d
(r)
1 + (−1)q(d

(r)
2 + d

(r)
3 ) + d

(r)
4 + 2

q−1∑

k=1

(−1)kδ
(r)
k

)

+

q−1∑

l=1

(−1)l q − 1

4q2

(
d
(r)
1 + (−1)l(d

(r)
2 + d

(r)
3 ) + d

(r)
4 +

q−1∑

k=1

(ζlk
2q + ζ−lk

2q )δ
(r)
k

)]
,

5The other case — the type BDb — is 1 < q < n, n ∧ q = 1, and m := n − q ≡ 0 mod 2. This group is not a direct
product, the general expression for groupes in this subseries is unclear.
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PΓ(t, u)i1(q+3)+1 =
1

m

m−1∑

r=0

ζi1r
m

[
3q − 1

8q2

(
d
(r)
1 + ind

(r)
2 − ind

(r)
3 + (−1)nd

(r)
4 + 2

q−1∑

k=1

(−1)kδ
(r)
k

)

+(−1)q q − 1

8q2

(
d
(r)
1 + (−1)q(ind

(r)
2 − ind

(r)
3 + d

(r)
4 ) + 2

q−1∑

k=1

δ
(r)
k

)

+

q−1∑

l=1

(−1)l q − 1

4q2

(
d
(r)
1 + (−1)l(ind

(r)
2 − ind

(r)
3 ) + (−1)nd

(r)
4 +

q−1∑

k=1

(−1)k(ζlk
2q + ζ−lk

2q )δ
(r)
k

)]
,

and PΓ(t)i1(q+3)+3 (resp. PΓ(t)i1(q+3)+2) is obtained by replacing in PΓ(t)i1(q+3) (resp. PΓ(t)i1(q+3)+1)
d2 by −d2 and d3 by −d3. Finally, for i2 ∈ [[1, q − 1]], we have

PΓ(t, u)i1(q+3)+i2+3 =
1

m

m−1∑

r=0

ζi1r
m

[
3q − 1

8q2

(
2d

(r)
1 + 2(−1)i2d

(r)
4 + 2

q−1∑

k=1

(ζki2
2q + ζ−ki2

2q )δ
(r)
k

)

+(−1)q q − 1

8q2

(
2d

(r)
1 + 2(−1)i2d

(r)
4 + 2

q−1∑

k=1

(−1)k(ζi2k
2q + ζ−i2k

2q )δ
(r)
k

)

+

q−1∑

l=1

(−1)l q − 1

4q2

(
2d

(r)
1 + 2(−1)i2d

(r)
4 +

q−1∑

k=1

(ζki2
2q + ζ−ki2

2q )δ
(r)
k (ζkl

2q + ζ−kl
2q )

)]
.

• We now make the matrix A(1) explicit: A(1) is a block-matrix with m×m blocks of size (q+3)×(q+3).
⊲ If m ≥ 5, then the matrices A(1) and CΓ := 2I −A(1) − tA(1) are defined by

A(1) =




0 I B

B
. . .

. . .

. . .
. . . I

I
. . .

. . .

I B 0



, CΓ =




2I −B −I −I −B
−B 2I −B −I −I
−I −B 2I −B −I

−I −B . . .
. . .

. . .

−I . . .
. . . −B −I

−I . . . −B 2I −B
−B −I −I −B 2I




,

with

B =




0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
1 1 1 1 0



, if q = 2, and B =




0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
1 0 0 1 0 1 0 0

0 0 0 0 1 0
. . . 0

0 0 0 0 0
. . .

. . . 1
0 1 1 0 0 0 1 0




if q ≥ 3

⊲ If m = 3, then the matrices A(1) and CΓ := 2I −A(1) − tA(1) are defined by

A(1) =




0 0 B
B 0 0
0 B 0


 , CΓ =




0 B B
B 0 B
B B 0


 ,
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with

B =




1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
1 1 1 1 1



, if q = 2, and B =




1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 0 1 1 0 0 0
1 0 0 1 1 1 0 0

0 0 0 0 1 1
. . . 0

0 0 0 0 0
. . .

. . . 1
0 1 1 0 0 0 1 1




if q ≥ 3.

⊲ If m = 1, then the matrices A(1) and CΓ are A(1) = B and CΓ := 2I − A(1) − tA(1) + 2Diag(A(1)),
with B defined as in the case m = 3.

• For i1 ∈ [[0, m− 1]] and i2 ∈ [[0, q + 2]], let si1,i2 be the reflection associated to the (i1(q + 3) + i2)−th
root. Then the set S may be decomposed in p sets where p ∈ {2, 3, 4, 5}:
— If m ≥ 3, then:
⊲ Ifm ≡ 0 mod 3, set Sl := {s3k+l,i2 / (k, i2) ∈ [[0, m

3 −1]]×[[0, q+2]]} for l ∈ [[0, 2]]. Then S = S0⊔S1⊔S2,
p = 3, and CΓ = 3I − τ0 − τ1 − τ2.
⊲ If m ≡ 1 mod 3, set Sl := {s3k+l,i2 / (k, i2) ∈ [[0, m−1

3 − 1]] × [[0, q + 2]]} for l ∈ [[0, 2]], and
S3 := {sm−1,i2 / i2 ∈ [[0, q + 2]]}. Then S = S0 ⊔ S1 ⊔ S2 ⊔ S3, p = 4, and CΓ = 4I − τ0 − τ1 − τ2 − τ3.
⊲ If m ≡ 2 mod 3, set Sl := {s3k+l,i2 / (k, i2) ∈ [[0, m−2

3 − 1]] × [[0, q + 2]]} for l ∈ [[0, 2]], and
S3 := {sm−2,i2 / i2 ∈ [[0, q + 2]]}, S4 := {sm−1,i2 / i2 ∈ [[0, q + 2]]}. Then S = S0 ⊔ S1 ⊔ S2 ⊔ S3 ⊔ S4,
p = 5, and CΓ = 5I − τ0 − τ1 − τ2 − τ3 − τ4.

— If m = 1, then:
⊲ If q = 2, set S0 := {s0,0, s0,1, s0,2 s0,3} and S1 := {s0,4}. Then S = S0⊔S1, p = 2, and CΓ = 2I−τ0−τ1.
⊲ If q ≥ 3 and q is even, set S0 := {s0,0, s0,1, s0,2} and S1 := {s0,3, . . . , s0, q+1}, S2 := {s0,4, . . . , s0, q+2}.
Then S = S0 ⊔ S1 ⊔ S2, p = 3, and CΓ = 2I − τ0 − τ1 − τ1.
⊲ If q ≥ 3 and q is odd, set S0 := {s0,0, s0,1, s0,2} and S1 := {s0,3, . . . , s0, q+2}, S2 := {s0,4, . . . , s0, q+1}.
Then S = S0 ⊔ S1 ⊔ S2, p = 3, and CΓ = 2I − τ0 − τ1 − τ1.

• If m = 1, the graph associated to Γ is the following:

1 0

q + 2 · · · 4

2 3

If m ≥ 2, the graph associated to Γ consists in q + 3 m−gones that are linked together.

3.3.2 The BTa subseries — Binary tetrahedral groups

Let ψ4, τ, η, φ2m be the elements

ψ4 :=




1 0 0
0 ζ4 0
0 0 ζ−1

4


 , τ :=




1 0 0
0 0 i
0 i 0


 , η :=

1√
2




√
2 0 0

0 ζ7
8 ζ7

8

0 ζ5
8 ζ8


 , φ2m :=




ζ−2
2m 0 0
0 ζ2m 0
0 0 ζ2m


 .

In this section6, we assume that m ≡ 1 or 5 mod 6, and we consider the subgroup Γ := 〈ψ4, τ, η, φ2m〉
of SL3C. Note that φ2m = ψ2

4φ
− m−1

2
m , so that Γ := 〈ψ4, τ, η, φm〉. Set Γ1 := 〈ψ4, τ, η〉 and Γ2 :=

6The other case — the type BTb — is m ≡ 3 mod 6. This group is not a direct product.
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〈φm〉 ≃ Z/mZ. Then we have Γ ≃ Γ2 × Γ1.
With the notations of the binary tetrahedral subgroup of SL2C, ψ4 (resp. τ , η) represents a2 (resp. b,
c). Γ1 ≃ 〈a2, b, c〉 is the binary tetrahedral subgroup of SL2C. Representatives to its 7 conjugacy classes
are

{id, a4 = −id, b, c, c2, −c, −c2},
and its character table is the matrix given in Section 2.3.1 (Type E6 — Binary tetrahedral group).
The natural character of Γ is given by

χi,0 = χ(φi
m) = ζ−2i

m + 2ζi
m χi,4 = χ(φi

mη
2) = ζ−2i

m − ζi
m

χi,1 = χ(φi
mψ

2
4) = ζ−2i

m − 2ζi
m χi,5 = χ(φi

mψ
2
4η) = ζ−2i

m − ζi
m

χi,2 = χ(φi
mτ) = ζ−2i

m χi,6 = χ(φi
mψ

2
4η

2) = ζ−2i
m + ζi

m

χi,3 = χ(φi
mη) = ζ−2i

m + ζi
m

Finally, we obtain the series PΓ(t, u): for p ∈ [[0, m− 1]], we get

PΓ(t, u)7p =
1

24m

m−1∑

k=0

ζpk
m (fk,0 + fk,1 + 6 fk,2 + 4 fk,3 + 4 fk,4 + 4 fk,5 + 4 fk,6),

PΓ(t, u)7p+1 =
1

24m

m−1∑

k=0

ζpk
m (fk,0 + fk,1 + 6 fk,2 + (4 fk,3 + 4 fk,5) j + (4 fk,4 + 4 fk,6) j

2),

PΓ(t, u)7p+3 =
1

24m

m−1∑

k=0

ζpk
m (2 fk,0 − 2 fk,1 + 4 fk,3 − 4 fk,4 − 4 fk,5 + 4 fk,6),

PΓ(t, u)7p+4 =
1

24m

m−1∑

k=0

ζpk
m (2 fk,0 − 2 fk,1 + (4 fk,3 − 4 fk,5) j + (−4 fk,4 + 4 fk,6) j

2),

PΓ(t, u)7p+6 =
1

24m

m−1∑

k=0

ζpk
m (3 fk,0 + 3 fk,1 − 6 fk,2),

and PΓ(t, u)7p+2 (resp. PΓ(t, u)7p+5) is obtained by exchanging j and j2 in PΓ(t, u)7p+1 (resp. PΓ(t, u)7p+4).

3.3.3 The BO subseries — Binary octahedral groups

For m ∈ N such that m ∧ 6 = 1, let ψ8, τ, η, φ2m be the elements

ψ8 :=




1 0 0
0 ζ8 0
0 0 ζ7

8


 , τ :=




1 0 0
0 0 i
0 i 0


 , η :=

1√
2




√
2 0 0

0 ζ7
8 ζ7

8

0 ζ5
8 ζ8


 , φ2m :=




ζ−2
2m 0 0
0 ζ2m 0
0 0 ζ2m


 ,

and consider the subgroup Γ = 〈ψ8, τ, η, φ2m〉 of SL3C. Note that φ2m = ψ4
8φ

− m−1
2

m , so that Γ :=
〈ψ8, τ, η, φm〉. Set Γ1 := 〈ψ8, τ, η〉 and Γ2 := 〈φm〉 ≃ Z/mZ.
Then Γ ≃ Γ2 × Γ1.
With the notations of the binary octahedral subgroup of SL2C, ψ8 (resp. τ , η) represents a (resp. b, c).
Γ1 ≃ 〈a, b, c〉 is the binary octahedral subgroup of SL2C. Reperesentatives of its 8 conjugacy classes are

{id, a4 = −id, ab, b, c2, c, a, a3},

and its character table is the matrix given in Section 2.3.2 (Type E7 — Binary octahedral group).
The natural character of Γ is given by

χi,0 = χ(φi
m) = ζ−2i

m + 2ζi
m χi,4 = χ(φi

mη
2) = ζ−2i

m − ζi
m

χi,1 = χ(φi
mψ

4
8) = ζ−2i

m − 2ζi
m χi,5 = χ(φi

mη) = ζ−2i
m + ζi

m

χi,2 = χ(φi
mψ8τ) = ζ−2i

m χi,6 = χ(φi
mψ8) = ζ−2i

m + ζi
m

√
2

χi,3 = χ(φi
mτ) = ζ−2i

m χi,7 = χ(φi
mψ

3
8) = ζ−2i

m − ζi
m

√
2
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Finally, we obtain the series PΓ(t, u): for p ∈ [[0, m− 1]], we have

PΓ(t, u)8p =
1

48m

m−1∑

k=0

ζpk
m (fk,0 + fk,1 + 12 fk,2 + 6 fk,3 + 8 fk,4 + 8 fk,5 + 6 fk,6 + 6 fk,7),

PΓ(t, u)8p+2 =
1

48m

m−1∑

k=0

ζpk
m (2 fk,0 + 2 fk,1 + 12 fk,3 − 8 fk,4 − 8 fk,5),

PΓ(t, u)8p+3 =
1

48m

m−1∑

k=0

ζpk
m (2 fk,0 − 2 fk,1 − 8 fk,4 + 8 fk,5 + 6

√
2fk,6 − 6

√
2fk,7),

PΓ(t, u)8p+5 =
1

48m

m−1∑

k=0

ζpk
m (3 fk,0 + 3 fk,1 − 12 fk,2 − 6 fk,3 + 6 fk,6 + 6 fk,7),

PΓ(t, u)8p+7 =
1

48m

m−1∑

k=0

ζpk
m (4 fk,0 − 4 fk,1 + 8 fk,4 − 8 fk,5),

and PΓ(t, u)8p+1 (resp. PΓ(t, u)8p+4, PΓ(t, u)8p+6) is obtained by replacing fk,2, fk,6, fk,7 by their op-
posite in PΓ(t, u)8p (resp. PΓ(t, u)8p+3, PΓ(t, u)8p+5).

3.3.4 The BI subseries — Binary icosahedral groups

For m ∈ N such that m ∧ 30 = 1, let µ, τ, η be the elements

µ :=




1 0 0
0 −ζ3

5 0
0 0 −ζ2

5


 , τ :=




1 0 0
0 0 1
0 −1 0


 , η :=

1

ζ2
5 − ζ−2

5




ζ2
5 − ζ−2

5 0 0
0 ζ5 − ζ−1

5 1
0 1 −ζ5 − ζ−1

5


 ,

and consider the subgroup Γ = 〈µ, τ, η, φ2m〉 of SL3C.

Note that φ2m = η2φ
−m−1

2
m , so that Γ := 〈µ, τ, η, φm〉. Set Γ1 := 〈µ, τ, η〉 and Γ2 := 〈φm〉 ≃ Z/mZ.

Then Γ ≃ Γ2 × Γ1.
With the notations of the binary icosahedral subgroup of SL2C, µ (resp. τ , η) represents a (resp. b, c).
Γ1 ≃ 〈a, b, c〉 is the binary icosahedral subgroup of SL2C. Representatives of its 9 conjugacy classes are

{id, b2 = −id, a, a2, a3, a4, abc, (abc)2, b},

and its character table is given in Section 2.3.3 (Type E8 — Binary icosahedral group).
The natural character of Γ is given by

χi,0 = χ(φi
m) = ζ−2i

m + 2ζi
m χi,5 = χ(φi

mµ
4) = ζ−2i

m − 1+
√

5
2 ζi

m

χi,1 = χ(φi
mτ

2) = ζ−2i
m − 2ζi

m χi,6 = χ(φi
mµτη) = ζ−2i

m + ζi
m

χi,2 = χ(φi
mµ) = ζ−2i

m + 1+
√

5
2 ζi

m χi,7 = χ(φi
m(µτη)2) = ζ−2i

m − ζi
m

χi,3 = χ(φi
mµ

2) = ζ−2i
m + −1+

√
5

2 ζi
m χi,8 = χ(φi

mτ) = ζ−2i
m

χi,4 = χ(φi
mµ

3) = ζ−2i
m + 1−

√
5

2 ζi
m

Finally, we obtain the series PΓ(t, u): for p ∈ [[0, m− 1]], we have

PΓ(t, u)9p =
1

120m

m−1∑

k=0

ζpk
m (fk,0 + fk,1 + 12 fk,2 + 12 fk,3 + 12 fk,4 + 12 fk,5 + 20 fk,6 + 20 fk,7 + 30 fk,8),

PΓ(t, u)9p+1 =
1

120m

m−1∑

k=0

ζpk
m (2 fk,0 − 2 fk,1 + (6 − 6

√
5)fk,2 + (−6 − 6

√
5)fk,3 + (6 + 6

√
5)fk,4

+(−6 + 6
√

5)fk,5 + 20 fk,6 − 20 fk,7),
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PΓ(t, u)9p+3 =
1

120m

m−1∑

k=0

ζpk
m (3 fk,0 + 3 fk,1 + (6 + 6

√
5)fk,2 + (6 − 6

√
5)fk,3 + (6 − 6

√
5)fk,4

+(6 + 6
√

5)fk,5 − 30 fk,8),

PΓ(t, u)9p+5 =
1

120m

m−1∑

k=0

ζpk
m (4 fk,0 + 4 fk,1 − 12 fk,2 − 12 fk,3 − 12 fk,4 − 12 fk,5 + 20 fk,6 + 20 fk,7)

PΓ(t, u)9p+7 =
1

120m

m−1∑

k=0

ζpk
m (5 fk,0 + 5 fk,1 − 20 fk,6 − 20 fk,7 + 30 fk,8)

PΓ(t, u)9p+8 =
1

120m

m−1∑

k=0

ζpk
m (6 fk,0 − 6 fk,1 − 12 fk,2 + 12 fk,3 − 12 fk,4 + 12 fk,5),

and PΓ(t, u)9p+4 (resp. PΓ(t, u)9p+2) is obtained by replacing 6
√

5 by its opposite in PΓ(t, u)9p+3

(resp. PΓ(t, u)9p+1), and PΓ(t, u)9p+6 is obtained by replacing fk,1, fk,2, fk,4, fk,6 by their oppo-
site in PΓ(t, u)9p+5.

3.3.5 Decomposition of CΓ for the subseries BTa, BO, BI

• For the subseries BTa (resp. BO, BI), we set n = 7 (resp. n = 8, n = 9). We now make the matrix
A(1) explicit: A(1) is a block-matrix with m×m blocks of size n× n.
⊲ If m ≥ 5, then the matrices A(1) and CΓ := 2I −A(1) − tA(1) are defined by

A
(1) =

0

B

B

B

B

B

B

B

B

@

0 I Bn

Bn

. . .
. . .

. . .
. . . I

I
. . .

. . .

I Bn 0

1

C

C

C

C

C

C

C

C

A

, CΓ =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

2I −Bn −I −I −Bn

−Bn 2I −Bn −I −I

−I −Bn 2I −Bn −I

−I −Bn

. . .
. . .

. . .

−I
. . .

. . . −Bn −I

−I
. . . −Bn 2I −Bn

−Bn −I −I −Bn 2I

1

C

C

C

C

C

C

C

C

C

C

C

C

A

,

with

B7 =

0

B

B

B

B

B

B

B

B

@

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 1
0 1 0 0 0 0 1
0 0 1 0 0 0 1
0 0 0 1 1 1 0

1

C

C

C

C

C

C

C

C

A

, B8 =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

1 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 1

0 0 1 0 0 1 1 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, B9 =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

1 0 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1

0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 1 0 1

0 0 0 0 1 1 0 1 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

⊲ If m = 1, then the matrix A(1) is A(1) := Bn + I, and CΓ is defined by CΓ := 2I − A(1) − tA(1) +
2Diag(A(1)), i.e. CΓ = 2I − 2Bn.

• The decomposition of CΓ is the following: for i1 ∈ [[0, m− 1]] and i2 ∈ [[0, n− 1]], let si1,i2 be the reflec-
tion associated to the (ni1+i2)−th root. Then the set S may be decomposed in p sets where p ∈ {2, 4, 5}.

— If m ≥ 5, then:
⊲ If m ≡ 1 mod 3, set Sl := {s3k+l,i2 / (k, i2) ∈ [[0, m−1

3 − 1]] × [[0, n − 1]]} for l ∈ [[0, 2]], and
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S3 := {sm−1,i2 / i2 ∈ [[0, n− 1]]}. Then S = S0 ⊔ S1 ⊔ S2 ⊔ S3, p = 4, and CΓ = 4I − τ0 − τ1 − τ2 − τ3.
⊲ If m ≡ 2 mod 3, set Sl := {s3k+l,i2 / (k, i2) ∈ [[0, m−2

3 − 1]] × [[0, n − 1]]} for l ∈ [[0, 2]], and
S3 := {sm−2,i2 / i2 ∈ [[0, n − 1]]}, S4 := {sm−1,i2 / i2 ∈ [[0, n − 1]]}. Then S = S0 ⊔ S1 ⊔ S2 ⊔ S3 ⊔ S4,
p = 5, and CΓ = 5I − τ0 − τ1 − τ2 − τ3 − τ4.

— If m = 1, then S = S0 ⊔ S1, p = 2, and CΓ = 2I − τ0 − τ1, with
⊲ If n = 7, S0 := {s0,0, s0,1, s0,2, s0,6} and S1 := {s0,3, s0,4, s0,5}.
⊲ If n = 8, S0 := {s0,0, s0,1, s0,2, s0,5, s0,6} and S1 := {s0,3, s0,4, s0,7}.
⊲ If n = 9, S0 := {s0,0, s0,3, s0,4, s0,5, s0,7} and S1 := {s0,1, s0,2, s0,6, s0,8}.

• If m = 1, the graph associated to Γ is the following:

n = 7 n = 8 n = 9

1 4

6 3 0

2 5

0 3 5

7 2

1 4 6

1 5

8 7 6 3 2 0

4

If m ≥ 5, the graph associated to Γ is a graph of type BTa (resp. BO, BI), m = 1, such that every
vertex is a m−gone.

3.4 The C series

Let H ≃ Z/j1Z × Z/j2Z be a group of the series A, with eventually j1 = 1 or j2 = 1, and consider the

matrix T :=




0 1 0
0 0 1
1 0 0


, that is the matrix of the permutation (1, 2, 3) of S3. In this section, we

study Γ := 〈H, T 〉, the finite subgroup of SL3C generated by H and T . The subgroup N of Γ which
consists of all the diagonal matrices of Γ is a normal subgroup of Γ. By using the Bezout theorem,

N =



gk1,k2 :=




ζk1
m 0 0
0 ζk2

m 0
0 0 ζ−k1−k2

m


 / (k1, k2) ∈ [[0, m− 1]]2



 . (7)

Moreover, we have N ∩ 〈T 〉 = {id} and |N〈T 〉| = |N ||〈T 〉|
|N∩〈T 〉| = 3m2 = |Γ|. So, Γ is the semi-direct product

Γ ≃ N ⋊ 〈T 〉 ≃ (Z/mZ)2 ⋊ 〈T 〉.

We will obtain all the irreducible characters of Γ by induction; we distinguish two cases corresponding to
the two following subsections.

3.4.1 Series C — m non divisible by 3

• Set n′ := m2−1
3 , so that |N | = 3n′ + 1 and |G| = 3m2 = 3(3n′ + 1). The conjugacy classes of Γ are:

Class id T T−1 g ∈ N\{id}(n′ classes)
Cardinality 1 m2 m2 3

For each element gk1,k2 ∈ N\{id}, the conjugacy class of g is the set {gk1,k2 , gk2,−k1−k2 , g−k1−k2,k1}. In
order to obtain a transversal of N\{id}, i.e. a set containing exactly one representant of each conjugacy
class of N\{id}, we represent the elements of N\{id} by points (k1, k2) of [[0, m− 1]]2.
So, we search a transversal for the set of elements of the form (k1, k2), (k2, −k1,−k2 mod m) and
(−k1,−k2 mod m, k1), with (k1, k2) ∈ [[0, m− 1]]2.
A solution is the following: for a given conjugacy class, its three elements are on the edges of a triangle (see
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Figure 2), with exactly one element on each edge of the triangle. Therefore we may take as transversal
the set of all points that belong to the vertical edges minus the nearest point of the diagonal. More
precisely, a transversal for N\{id} is the set Ecc defined by

{(0, k2) / k2 ∈ [[1, m− 1]]}
⊔ {(k1, k2) / k1 ∈ [[1,

⌊
m
3

⌋
]], k2 ∈ [[k1, m− 1 − 2k1]]}

⊔ {(k1, k2) / k1 ∈ [[m− ⌊m
3 ⌋, m− 1]], k2 ∈ [[2(m− k1) + 1, k1]]}.

Figure 2: Conjugacy classes and irreducible characters for m = 11.

We choose the usual lexicographic order onEcc, so that we can number its elements: Ecc = {c1, c2, . . . , cm2
−1
3

},
with ci = (c

(1)
i , c

(2)
i ) ∈ [[0, m− 1]]2.

• The group Γ is generated by R := g1,0 and T , which verify the relations Rm = (RT )3 = T 3 = id. As
m is not divisible by 3, the irreducible characters of degree 1 are χ0,l : R 7→ 1, T 7→ jl for l ∈ [[0, 2]]. We
have [G : N ] = 3 with N abelian, so the possible degrees of the irreducible characters are 1, 2, 3. The
irreducible characters χl1, l2 induced by the irreducible characters of N are given by

Class [id] [T ] [T−1] [g], g ∈ N\{id}
Value 3 0 0 ζk1l1+k2l2

m + ζ
(−k1−k2)l1+k1l2
m + ζ

k2l1+(−k1−k2)l2
m

The characters χl1, l2 with (l1, l2) 6= (0, 0) are represented by points (l1, l2) of [[0, m − 1]]2. The points
that are associated to the same character are on a triangle or on a “trident ”, with exactly one point
on each edge (see Figure 2). So the set of irreducible characters χl1, l2 with (l1, l2) 6= (0, 0) is obtained
by taking the following set Eic of indexes:

{(0, k2) / k2 ∈ [[1, m− 1]]}
⊔ {(k1, k2) / k1 ∈ [[1,

⌊
m
3

⌋
]], k2 ∈ [[2k1 + 1, m− k1]]}

⊔ {(k1, k2) / k1 ∈ [[m− ⌊m
3 ⌋, m− 1]], k2 ∈ [[m− k1, 2k1 −m− 1]]}.

We choose the usual lexicographic order onEic, so that we can number its elements: Eic = {d1, d2, . . . , dm2
−1
3

},
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with di = (d
(1)
i , d

(2)
i ) ∈ [[0, m− 1]]2, and the character table TΓ is

TΓ =




1 1 1 1 · · · 1
1 j j2 1 · · · 1
1 j2 j 1 · · · 1
3 0 0
...

...
... C

3 0 0



,

where the general term of C ∈ Mm2
−1

3

C is

ci, j := ζ
c
(1)
j

d
(1)
i

+c
(2)
j

d
(2)
i

m + ζ
(−c

(1)
j

−c
(2)
j

)d
(1)
i

+c
(1)
j

d
(2)
i

m + ζ
c
(2)
j

d
(1)
i

+(−c
(1)
j

−c
(2)
j

)d
(2)
i

m , (i, j) ∈ [[1,
m2 − 1

3
]]2.

• The values of the natural character χ of Γ are

Class [id] [T ] [T−1] [g], g ∈ N\{id}
Value 3 0 0 ζk1

m + ζk2
m + ζ−k1−k2

m

Therefore the diagonal matrix ∆(t, u) is Diag
(
ε1, ε2, ε3, ∆̃(t, u)

)
, with ε1 := f(3, 3), ε2 = ε3 :=

f(0, 0), and the general term of ∆̃(t, u) ∈ Mm2
−1
3

C is

γj := f

(
ζ
−c

(1)
j

m + ζ
−c

(2)
j

m + ζ
c
(1)
j

+c
(2)
j

m , ζ
c
(1)
j

m + ζ
c
(2)
j

m + ζ
−c

(1)
j

−c
(2)
j

m

)
, j ∈ [[1,

m2 − 1

3
]].

Then, by setting

Σ :=

m2
−1

3∑

p=1

γp, Σi :=

m2
−1
3∑

j=1

γj

(
ζ

c
(1)
j

d
(1)
i

+c
(2)
j

d
(2)
i

m + ζ
(−c

(1)
j

−c
(2)
j

)d
(1)
i

+c
(1)
j

d
(2)
i

m + ζ
c
(2)
j

d
(1)
i

+(−c
(1)
j

−c
(2)
j

)d
(2)
i

m

)
,

we obtain the formula for PΓ(t, u):

PΓ(t, u)0 =
5(m+ 1)(m− 1) + 1

9m4
(3Σ + ε1 + ε2 + ε3) −

2(m+ 1)(m− 1)

9m2
(ε1 − ε2 − ε3)

+
2(m+ 1)(m− 1)

3m4

m2
−1

3∑

q=1


ε1 + ε2 + ε3 +

m2
−1
3∑

p=1

γpcp, q


 ,

PΓ(t, u)1 =
5(m+ 1)(m− 1) + 1

9m4
(3Σ + ε1 + jε2 + j2ε3) −

2(m+ 1)(m− 1)

9m2
(ε1 − jε2 − j2ε3)

+
2(m+ 1)(m− 1)

3m4

m2
−1
3∑

q=1


ε1 + jε2 + j2ε3 +

m2
−1
3∑

p=1

γpcp, q


 ,

and PΓ(t, u)2 is obtained by exchanging j and j2 in PΓ(t, u)1, and for i ∈ [[1, m2−1
3 ]],

PΓ(t, u)i+2 =
5(m+ 1)(m− 1) + 1

9m4
(3Σi + 3ε1) −

6(m+ 1)(m− 1)

9m2
ε1

+
2(m+ 1)(m− 1)

3m4

m2
−1
3∑

q=1


3ε1 +

m2
−1
3∑

p=1

γpci, pcp, q


 .
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3.4.2 Series C — m divisible by 3

• Set n′ := m2

3 , so that |N | = 3n′ and |G| = 3m2 = 3(3n′). Set a := R
m
3 = Diag(j, j, j). The conjugacy

classes of Γ are:

Class id a a2 T T−1 RT RT−1 R2T R2T−1 g ∈ N\{id, a, a2}(n′ − 1 classes)

Cardinality 1 1 1 m2

3
m2

3
m2

3
m2

3
m2

3
m2

3 3

For each element gk1,k2 ∈ N\{id, a, a2}, the conjugacy class of g is the set {gk1,k2 , gk2,−k1−k2 , g−k1−k2,k1}.
Its three elements are on the edges of a triangle, with exactly one element of each edge of the triangle.
So, a transversal of N\{id, a, a2} has the same form as in the case where 3 does not divide m, i.e. a
transversal for N\{id, a, a2} is the set Ecc defined by

{(0, k2) / k2 ∈ [[1, m− 1]]}
⊔ {(k1, k2) / k1 ∈ [[1, m

3 − 1]], k2 ∈ [[k1, m− 1 − 2k1]]}
⊔ {(k1, k2) / k1 ∈ [[m− m

3 + 1, m− 1]], k2 ∈ [[2(m− k1) + 1, k1]]}.

• As m is divisible by 3, the irreducible characters of degree 1 of Γ are, for (k, l) ∈ [[0, 2]]2, the nine
elements

χk,l : R 7→ jk

T 7→ jl.

As for the case where m is divisible by 3, the set of irreducible characters χl1, l2 with (l1, l2) 6= (0, 0) is
obtained by taking the following set Eic of indexes:

{(0, k2) / k2 ∈ [[1, m− 1]]}
⊔ {(k1, k2) / k1 ∈ [[1, m

3 − 1]], k2 ∈ [[2k1 + 1, m− k1]]}
⊔ {(k1, k2) / k1 ∈ [[m− m

3 + 1, m− 1]], k2 ∈ [[m− k1, 2k1 −m− 1]]}.

We choose the usual lexicographic order on Ecc and Eic, so that we can number its elements:

Ecc = {c1, c2, . . . , cm2

3 −1
}, Eic = {d1, d2, . . . , dm2

3 −1
},

with cj = (c
(1)
j , c

(2)
j ) ∈ [[0, m − 1]]2, and di = (d

(1)
i , d

(2)
i ) ∈ [[0, m − 1]]2, and we deduce the character

table TΓ of Γ:

TΓ =




1 1 1 1 1 1 1 1 1
1 1 1 j j2 j j2 j j2 1
1 1 1 j2 j j2 j j2 j
1 1 1 1 1 j j j2 j2

1 1 1 j j2 j2 1 1 j jc
(1)
i

−c
(2)
i

1 1 1 j2 j 1 j2 j 1
1 1 1 1 1 j2 j2 j j

1 1 1 j j2 1 j j2 1 j2(c
(1)
i

−c
(2)
i

)

1 1 1 j2 j j 1 1 j2

3 J
(1)
1 J

(2)
1 0 0 0 0 0 0

...
...

...
...

...
...

...
...

... C

3 J
(1)
m2

3 −1
J

(2)
m2

3 −1
0 0 0 0 0 0




,

where C ∈ Mm2

3 −1
C is a block-matrix with general term

ci, j := ζ
c
(1)
j

d
(1)
i

+c
(2)
j

d
(2)
i

m + ζ
(−c

(1)
j

−c
(2)
j

)d
(1)
i

+c
(1)
j

d
(2)
i

m + ζ
c
(2)
j

d
(1)
i

+(−c
(1)
j

−c
(2)
j

)d
(2)
i

m , (i, j) ∈ [[1,
m2

3
− 1]]2,
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J
(1)
i := jd

(1)
i

+d
(2)
i +j−2d

(1)
i

+d
(2)
i +jd

(1)
i

−2d
(2)
i , J

(2)
i := j2d

(1)
i

+2d
(2)
i +j−d

(1)
i

+2d
(2)
i +j2d

(1)
i

−d
(2)
i , i ∈ [[1,

m2

3
−1]]2.

• The values of the natural character χ of Γ are

Class id a a2 T T−1 RT RT−1 R2T R2T−1 g ∈ N\{id, a, a2}
Value 3 3j 3j2 0 0 0 0 0 0 ζk1

m + ζk2
m + ζ−k1−k2

m

Therefore the diagonal matrix ∆(t, u) is Diag(
˜̃

∆(t, u), ∆̃(t, u)), with

˜̃
∆(t, u) = Diag(β1, β2, β3, β4, . . . , β4︸ ︷︷ ︸

6 terms

) = Diag


f(3, 3), f(3j2, 3j), f(3j, 3j2), f(0, 0), . . . , f(0, 0)︸ ︷︷ ︸

6 terms


 ,

and the general term of ∆̃(t, u) ∈ Mm2

3 −1
C is

γj := f

(
ζ
−c

(1)
j

m + ζ
−c

(2)
j

m + ζ
c
(1)
j

+c
(2)
j

m , ζ
c
(1)
j

m + ζ
c
(2)
j

m + ζ
−c

(1)
j

−c
(2)
j

m

)
, j ∈ [[1,

m2

3
− 1]].

For (i, r) ∈ {1, 2} × {1, 2, 3}, and (s, q) ∈ {1, 2} × [[1, m2

3 − 1]], let us define

Σ(r) :=

m2

3 −1∑

p=1

γpj
(r−1)(c(1)

p −c(1)
p ), Φ(i,r) :=

m2

3 −1∑

p=1

J (i)
p γpj

(r−1)(c(1)
p −c(1)

p ),

Σ(s)
q :=

m2

3 −1∑

p=1

J (s)
p γp

(
ζ

c(1)
p d(1)

q +c(2)
p d(2)

q
m + ζ

(−c(1)
p −c(2)

p )d(1)
q +c(1)

p d(2)
q

m + ζ
c(2)

p d(1)
q +(−c(1)

p −c(2)
p )d(2)

q
m

)
,

ξ := (−1, −1, 2︸ ︷︷ ︸
1

, −1, −1, 2︸ ︷︷ ︸
2

, −1, −1, 2︸ ︷︷ ︸
3

, . . . , −1, −1, 2︸ ︷︷ ︸
m
3

( m
3

+1)

2 −1

, −1, −1, −1, −1, 2︸ ︷︷ ︸, −1, −1, 2︸ ︷︷ ︸, . . . , −1, −1, 2︸ ︷︷ ︸).

Then, we may give the expression of the series PΓ(t, u):

PΓ(t, u)0 =
3(5(m

3
)2 − 1) + 1

3m4
(3Σ(1) + β1 + β2 + β3 + 6β4) +

6(m

3
)2 − 2

3m4
(Φ(11) + Φ(21) + 2β1 + 2β2 + 2β3 + 12β4)

+
3(m

3
)2 − 1

m4

m2

3
−1

X

q=1

ξq

0

B

@
β1 + β2 + β3 + 3j

c
(1)
q −c

(2)
q β4 + 3j

2(c
(1)
q −c

(2)
q )

β4 +

m2

3
−1

X

p=1

γpcp,q

1

C

A
,

PΓ(t, u)1 =
3(5(m

3
)2 − 1) + 1

3m4
(3Σ(1) + β1 + β2 + β3 − 3β4) +

6(m

3
)2 − 2

3m4
(Φ(11) + Φ(21) + 2β1 + 2β2 + 2β3 − 6β4)

+
3(m

3
)2 − 1

m4

m2

3
−1

X

q=1

ξq

0

B

@
β1 + β2 + β3 + (2j + j

2)jc
(1)
q −c

(2)
q β4 + (2j

2 + j)j2(c
(1)
q −c

(2)
q )

β4 +

m2

3
−1

X

p=1

γpcp,q

1

C

A
,

PΓ(t, u)3 =
3(5(m

3
)2 − 1) + 1

3m4
(3Σ(2) + β1 + β2 + β3) +

6(m

3
)2 − 2

3m4
(Φ(12) + Φ(22) + 2β1 + 2β2 + 2β3)

+
3(m

3
)2 − 1

m4

m2

3
−1

X

q=1

ξq

0

B

@
β1 + β2 + β3 + (2 + j)jc

(1)
q −c

(2)
q β4 + (2j

2 + j)j2(c
(1)
q −c

(2)
q )

β4 +

m2

3
−1

X

p=1

γpj
c
(1)
p −c

(2)
p cp,q

1

C

A
,

PΓ(t, u)5 =
3(5(m

3
)2 − 1) + 1

3m4
(3Σ(2) + β1 + β2 + β3) +

6(m

3
)2 − 2

3m4
(Φ(12) + Φ(22) + 2β1 + 2β2 + 2β3)

+
3(m

3
)2 − 1

m4

m2

3
−1

X

q=1

ξq

0

B

@
β1 + β2 + β3 +

m2

3
−1

X

p=1

γpj
c
(1)
p −c

(2)
p cp,q

1

C

A
,
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PΓ(t, u)6 =
3(5(m

3
)2 − 1) + 1

3m4
(3Σ(3) + β1 + β2 + β3) +

6(m

3
)2 − 2

3m4
(Φ(13) + Φ(23) + 2β1 + 2β2 + 2β3)

+
3(m

3
)2 − 1

m4

m2

3
−1

X

q=1

ξq

0

B

@
β1 + β2 + β3 + (2 + j

2)jc
(1)
q −c

(2)
q β4 + (2j + j

2)j2(c
(1)
q −c

(2)
q )

β4 +

m2

3
−1

X

p=1

γpj
2(c

(1)
p −c

(2)
p )

cp,q

1

C

A
,

and PΓ(t, u)2 (resp. PΓ(t, u)4, PΓ(t, u)8) is obtained by exchanging the coefficients 2j + j2 and 2j2 + j
(resp. 2+ j and 2j2 + j, 2+ j2 and 2j+ j2) in PΓ(t, u)1 (resp. PΓ(t, u)3, PΓ(t, u)6); PΓ(t, u)7 is obtained

by replacing Φ(1i) by Φ(2i) and jc(1)
p −c(2)

p by j2(c
(1)
p −c(2)

p ) in PΓ(t, u)5.

Finally, for i ∈ [[1, m2

3 − 1]], we have

PΓ(t, u)i+8 =
3(5(m

3
)2 − 1) + 1

3m4
(3β1 + J

(1)
i β2 + J

(2)
i β3 + 3Σi) +

6(m

3
)2 − 2

3m4
(6β1 + 2J

(1)
i β2 + 2J

(2)
i β3 +

g

Σ
(1)
i +

g

Σ
(2)
i )

+
3(m

3
)2 − 1

m4

m2

3
−1

X

q=1

ξq

0

B

@
3β1 + J

(1)
i β2 + J

(2)
i β3 +

m2

3
−1

X

p=1

γpci,pcp,q

1

C

A
.

3.4.3 Decomposition of CΓ

We now make the matrix A(1) explicit: the form of the matrix A(1) is nearly the same in the case where
m is divisible by 3 as in the other case. The main difference between these two cases is due to the fact
that in the case where m is divisible by 3, there are 9 irreducible characters of degree 1 instead of 3.
Set κm := m

3 − 1 if 3 divides m, and κm :=
⌊

m
3

⌋
otherwise. The matrix A(1) is a block-matrix with

(2 + 2κm) × (2 + 2κm) blocks: for example, if m = 16, the matrices A(1) and CΓ are matrices of size 88.

Figure 3: The matrices A(1) and CΓ for m = 16.

• If m = 2, then A(1) =

(
03,3 13,1

11,3 2

)
, and CΓ = 3I − τ0 − τ1 − τ2, with τ0 := s0s2, τ1 := s1, τ2 := s3.

• If m = 3, then A(1) =

(
09,9 19,2

12,9 Ã

)
, Ã =

(
0 0
3 0

)
, and CΓ = 2I − (s0s1 . . . s9) − (s10s11).
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• Now, we assume that m ≥ 4. For i1 ∈ {0} ⊔ [[1, κm]] ⊔ [[m− κm, m− 1]], we define the set S̃i1 by:

S̃i1 :=





{s0,i2 / i2 ∈ [[1, m− 1]]} if i1 = 0,
{si1,i2 / i2 ∈ [[i1, m− 1 − 2i1]]} if i1 ∈ [[1, κm]],
{si1,i2 / i2 ∈ [[2(m− i1) + 1, i1]]} if i1 ∈ [[m− κm, m− 1]].

Then, we distinguish two cases:
⊲ If κm is odd, we set Î0 := {0, 2, 4, . . . , κm − 1, m− κm, m− κm + 2, . . . , m− 3},

Î1 := {1, 3, 5, . . . , κm, m− κm + 1, m− κm + 3, . . . , m− 2}, Î2 := {m− 1}.
⊲ If κm is even, we set Î0 := {0, 2, 4, . . . , κm, m− κm + 1, m− κm + 3, . . . , m− 3},

Î1 := {1, 3, 5, . . . , κm − 1, m− κm, m− κm + 2, . . . , m− 2}, Î2 := {m− 1}.
Then, the roots associated to the reflections of distinct S̃i1 ’s for i1 belonging to a same Îk are orthogonal.

Now, we decompose each S̃i1 , i.e. S̃i1 = Ŝi1,0 ⊔ · · · ⊔ Ŝi1,q−1, such that q ∈ {1, 2, 3} and for every

k ∈ [[0, q − 1]], the roots associated to the reflections belonging to Ŝi1,k are orthogonal:
⊲ If i1 = 0, then

⋄ If m− 1 is odd, then S̃0 = Ŝ0,0 ⊔ Ŝ0,1 ⊔ Ŝ0,2, with

Ŝ0,0 = {s0,1, s0,3, . . . , s0,m−3}, Ŝ0,1 = {s0,2, s0,4, . . . , s0,m−2}, Ŝ0,2 = {s0,m−1}.

⋄ If m− 1 is even, then S̃0 = Ŝ0,0 ⊔ Ŝ0,1, with

Ŝ0,0 = {s0,1, s0,3, . . . , s0,m−2}, Ŝ0,1 = {s0,2, s0,4, . . . , s0,m−1}.

⊲ If i1 ∈ [[1, κm]], then we have S̃i1 = Ŝi1,0 ⊔ Ŝi1,1 ⊔ Ŝi1,2, with:

⋄ If m− 3i1 is odd, then Ŝi1,0 = {si1,i1 , si1,i1+2, . . . , si1,m−2i1−3},

Ŝi1,1 = {si1,i1+1, si1,i1+3, . . . , si1,m−2i1−2}, Ŝi1,2 = {si1,m−2i1−1}.

⋄ If m− 3i1 is even, then Ŝi1,0 = {si1,i1 , si1,i1+2, . . . , si1,m−2i1−4},

Ŝi1,1 = {si1,i1+1, si1,i1+3, . . . , si1,m−2i1−1}, Ŝi1,2 = {si1,m−2i1−2}.

⊲ If i1 ∈ [[m− κm, m− 1]], then we have S̃i1 = Ŝi1,0 ⊔ Ŝi1,1 ⊔ Ŝi1,2, with:

⋄ If 3i1 − 2m is odd, then Ŝi1,0 = {si1,2(m−i1)+1, si1,2(m−i1)+3, . . . , si1,i1−2},

Ŝi1,1 = {si1,2(m−i1)+2, si1,2(m−i1)+4, . . . , si1,i1−1}, Ŝi1,2 = {si1,i1}.

⋄ If 3i1 − 2m is even, then Ŝi1,0 = {si1,2(m−i1)+1, si1,2(m−i1)+3, . . . , si1,i1−1},

Ŝi1,1 = {si1,2(m−i1)+2, si1,2(m−i1)+4, . . . , si1,i1−2}, Ŝi1,2 = {si1,i1}.

Note that some sets Ŝi1,k can be empty for k ∈ {1, 2}.

Finally, we set Sk,l :=
∐

i1∈ bIk
Ŝi1,l, for (k, l) ∈ {0, 1, 2}2\{(2, 2)}, and S2,2 :=

(∐
i1∈ bI2

Ŝi1,2

)
⊔{s−1,0, . . . , s−1,r},

with r = 8 if 3 divides m, and r = 2 otherwise. We denote by p ∈ [[1, 9]] the number of non-empty sets
Sk,l, and by τk,l the commutative product of the reflections of Sk,l. Then, CΓ = p I −

∑
(k,l)∈{0, 1, 2}2 τk,l.

Example 11

For m = 16, we have the following decomposition:

τ0,0 = (s0,1s0,3 . . . s0,13)(s2,2s2,4 . . . s2,8)(s4,4)(s11,11)(s13,7s13,9s13,11) τ0,2 = (s0,15)(s2,10)(s4,6)(s13,13)
τ0,1 = (s0,2s0,4 . . . s0,14)(s2,3s2,5 . . . s2,11)(s4,5s4,7)(s13,8s13,10s13,12) τ1,2 = (s1,13)(s3,9)(s12,12)(s14,14)
τ1,0 = (s1,1s1,3 . . . s1,11)(s3,3s3,5s3,7)(s5,5)(s12,9s12,11)(s14,5s14,7 . . . s14,13) τ2,0 = (s15,3s15,5 . . . s15,13)
τ1,1 = (s1,2s1,4 . . . s1,12)(s3,4s3,6s3,8)(s12,10)(s14,6s14,8 . . . s14,12) τ2,1 = (s15,4s15,6 . . . s15,14)
τ2,2 = (s15,15)(s−1,0s−1,1s−1,2)
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3.5 The D series

A group of type D is generated by a group of type C and a matrix

Q :=




a 0 0
0 0 b
0 c 0


 ,

with abc = −1. This group is not a direct product. We can’t give a general formula for this group and
we only give a simple example.

Example 12

Consider the group

Γ :=

〈


1 0 0
0 −1 0
0 0 −1


 ,




0 1 0
0 0 1
1 0 0


 ,




−1 0 0
0 0 1
0 1 0



〉
.

This group is isomorphic to the symmetric group S4, so Γ has 5 conjugacy classes.
The series PΓ(t, u) verifies

∀ i ∈ [[0, 4]], PΓ(t, u)i = (1 − tu)
N(t, u)i

D(t)D(u)
,

with D(t) = (t− 1)3(t2 + t+ 1)(t2 + 1)(t+ 1)2, and

N(t, u)0 = t6u6 + t5u5 − t6u3 − t3u6 + t5u3 + 2 t4u4 + t3u5 + t4u3 + t3u4 + t6 + t5u+ 2 t4u2 + 4 t3u3

+2 t2u4 + tu5 + u6 + t3u2 + t2u3 + t3u+ 2 t2u2 + tu3 − t3 − u3 + tu+ 1,

N(t, u)1 = t6u3 + t5u4 + t4u5 + t3u6 + t5u3 + t4u4 + t3u5 + t5u2 + t4u3 + t3u4 + t2u5 + t4u2 + t2u4

+t4u+ t3u2 + t2u3 + tu4 + t3u+ t2u2 + tu3 + t3 + t2u+ tu2 + u3,

N(t, u)2 =
(
t4u2 + t3u3 + t2u4 + t3u2 + t2u3 + t3u+ tu3 + t2u+ tu2 + t2 + tu+ u2

) (
t2 + 1

) (
u2 + 1

)
,

N(t, u)3 =
(
t4u2 + t3u3 + t2u4 + t3u+ tu3 + t2 + tu+ u2

) (
t2 + t+ 1

) (
u2 + u+ 1

)
,

N(t, u)4 = (t4u3 + t3u4 − t4u2 − t3u3 − t2u4 + t4u+ 2 t3u2 + 2 t2u3 + tu4 − t3u− tu3 + t3 + 2 t2u
+2 tu2 + u3 − t2 − tu− u2 + t+ u)

(
t2 + t+ 1

) (
u2 + u+ 1

)
.

4 Exceptional subgroups of SL3C — Types E, F, G, H, I, J, K, L

For every exceptional subgroup of SL3C, we begin by making the matrix A(1) explicit. Then we give
a decomposition of CΓ := 2 I − A(1) − A(2) + 2Diag(A(1)) as a sum of p elements, with p ∈ {3, 4}, so
that CΓ = p I − (τ0 + · · · + τp−1), and we give the graph associated to CΓ. We also write the list Θ of
eigenvalues of A(1).

Finally, we compute the sum of the series PΓ(t, u) =
NΓ(t, u)

DΓ(t, u)
. In all the cases, the denominator is of

the form DΓ(t, u)i = D̃Γ(t)iD̃Γ(u)i. Moreover, we will take the lowest common multiple DΓ(t) of the

D̃Γ(t)i’s in order that all the denominators are the same and have the form DΓ(t)DΓ(u), i.e.

∀ i ∈ [[0, l]], PΓ(t, u)i = (1 − tu)
MΓ(t, u)i

DΓ(t)DΓ(u)
.

Because of the to big size of the numerators, only the denominator and the relations between the numer-
ators are given in the text: all the numerators may be found on the web.
We also give the Poincaré series of the invariant ring P̂Γ(t) := PΓ(t, 0)0 = PΓ(0, t)0.
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4.1 Type E

The group of type E is the group 〈S, T, V 〉, with

S :=




1 0 0
0 ζ3 0
0 0 ζ2

3


 , T :=




0 1 0
0 0 1
1 0 0


 , V :=

i√
3




1 1 1
1 ζ3 ζ2

3

1 ζ2
3 ζ3


 .

Here l + 1 = 14, rank(A(1)) = 12, Θ = (3, −ζ3, −ζ2
3 , 0, 0, −1, ζ3, 1, ζ2

3 , 1, ζ3, 3 ζ3, ζ
2
3 , 3 ζ2

3 ), p = 3,
and τ0 := s0s1s2s3s12s13, τ1 := s5s7s10s11, τ2 := s4s6s8s9.

3 1

11 9 7 6

12 13

5 4 10 8

0 2

ME(t, u)2 = ME(t, u)3
ME(t, u)5 = ME(u, t)4
ME(t, u)7 = ME(u, t)6
ME(t, u)8 = ME(t, u)9
ME(t, u)10 = ME(t, u)11 = ME(u, t)8
ME(t, u)12 = ME(t, u)13

DE(t) = (t− 1)
3 (
t2 + t+ 1

)3 (
t2 + 1

) (
t4 − t2 + 1

)
(t+ 1)

2 (
t2 − t+ 1

)2

P̂E(t) =
−t18 + t15 − t12 − t6 + t3 − 1

(t− 1)
3
(t2 + t+ 1)

3
(t2 + 1) (t4 − t2 + 1) (t+ 1)

2
(t2 − t+ 1)

2 .

4.2 Type F

The group of type F is the group 〈S, T, V, P 〉, with S, T, V as for the type E, and

P :=
1√
−3




1 1 ζ2
3

1 ζ3 ζ3
ζ3 1 ζ3


 .

Here l + 1 = 16, rank(A(1)) = 15, Θ = (3, −ζ3, −ζ2
3 , 0, −1, ζ3, 1, ζ3, 1, ζ3, 1, ζ2

3 , ζ
2
3 , ζ

2
3 , 3 ζ3, 3 ζ2

3 ),
p = 3, and τ0 := s0s1s2s3s4s15, τ1 := s5s7s9s11s13, τ2 := s6s8s10s12s14.

13

12 6 8 10

0 1 15 2 3 4

11 5 7 9

14

MF (t, u)1 = MF (t, u)2 = MF (t, u)3
MF (t, u)5 = MF (t, u)7 = MF (t, u)9
MF (t, u)12 = MF (u, t)11
MF (t, u)14 = MF (u, t)13
MF (t, u)6 = MF (t, u)8 = MF (t, u)10
= MF (u, t)5

DF (t) = (t− 1)
3 (
t2 + t+ 1

)3 (
t2 + 1

) (
t4 − t2 + 1

)
(t+ 1)

2 (
t2 − t+ 1

)2

P̂F (t) =
−t18 + t15 − t9 + t3 − 1

(t− 1)
3
(t2 + t+ 1)

3
(t2 + 1) (t4 − t2 + 1) (t+ 1)

2
(t2 − t+ 1)

2 .
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4.3 Type G

The group of type G is the group 〈S, T, V, U〉, with S, T, V as for the type E, and

U :=




ζ2
9 0 0
0 ζ2

9 0
0 0 ζ2

9ζ3


 .

Here l + 1 = 24, rank(A(1)) = 21,

Θ = (3, −ζ3, −ζ2
3 , 0, 0, −ζ7

9 , −ζ4
9 , ζ

4
9 + ζ7

9 , 0, −ζ5
9 , −ζ2

9 , ζ
2
9 + ζ5

9 , −1, ζ3, 1, ζ2
3 , 3 ζ3, 3 ζ2

3 ,

−2 ζ4
9 − ζ7

9 , ζ
4
9 − ζ7

9 , −ζ2
9 − 2 ζ5

9 , −ζ2
9 + ζ5

9 , 2 ζ2
9 + ζ5

9 , ζ
4
9 + 2 ζ7

9 ),

p = 3, and τ0 := s0s1s2s3s4s5s6s19s20s21, τ1 := s7s8s9s13s14s15s22, τ2 := s10s11s12s16s17s18s23.

5

18 15

8 11

2 20 19 0

10 7

22 23

13 6 16

3 17 14 4

21

9 12

1

MG(t, u)2 = MG(u, t)1
MG(t, u)5 = MG(u, t)4
MG(t, u)10 = MG(u, t)9
MG(t, u)11 = MG(u, t)7
MG(t, u)12 = MG(u, t)8
MG(t, u)16 = MG(u, t)15
MG(t, u)18 = MG(u, t)14
MG(t, u)21 = MG(u, t)20
MG(t, u)23 = MG(u, t)22

DG(t) = (t− 1)
3 (
t6 − t3 + 1

) (
t2 + t+ 1

)3
(t+ 1)

2 (
t2 + 1

) (
t4 − t2 + 1

) (
t2 − t+ 1

)2 (
t6 + t3 + 1

)2

P̂G(t) =
−t18 − t36 − 1

(t− 1)3 (t6 − t3 + 1) (t2 + t+ 1)3 (t+ 1)2 (t2 + 1) (t4 − t2 + 1) (t2 − t+ 1)2 (t6 + t3 + 1)2

4.4 Type H

The group of type H , isomorphic to the alternating group A5, is the group 〈S, U, T 〉, with

S :=




1 0 0
0 ζ4

5 0
0 0 ζ5


 , U :=




−1 0 0
0 0 −1
0 −1 0


 , T :=

1√
5




1 1 1
2 ζ2

5 + ζ3
5 ζ5 + ζ4

5

2 ζ5 + ζ4
5 ζ2

5 + ζ3
5


 .

Here l + 1 = 5, rank(A(1)) = 4, A(1) is symmetric, Θ = (3, −1, −ζ2
5 − ζ3

5 , −ζ5 − ζ4
5 , 0),

p = 3, and τ0 := s0s3, τ1 := s1s2, τ2 := s4.

A(1) =

0

B

B

B

B

B

B

B

B

B

@

0 0 1 0 0

0 0 0 1 1

1 0 1 0 1

0 1 0 1 1

0 1 1 1 1

1

C

C

C

C

C

C

C

C

C

A

1

4 2 0

3

DH(t) = (t− 1)
3 (
t2 + t+ 1

) (
t4 + t3 + t2 + t+ 1

)
(t+ 1)

2

P̂H(t) = −t8−t7+t5+t4+t3−t−1
(t−1)3(t2+t+1)(t4+t3+t2+t+1)(t+1)2
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4.5 Type I

The group of type I is the group 〈S, T, R〉, with

S :=




ζ7 0 0
0 ζ2

7 0
0 0 ζ4

7


 , T :=




0 1 0
0 0 1
1 0 0


 , R :=

i√
7




ζ4
7 − ζ3

7 ζ2
7 − ζ5

7 ζ7 − ζ6
7

ζ2
7 − ζ5

7 ζ7 − ζ6
7 ζ4

7 − ζ3
7

ζ7 − ζ6
7 ζ4

7 − ζ3
7 ζ2

7 − ζ5
7


 .

Here l + 1 = 6, rank(A(1)) = 5, Θ = (3, 0, 1, ζ7 + ζ2
7 + ζ4

7 , ζ
3
7 + ζ5

7 + ζ6
7 , −1),

p = 4, and τ0 := s5s0, τ1 := s1s4, τ2 := s2, τ3 := s3.

A(1) =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 1 0 0 0 0

0 0 1 1 0 0

1 0 0 0 0 1

0 0 1 0 1 1

0 0 0 1 1 1

0 1 0 1 1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

A

1 3

0 4

2 5

DI(t) = (t− 1)
3 (
t2 + t+ 1

) (
t2 + 1

)
(t+ 1)

2

(
t6 + t5 + t4 + t3 + t2 + t+ 1

)

MI(t, u)2 = MI(u, t)1

P̂I(t) =
−t12 − t11 + t9 + t8 − t6 + t4 + t3 − t− 1

(t− 1)
3
(t2 + t+ 1) (t6 + t5 + t4 + t3 + t2 + t+ 1) (t2 + 1) (t+ 1)

2

4.6 Type J

The group of type J is the group 〈S, U, T, W 〉, with S, U, T as for the type H , and W := Diag(j, j, j).
It is the direct product of the group of type H and the center of SL3C. Here l+1 = 15, rank(A(1)) = 12,
Θ = (3, −1, −ζ2

5 − ζ3
5 , −ζ5 − ζ4

5 , −ζ2
3 , −ζ3, 3ζ3, −ζ11

15 − ζ14
15 , −ζ2

15 − ζ8
15, 3ζ2

3 , −ζ7
15 − ζ13

15 ,
− ζ15 − ζ4

15, 0, 0, 0), p = 3, and τ0 := s2s5s7s10s13, τ1 := s1s6s8s11s14, τ2 := s0s3s4s9s12.

10

3 11 9 6

5

14 13 12

4 8

7

1 2 0

MJ(t, u)2 = MJ(u, t)1
MJ(t, u)6 = MJ(u, t)5
MJ(t, u)8 = MJ(u, t)7
MJ(t, u)11 = MJ(u, t)10
MJ(t, u)14 = MJ(u, t)13

DJ(t) =
(
t4 + t3 + t2 + t+ 1

) (
t8 − t7 + t5 − t4 + t3 − t+ 1

)
(t+ 1)

2 (
t2 − t+ 1

)2
(t− 1)

3 (
t2 + t+ 1

)3

P̂J(t) =
−t24 − t12 − 1

(t4 + t3 + t2 + t+ 1) (t8 − t7 + t5 − t4 + t3 − t+ 1) (t+ 1)2 (t2 − t+ 1)2 (t− 1)3 (t2 + t+ 1)3

4.7 Type K

The group of type K is the group 〈S, T, R, W 〉, with S, T, R as for the type I, and W := Diag(j, j, j).
It is the direct product of the group of type I and the center of SL3C. Here l+ 1 = 18, rank(A(1)) = 15,

Θ = (3, 0, 0, 0, 3ζ3, 3ζ2
3 , 1, ζ7 + ζ2

7 + ζ4
7 , ζ

3
7 + ζ5

7 + ζ6
7 , −1, ζ2

3 , ζ
2
21 + ζ8

21 + ζ11
21 , ζ3,

ζ21 + ζ4
21 + ζ16

21 , ζ
5
21 + ζ17

21 + ζ20
21 , ζ

10
21 + ζ13

21 + ζ19
21 , −ζ3, −ζ2

3 ),
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p = 3, and τ0 := s1s5s6s11s14s17, τ1 := s0s3s4s9s12s15, τ2 := s2s7s8s10s13s16.

2

5 4

16

9 11

13

14 12

17 15

10

8 7

1 3 6 0

MK(t, u)2 = MK(u, t)1
MK(t, u)4 = MK(u, t)3
MK(t, u)7 = MK(u, t)6
MK(t, u)8 = MK(u, t)5
MK(t, u)11 = MK(u, t)10
MK(t, u)14 = MK(u, t)13
MK(t, u)17 = MK(u, t)16

DK(t) = (t− 1)
3 (
t2 + t+ 1

)3 (
t2 + 1

) (
t4 − t2 + 1

) (
t6 + t5 + t4 + t3 + t2 + t+ 1

)
(
t12 − t11 + t9 − t8 + t6 − t4 + t3 − t+ 1

)
(t+ 1)2

(
t2 − t+ 1

)2

P̂K(t) = −t36−t18−1
(t−1)3(t2+t+1)3(t2+1)(t4−t2+1)(t6+t5+t4+t3+t2+t+1)(t12−t11+t9−t8+t6−t4+t3−t+1)(t+1)2(t2−t+1)2

4.8 Type L

The group of type L is the group 〈S, U, T, V 〉, with S, U, T as for the type H , and

S :=




1 0 0
0 ζ4

5 0
0 0 ζ5


 , U :=




−1 0 0
0 0 −1
0 −1 0


 , T :=

1√
5




1 1 1
2 s t
2 t s


 , V :=

1√
5




1 λ1 λ1

2λ2 s t
2λ2 t s


 ,

where s := ζ2
5 + ζ3

5 , t := ζ5 + ζ4
5 , λ1 := −1+i

√
15

4 , and λ2 := −1−i
√

15
4 . Here l + 1 = 17, rank(A(1)) = 15,

p = 3, and τ0 := s0s5s6s9s10s11s14, τ1 := s1s2s7s12s15, τ2 := s3s4s8s13s16.
Θ = (3, −ζ3, −ζ2

3 , 3ζ2
3 , 3ζ3, −1, ζ2

3 , ζ3, 1, −ζ2
15 − ζ8

15, −ζ15 − ζ4
15,−ζ11

15 − ζ14
15 , −ζ7

15 − ζ13
15 , −ζ2

5 − ζ3
5 ,

− ζ5 − ζ4
5 , 0, 0).

0

2 3

8 10 7

14

16 15

6 5

9

12 13

11

4 1

ML(t, u)3 = ML(u, t)2
ML(t, u)5 = ML(t, u)6
ML(t, u)8 = ML(u, t)7
ML(t, u)13 = ML(u, t)12
ML(t, u)16 = ML(u, t)15

DL(t) = (t− 1)3
(
t2 + t+ 1

)3 (
t2 + 1

) (
t4 − t2 + 1

) (
t4 + t3 + t2 + t+ 1

)
(
t8 − t7 + t5 − t4 + t3 − t+ 1

)
(t+ 1)

2 (
t2 − t+ 1

)2

P̂L(t) = −t30+t15−1
(t−1)3(t2+t+1)3(t2+1)(t4−t2+1)(t4+t3+t2+t+1)(t8−t7+t5−t4+t3−t+1)(t+1)2(t2−t+1)2
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