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Monte Carlo Methods in Statistics

CHRISTIAN ROBERT*
Université Paris Dauphine and CREST, INSEE

September 2, 2009

Monte Carlo methods are now an essential part of
the statistician’s toolbox, to the point of being more
familiar to graduate students than the measure theo-
retic notions upon which they are based! We recall in
this note some of the advances made in the design of
Monte Carlo techniques towards their use in Statis-
tics, referring to Robert and Casella (2004, 2010) for
an in-depth coverage.

The basic Monte Carlo principle
and its extensions

The most appealing feature of Monte Carlo methods
[for a statistician] is that they rely on sampling and on
probability notions, which are the bread and butter
of our profession. Indeed, the foundation of Monte
Carlo approximations is identical to the validation of
empirical moment estimators in that the average

Zh(ﬂﬁt),

t=1

z ~ f(x), (1)

Nl =

is converging to the expectation Ef[h(X)] when T
goes to infinity. Furthermore, the precision of this ap-
proximation is exactly of the same kind as the preci-
sion of a statistical estimate, in that it usually evolves
as O(VT). Therefore, once a sample z1,...,zp is
produced according to a distribution density f, all
standard statistical tools, including bootstrap, apply
to this sample (with the further appeal that more
data points can be produced if deemed necessary). As
illustrated by Figure 1, the variability due to a single
Monte Carlo experiment must be accounted for, when
drawing conclusions about its output and evaluations
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Figure 1: Monte Carlo evaluation (1) of the expecta-
tion E[X?3/(1+ X2+ X%)] as a function of the number
of simulation when X ~ N (p, 1) using (left) one sim-
ulation run and (right) 100 independent runs for (fop)
=0 and (bottom) p = 2.5.

of the overall variability of the sequence of approxi-
mations are provided in Kendall et al. (2007). But
the ease with which such methods are analysed and
the systematic resort to statistical intuition explain
in part why Monte Carlo methods are privileged over
numerical methods.

The representation of integrals as expectations
E;[h(X)] is far from unique and there exist there-
fore many possible approaches to the above approx-
imation. This range of choices corresponds to the
importance sampling strategies (Rubinstein 1981) in
Monte Carlo, based on the obvious identity

Ef[h(X)] = Eg[n(X) f(X)/g(X)]

provided the support of the density g includes the
support of f. Some choices of g may however lead to
appallingly poor performances of the resulting Monte



Carlo estimates, in that the variance of the result-
ing empirical average may be infinite, a danger worth
highlighting since often neglected while having a ma-
jor impact on the quality of the approximations. From

a statistical perspective, there exist some natural choices

for the importance function g, based on Fisher infor-
mation and analytical approximations to the likeli-
hood function like the Laplace approximation (Rue
et al. 2008), even though it is more robust to replace
the normal distribution in the Laplace approxima-
tion with a ¢ distribution. The special case of Bayes
factors (Robert and Casella 2004)

/fx|9770 d@//fx@m

which drive Bayesian testing and model choice, and of
their approximation has led to a specific class of im-
portance sampling techniques known as bridge sam-
pling (Chen et al. 2000) where the optimal impor-
tance function is made of a mixture of the posterior
distributions corresponding to both models (assum-
ing both parameter spaces can be mapped into the
same O). We want to stress here that an alternative
approximation of marginal likelihoods relying on the
use of harmonic means (Gelfand and Dey 1994, New-
ton and Raftery 1994) and of direct simulations from
a posterior density has repeatedly been used in the
literature, despite often suffering from infinite vari-
ance (and thus numerical instability). Another po-
tentially very efficient approximation of Bayes factors
is provided by Chib’s (1995) representation, based on
parametric estimates to the posterior distribution.

Bo1(z

MCMC methods

Markov chain Monte Carlo (MCMC) methods have
been proposed many years (Metropolis et al. 1953)
before their impact in Statistics was truly felt. How-
ever, once Gelfand and Smith (1990) stressed the ul-
timate feasibility of producing a Markov chain with
a given stationary distribution f, either via a Gibbs
sampler that simulates each conditional distribution
of f in its turn, or via a Metropolis—Hastings algo-
rithm based on a proposal ¢(y|x) with acceptance
probability [for a move from z to y]

q(zly)/ f(x)

then the spectrum of manageable models grew im-
mensely and almost instantaneously.

Due to parallel developments at the time on graph-
ical and hierarchical Bayesian models, like generalised

min{Lf( )q(y|x) } ,
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Figure 2: (left) Gibbs sampling approximation to the
distribution f(z) oc exp(—22/2)/(14 224 *) against
the true density; (right) range of convergence of the
approximation to E¢[X3] = 0 against the number of
iterations using 100 independent runs of the Gibbs
sampler, along with a single Gibbs run.

linear mixed models (Zeger and Karim 1991), the
wealth of multivariate models with available condi-
tional distributions (and hence the potential of im-
plementing the Gibbs sampler) was far from negligi-
ble, especially when the availability of latent variables
became quasi universal due to the slice sampling rep-
resentations (Damien et al. 1999, Neal 2003). (Al-
though the adoption of Gibbs samplers has primarily
taken place within Bayesian statistics, there is noth-
ing that prevents an artificial augmentation of the
data through such techniques.)

For instance, if the density f(x) o exp(—x2/2)/(1+

22 + 2*) is known up to a normalising constant, f is
the marginal (in z) of the joint distribution g(x,u)
exp(—22/2)[(u(1+2%+21) < 1), when u is restricted

0 (0,1). The corresponding slice sampler then con-
sists in simulating

UX =2 ~U(0,1/(1+ 2% + z))
and
XU =u~NODI(1+22+2* <1/u),

the later being a truncated normal distribution. As
shown by Figure 2, the outcome of the resulting Gibbs
sampler perfectly fits the target density, while the
convergence of the expectation of X3 under f has a
behaviour quite comparable with the iid setting.
While the Gibbs sampler first appears as the natu-
ral solution to solve a simulation problem in complex
models if only because it stems from the true target
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Figure 3: (left) Random walk Metropolis—-Hastings
sampling approximation to the distribution f(z) o
exp(—12/2)/(1+ 2% +2*) against the true density for
a scale of 1.2 corresponding to an acceptance rate of
0.5; (right) range of convergence of the approximation
to E¢[X3] = 0 against the number of iterations us-
ing 100 independent runs of the Metropolis—Hastings
sampler, along with a single Metropolis—Hastings run.

f, as exhibited by the widespread use of BUGS Lunn
et al. (2000), which mostly focus on this approach, the
infinite variations offered by the Metropolis—Hastings
schemes offer much more efficient solutions when the
proposal ¢(y|z) is appropriately chosen. The basic
choice of a random walk proposal ¢(y|z) being then a
normal density centred in x) can be improved by ex-
ploiting some features of the target as in Langevin al-
gorithms (see Robert and Casella 2004, section 7.8.5)
and Hamiltonian or hybrid alternatives (Duane et al.
1987, Neal 1999) that build upon gradients. More
recent proposals include particle learning about the
target and sequential improvement of the proposal
(Douc et al. 2007, Rosenthal 2007, Andrieu et al.
2010). Figure 3 reproduces Figure 2 for a random
walk Metropolis—Hastings algorithm whose scale is
calibrated towards an acceptance rate of 0.5. The
range of the convergence paths is clearly wider than
for the Gibbs sampler, but the fact that this is a
generic algorithm applying to any target (instead of
a specialised version as for the Gibbs sampler) must
be borne in mind.

Another major improvement generated by a sta-
tistical imperative is the development of variable di-

mension generators that stemmed from Bayesian model

choice requirements, the most important example be-
ing the reversible jump algorithm in Green (1995)
which had a significant impact on the study of graph-
ical models (Brooks et al. 2003).

Some uses of Monte Carlo in Statis-

tics

The impact of Monte Carlo methods on Statistics has
not been truly felt until the early 1980’s, with the
publication of Rubinstein (1981) and Ripley (1987),
but Monte Carlo methods have now become invalu-
able in Statistics because they allow to address opti-
misation, integration and exploration problems that
would otherwise be unreachable. For instance, the
calibration of many tests and the derivation of their
acceptance regions can only be achieved by simula-
tion techniques. While integration issues are often
linked with the Bayesian approach—since Bayes esti-
mates are posterior expectations like

/h(@)w(ﬂx) do

and Bayes tests also involve integration, as mentioned
earlier with the Bayes factors—, and optimisation
difficulties with the likelihood perspective, this clas-
sification is by no way tight—as for instance when
likelihoods involve unmanageable integrals—and all
fields of Statistics, from design to econometrics, from
genomics to psychometry and environmics, have now
to rely on Monte Carlo approximations. A whole new
range of statistical methodologies have entirely inte-
grated the simulation aspects. Examples include the
bootstrap methodology (Efron 1982), where multi-
level resampling is not conceivable without a com-
puter, indirect inference (Gouriéroux et al. 1993),
which construct a pseudo-likelihood from simulations,
MCEM (Cappé and Moulines 2009), where the E-
step of the EM algorithm is replaced with a Monte
Carlo approximation, or the more recent approxi-
mated Bayesian computation (ABC) used in phylo-
genics (Beaumont et al. 2002), where the likelihood
is not manageable but the underlying model can be
simulated from.

In the past fifteen years, the collection of real
problems that Statistics can [afford to] handle has
truly undergone a quantum leap. Monte Carlo meth-
ods and in particular MCMC techniques have forever
changed the emphasis from “closed form” solutions
to algorithmic ones, expanded our impact to solv-
ing “real” applied problems while convincing scien-
tists from other fields that statistical solutions were
indeed available, and led us into a world where “ex-
act” may mean “simulated”. The size of the data
sets and of the models currently handled thanks to
those tools, for example in genomics or in climatol-



ogy, is something that could not have been conceived
60 years ago, when Ulam and von Neumann invented
the Monte Carlo method.

References

ANDRIEU, C., DOUCET, A. and HOLENSTEIN, R. (2010).
Particle Markov chain Monte Carlo (with discussion).
J. Royal Statist. Society Series B, 72. (to appear).

BEAUMONT, M., ZHANG, W. and BALDING, D. (2002).
Approximate Bayesian computation in population ge-
netics. Genetics, 162 2025-2035.

BRrooOKS, S., Giupici, P. and ROBERTs, G. (2003). Ef-
ficient construction of reversible jump Markov chain
Monte Carlo proposal distributions (with discussion).
J. Royal Statist. Society Series B, 65 3-55.

CaprpE, O. and MouLINEs, E. (2009). On-line
expectation-maximization algorithm for latent data
models. J. Royal Statist. Society Series B, 71(3) 593
613.

CHEN, M., SHAO, Q. and IBRAHIM, J. (2000). Monte
Carlo Methods in Bayesian Computation. Springer-
Verlag, New York.

CHIB, S. (1995). Marginal likelihood from the Gibbs out-
put. J. American Statist. Assoc., 90 1313-1321.

DAMIEN, P., WAKEFIELD, J. and WALKER, S. (1999).
Gibbs sampling for Bayesian non-conjugate and hier-
archical models by using auxiliary variables. J. Royal
Statist. Society Series B, 61 331-344.

Douc, R., GUILLIN, A., MARIN, J.-M. and ROBERT, C.
(2007). Convergence of adaptive mixtures of impor-
tance sampling schemes. Ann. Statist., 35(1) 420-448.

DuANE, S., KENNEDY, A. D., PENDLETON, B. J., and
ROWETH, D. (1987). Hybrid Monte Carlo. Phys. Lett.
B, 195 216-222.

EFRON, B. (1982). The Jacknife, the Bootstrap and Other
Resampling Plans, vol. 38. STAM, Philadelphia.

GELFAND, A. and DEy, D. (1994).
choice: asymptotics and exact calculations.
Statist. Society Series B, 56 501-514.

Bayesian model
J. Royal

GELFAND, A. and SMITH, A. (1990). Sampling based ap-
proaches to calculating marginal densities. J. American
Statist. Assoc., 85 398-409.

GOURIEROUX, C., MONFORT, A. and RENAULT, E.
(1993). Indirect inference. J. Applied Econom., 8 85—
118.

GREEN, P. (1995). Reversible jump MCMC computa-
tion and Bayesian model determination. Biometrika,
82 711-732.

KENDALL, W., MARIN, J.-M. and ROBERT, C. (2007).
Confidence bands for Brownian motion and applica-
tions to Monte Carlo simulations. Statistics and Com-
puting, 17 1-10.

LuNN, D., THOMAS, A., BEST, N., and SPIEGELHALTER,
D. (2000). WinBUGS — a Bayesian modelling frame-
work: concepts, structure, and extensibility. Statistics
and Computing, 10 325-337.

METROPOLIS, N., ROSENBLUTH, A., ROSENBLUTH, M.,
TELLER, A. and TELLER, E. (1953). Equations of state
calculations by fast computing machines. J. Chem.
Phys., 21 1087-1092.

NEAL, R. (1999). Bayesian Learning for Neural Networks,
vol. 118. Springer—Verlag, New York. Lecture Notes.

NEAL, R. (2003). Slice sampling (with discussion). Ann.
Statist., 31 705-767.

NEWTON, M. and RAFTERY, A. (1994). Approximate
Bayesian inference by the weighted likelihood boostrap
(with discussion). J. Royal Statist. Society Series B,
56 1-48.

RIPLEY, B. (1987). Stochastic Simulation. John Wiley,
New York.

ROBERT, C. and CASELLA, G. (2004). Monte Carlo Sta-
tistical Methods. 2nd ed. Springer-Verlag, New York.

ROBERT, C. and CASELLA, G. (2010). Introducing Monte
Carlo Methods with R. Springer-Verlag, New York.

ROSENTHAL, J. (2007). AMCM: An R interface for adap-
tive MCMC. Comput. Statist. Data Analysis, 51 5467—
5470.

RUBINSTEIN, R. (1981). Simulation and the Monte Carlo
Method. John Wiley, New York.

RUE, H., MARTINO, S. and CHOPIN, N. (2008). Approxi-
mate Bayesian inference for latent Gaussian models by
using integrated nested Laplace approximations (with
discussion). J. Royal Statist. Society Series B, 71 (2)
319-392.

ZEGER, S. and KARIM, R. (1991). Generalized linear
models with random effects; a Gibbs sampling ap-
proach. J. American Statist. Assoc., 86 79-86.



