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1.

Abstract. We investigate the topological complexity of non Borel rgizable tree languages with
regard to the difference hierarchy of analytic sets. We stia#t; for each integet > 1, there is a
D, (31)-complete tree languags, accepted by a (non deterministic) Muller tree automaton. On
the other hand, we prove that a tree language accepted byaambiguous Biichi tree automaton
must be Borel. Then we consider the game tree langulggs,, for Mostowski-Rabin indices
(¢, x). We prove that theD,» (X1)-complete tree languagey, are Wadge reducible to the game
tree languag®/(, ) for x —¢ > 2. In particular these languag®g, ) are notin any clasp,(X1)
fora < w®.

Keywords: Infinite trees; tree automaton; regular tree language; &@aopology: topological
complexity; Borel hierarchy; difference hierarchy of artal sets; complete sets; unambiguous tree
automaton; game tree language.

Introduction

A way to study the complexity of languages of infinite wordsrdinite trees accepted by various kinds
of automata is to study their topological complexity, andtkrto locate them with regard to the Borel
and the projective hierarchies. It is well known that everlanguage accepted by a deterministic Biichi
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automaton is &19-set. This implies that any-language accepted by a deterministic Muller automaton
is a boolean combination &19-sets hence A$-set. [Tho9p| Stap7, PA04]. But then it follows from Mc
Naughton’s Theorem, that all regulaflanguages, which are accepted by deterministic Mullesraata,

are alsoAJ-sets. The Borel hierarchy of regularlanguages is then determined. Moreover Wagner
determined a much more refined hierarchy on reguld@nguages, which is in fact the trace of the
Wadge hierarchy on regular-languages, now called the Wagner hierarchy.

On the other hand, many questions remain open about theotgipal complexity of regular languages
of infinite trees. We know that they can be much more complex tregular sets of infinite words.
Skurczynski proved that for every integer> 1, there are som&I?-complete and somE’-complete
regular tree languaged, [Skl193]. Notice that it is an opesstipn to know whether there exist some
regular sets of trees which are Borel sets of infinite rankt tBare exist some regular sets of trees
which are not Borel. Niwinski showed that there are sdifecomplete regular sets of trees accepted
by Biichi tree automata, and sorfiE-complete regular sets of trees accepted by deterministitteM
tree automata[[Niwg5]. Every set of trees accepted by &Biilee automaton is &1-set and every
set of trees accepted by a deterministic Muller tree automit all}-set. Niwinski and Walukiewicz
proved that a tree language which is accepted by a detetmiMsiller tree automaton is either in the
classII} or ITi-complete, [NWOB]. More recent results of Duparc and Murtakthe Wadge hierarchy

of recognizable tree languages, may be found in [Mur08, AININ

It follows from the definition of acceptance by non deterrsiiici Muller or Rabin automata and from
Rabin’s complementation Theorem that every regular seeeftis aAl-set, see[[Rabb9, PR(G4, Thp9o,
LT94]. But there are only few known results on the complexifynon Borel regular tree languages.
The second author gave exampledf- (X1)-complete regular tree languages [in [Siin92]. Arnold and
Niwinski showed in J[ANOB] that the game tree languadEs ) form a infinite hierarchy of non Borel
regular sets of trees with regard to the Wadge reducibility.

In this paper, we investigate the topological complexitynoh Borel recognizable tree languages with
regard to the difference hierarchy of analytic sets. We stiat, for each integen > 1, there is a
D, (X£1)-complete tree language, accepted by a (non deterministic) Muller tree automaton.trf@n
other hand, we prove that non Borel recognizable tree laggpiaccepted by Biichi tree automata have
the maximum degree of ambiguity. In particular, a tree laggurecognized by an unambiguous Biichi
tree automaton must be Borel. Then we consider the gameaingedgesV, ..y, for Mostowski-Rabin
indices(:, ). We prove that thé,,» (£1)-complete tree languages, are Wadge reducible to the game
tree languagéV, .y for k — ¢ > 2. In particular, these languag#s, .., are not in any clas®, (1) for

a < wv.

The paper is organized as follows. In Section 2 we recall thiens of Biichi or Muller tree automata and
of regular tree languages. The notions of topology, inclgdhe definition of the difference hierarchy
of analytic sets, are recalled in Section 3. We show in Sectithat there aré,,» (X1)-complete tree
language<’,, accepted by Muller tree automata. We consider the complekijame tree languages in
Section 5.
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2. Recognizable tree languages

We recall now usual notations of formal language theory.

WhenY is a finite alphabet, aon-empty finite wordvery: is any sequence = a; - - - ax, Wwherea; € ¥
fori=1,...,k,andk is an integet> 1. Thelengthof z is k, denoted byz|. Theempty worchas no
letter and is denoted by; its length is0. >* is theset of finite wordgincluding the empty word) ovex.
A finitary languageover the alphabeX is a subset oE*.

Thefirst infinite ordinalis w. An w-word over is anw -sequence: - - - a,, - - - , Where for all integers
i > 1, a; € X. Wheno is anw-word overX, we writteo = o(1)0(2)---o(n)---, where for all
i, o(i) € ¥,andon] = o(1)o(2)---o(n) foralln > 1 ando[0] = A.

The usual concatenation product of two finite wortdandwv is denotedu - v (and sometimes justv).
This product is extended to the product of a finite wora@nd anv-word v: the infinite wordu - v is then
thew-word such that:

(u-v)(k) =u(k)if k < |u],and(u - v)(k) = v(k — |u]) if & > |u].

The prefix relationis denoted=: a finite wordw is aprefix of a finite wordv (respectively, an infinite
wordv), denoted: C v, if and only if there exists a finite word (respectively, an infinite word), such
thaty = u - w.

Theset of w-wordsover the alphabeX is denoted by2“. An w-languageover an alphabeX is a subset
of ¥v.

We introduce now languages of infinite binary trees whosegsade labelled in a finite alphabet

A node of an infinite binary tree is represented by a finite wawer the alphabefl, } wherer means
“right” and [ means “left”. Then an infinite binary tree whose nodes arellad in X is identified with a
functiont : {l,7}* — X. The set of infinite binary trees labelled Yhwill be denotedIy:.

Lett be a tree. A branclB of ¢ is a subset of the set of nhodestokhich is linearly ordered by the tree
partial orderC and which is closed under prefix relation, i.exzifindy are nodes of such thaty € B
andx C y thenx € B.

A branch B of a tree is said to be maximal iff there is not any other bramfchwhich strictly contains
B.

Let ¢ be an infinite binary tree ifiy,. If B is a maximal branch of, then this branch is infinite. Let
(u;)i>0 be the enumeration of the nodesBrwhich is strictly increasing for the prefix order.

The infinite sequence of labels of the nodes of such a maximakhB, i.e. t(ug)t(u1) - - t(uy)--- IS
called a path. It is aw-word over the alphabet.

LetthenL C X be anw-language oveE. Then we denot&Path(L) the set of infinite treesin 7y
such that has (at least) one path in

We are now going to define tree automata and recognizabléaingaages.

Definition 2.1. A (nondeterministic topdown) tree automaton is a quadruple (K, X, A, qy), where
K is afinite set of state§; is a finite input alphabety € K is the initial state andh C K x X x K x K
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is the transition relation. The tree automatdiis said to be deterministic if the relatiah is a functional
one, i.e. if for eaclq, a) € K x X there is at most one pair of stat@g, ¢”) such thaiq, a, ¢, ¢") € A.

Arun of the tree automatad on an infinite binary treé ¢ Ty, is a infinite binary treep € 772 such that:
(@) p(\) = go and (b) for eachu € {i,7}*, (p(u),t(u), p(u.l), p(u.r)) € A.

Definition 2.2. A Buchi (nondeterministic topdown) tree automaton is agle A = (K, %, A, qo, F),
where(K, X, A, qo) is a tree automaton anfd C K is the set of accepting states.

A run p of the Blichi tree automatod on an infinite binary tree € T is said to be accepting if for
each path op there is some accepting state appearing infinitely ofternizrpiath.

The tree languagé(.A) accepted by the Blichi tree automatdris the set of infinite binary tregsc 7y
such that there is (at least) one accepting rud amn ¢.

Definition 2.3. A Muller (nondeterministic topdown) tree automaton is aipke A = (K, X, A, qo, F),
where(K, ¥, A, qo) is a tree automaton anBl C 25 is the collection of designated state sets.

A run p of the Muller tree automatonl on an infinite binary tre¢ ¢ 7y is said to be accepting if for
each patty of p, the set of states appearing infinitely often on this path i8.i

The tree languagé(.A) accepted by the Muller tree automatdris the set of infinite binary tregsc Ty
such that there is (at least) one accepting rud @i ¢.

The classREG of regular, or recognizable, tree languages is the claseeeflanguages accepted by
some Muller automaton.

Remark 2.4. Each tree language accepted by some (deterministic) Biltbimaton is also accepted by
some (deterministic) Muller automaton. A tree languageciepted by a Muller tree automaton iff it
is accepted by some Rabin tree automaton. We refer for icsten[Tho9p[PP04] for the definition of
Rabin tree automaton.

Example 2.5. Let L. C ¥ be a regulaw-language (sed [PH04] about regulatanguages which are
thew-languages accepted by Biichi or Muller automata). ThesehéPath(L) C Ty is accepted by a
Biichi tree automaton, hence also by a Muller tree automaton

The set of infinite binary treels< 73 having all their paths i, denotedvPath(L), is accepted by a
deterministic Muller tree automaton. It is in fact the coempent of the sefPath(X“ — L).

3. Topology

We assume the reader to be familiar with basic notions oflemyovhich may be found if [Mos8(, LTP4,
Kec9%,[Stagd7] PPP4]. There is a natural metric on th&sedf infinite words over a finite alphabét
containing at least two letters which is called trefix metricand defined as follows. Far,v € X¢
andu # v let §(u, v) = 27 leret(u) wherel,,,qr(.,v) IS the first integer such that thén + 1)** letter of
u is different from the(n + 1)%¢ letter ofv. This metric induces oX“ the usual Cantor topology for
which open subsetsf 3¢ are in the formiV - 3¢, whereWW C ¥*. A setL C X¥ is aclosed sefff its
complement* — L is an open set.
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There is also a natural topology on the $&t [Mos80,[CT94,[Kec9b]. It is defined by the following
distance. Let ands be two distinct infinite trees iffs. Then the distance betweemnds is 5~ where
n is the smallest integer such thét) # s(z) for some worde € {l, r}* of lengthn.

The open sets are then in the foiin- 7y whereTj is a set of finite labelled tree§} - Ty is the set of
infinite binary trees which extend some finite labelled bjriaeet, € Ty, ty is here a sort of prefix, an
“initial subtree” of a tree inty - T3,

It is well known that the sefy, equipped with this topology, is homeomorphic to the Castr-,
hence also to the topological spaéés, whereX is an alphabet having at least two letters.

We now define th@orel Hierarchyof subsets ok*. It is defined similarly on the spadgs.

Definition 3.1. For a non-null countable ordinal, the classex! andII of the Borel Hierarchy on
the topological spacE® are defined as follows:

30 is the class of open subsetsXf, I1! is the class of closed subsets3of,

and for any countable ordinal > 2:

3, is the class of countable unions of subset&ofin (. _, T19.

O . . . 0
IT, is the class of countable intersections of subsets*oin | ., .

For a countable ordinak, a subset of2* is a Borel set ofrank « iff it is in X2 u TI% but not in
U'y<a(29y U Hg]y)

There exists another hierarchy beyond the Borel hierarghich is called the projective hierarchy. The
classes:! andIT}, for integersn > 1, of the projective hierarchy are obtained from the Boretdriehy
by successive applications of operations of projection @rdplementation. The first level of the pro-
jective hierarchy is formed by the cla¥ of analytic setsand the clas®I} of co-analytic setsvhich
are complements of analytic sets. In particular, the claBorel subsets oE is strictly included in the
classX} of analytic setswhich are obtained by projection of Borel sets.

Definition 3.2. A subsetA of 3¢ is in the classE} of analytic sets iff there exists another finite Sét
and a Borel subseB of (3 x Y)“ such thatr € A < Jy € Y“ such that(z,y) € B, where(z,y) is
the infinite word over the alphab&t x Y such thatz, y)(:) = (x(i),y(7)) for each integef > 1.

Remark 3.3. In the above definition we could tak® in the clasd13. Moreover analytic subsets &
are the projections dilY-subsets 0B x w“, wherew* is the Baire space] [Mos80].

We now define the notion of Wadge reducibility via the reduretby continuous functions. LeX, Y
be two finite alphabets. Far C X“ andL’ C Y“, L is said to be Wadge reducible fd, denoted by
L <w L, iff there exists a continuous functigh: X* — Y“, such that, = f~*(L).

We now define completeness with regard to reduction by coatis functions. For a countable ordinal
a > 1, and an integen > 1, a setF’ C ¥* is said to be & (respectivelyI1%, 3!, IT!)-complete set
iff for any setE C Y (with Y a finite alphabet)E € X0 (respectively,F € TI, E € 1, E € 1))

iff &<y F. XY (respectivelyI%)-complete sets, with an integer> 1, are thoroughly characterized

in [Bta8].



6 Olivier Finkel, Pierre Simonnet /On Recognizable Tree Leages Beyond the Borel Hierarchy

The Borel hierarchy and the projective hierarchygnare defined from open sets in the same manner
as in the case of the topological space.

Thew-languageR = (0* - 1)* is a well known example dfl3-complete subset di0, 1}“. Itis the set of
w-words over 0, 1} having infinitely many occurrences of the lettedts complemen{0, 1}* — (0*-1)¢
is aX9-complete subset dfo, 1}«.

The set of infinite trees ifi}y, whereX = {0, 1}, having at least one path in thelanguageR = (0*-1)*
is 31-complete. Its complement is the set of tree§§hhaving all their paths iq0, 1}* — (0* - 1)«; it
is IT{-complete.

We now recall the notion of difference hierarchy of anahg&ts. Letn < w; (wherew; is the first
uncountable ordinal) be an ordinal afdj)s-, be an increasing sequence of subsets of some space
then the seD,,[(Ap)s<,] is the set of elements € X such thate € Ag\|Jy ., Ag for somed <7 whose
parity is opposite to that of. (Recall that a countable ordinalis said to be even iff it can be written
in the form~ = a + n, wherec« is a limit ordinal andn is an even non-negative integer; otherwise the
ordinal v is said to be odd; notice that all limit ordinals, like the io@s w™, n > 1, or w®, are even
ordinals.)

We can now define the class piifferences of analytic subsets af, whereX = >“ or X = Ty.
D,y (1) :={Dy[(Ap)s<y] | for each ordinab < n Ay is aXi-set}

It is well known that the hierarchy of differences of analysets is strict, i.e. that for all countable
ordinalsa < 8 < wy, it holds thatD,(X1) c Dg(X1}). This is considered as a folklore result of
descriptive set theory which follows from the existence mivarsal sets for each clag,(X1). Indeed
we know first that the clasg1 of analytic sets admits a universal set, dee [Kec95, pag2[igos80,
page 43]. Then, using classical methods of descriptivehgetry, one can show that, for each countable
ordinal o, the classD,, (1) admits also a universal set, s¢e [Kgn97, page 443]. Thisesms in the
case of the Borel hierarchy i [Ked95, page 168], that thiedifice hierarchy of analytic sets is strict.
As a universal set for the clad3, (21) is also aD,(X1)-complete set for reduction by continuous
functions, this implies also that there exist®a(X1)-complete set.

Notice that in the sequel we shall only consider the claggg&:1), for ordinalsa < w*, and that we
shall reprove that there exists sobg (X1)-complete subsets @, giving examples which are regular
sets of trees.

Another folklore result of descriptive set theory is tha tmionl J,, ., D, (X1) represents only a small

part of the clasA}. It is quoted for instance il [Ste82] dr [Kan97, page 443]ig(noticed in [Steg2]
that the unior J,,,, Da(21) is strictly included in the classl(IT}) which is the closure of the class

IT} under Souslin’s operation. The cladg¢IT}) is included in the clasA} by [Mos80, 2.B.5 page 75)).
Notice however that this result is not necessary in the deque
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4. D,.(X7)-complete recognizable languages

It follows from the definition of the Blichi acceptance cdiati for infinite trees that each tree language
recognized by a (non deterministic) Biichi tree automagami analytic set.

Niwinski showed that some Biichi recognized tree languagesctually>i-complete sets. An example

is any tree languag@ C T3 in the form3Path(L), whereL C ¥* is a regularw-language which is
aTI9-complete subset df“. In particular, the tree language = IPath(R), whereR = (0* - 1), is
3>1-complete hence non Bordl [Niw8, PPp4, Siin92].

Notice that its complemend~ = VPath({0, 1}* — (0*-1)*) is aIl}-complete set. It cannot be accepted
by any Buchi tree automaton because it is ndtaset. On the other hand, it can be easily seen that it is
accepted by a deterministic Muller tree automaton.

The tree languages and £~ have been used by the second author[in [Sim92] to give exanufle
D, (%1)-complete recognizable tree languages, for integers 1. We now give first the construction
of a D, (X1)-complete set.

Foratree € T3 andu € {l,r}*, we shall denote, : {/,r}* — X the subtree defined Iy (v) = t(u-v)
forall v € {l,r}*. Itisin fact the subtree ofwhich is rooted inu.

Now we can define &,,(X1)-complete tree language, .
Ly ={te Ty |3In >0 tn, € Land mifn >0 |t € L} is0dd}.

Proposition 4.1. The tree languagg; is D, (X1)-complete.

Proof. We first show that the languag® is in the classD,,(%1).
Consider firstly, for some integér > 0, the setl}, = {t € Tio 1y | ti.,. € L}. Itis clear that this set

is in the clas} because the functiofy, : Tioy — Tion defined byFy(t) = t;., is continuous and

Ty = Fk‘l(ﬁ) and the clas&! is closed under inverses of continuous functions.

LetnowH,, = {t € T} |, | 3k < n iy, € L}. This setis also in the class! because the class! is
closed under finite (and even countable) union &Rd= | J, ., -

The setsH,, form an increasing sequence Bt -sets, and we can check that

ﬁl = Dw [(Hn)n<w]

We now prove that’; is D, (£1)-complete

Let L C X be aDw(E})-subset of2¥, whereX is an alphabet having at least two letters. Then there is
an increasing sequencd,, ), ., of £i-subsets ok“ such thatl. = D,[(A;)n<w]. On the other hand,
we know that the tree languadgis >1-complete. Thus for each integer> 0 there exists a continuous
function f,, : ¥ — T} |, such thatd,, = L),

We now define a functio#” : ¥« — T 1y by : for allz € X, for all integersk > 0, F(z)(I¥) = 0 and
F(z)p., = fr(x). Itis clear that the functio” is continuous because each functifynis continuous.

We can now check that for every € ¥¢, x is in the setL = D,,[(A4,)n<.] iff there is an odd integer

n such thatr € A, \ U,., A iff there is an odd integen such thatf,(z) € £ and for allk < n
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fr(z) e L.

Thismeans that € L = D,[(An)n<w] Iff F(z) € L;.

Finally we have shown, using the reductibithatL = D, [(A)n<w] <w L1 and so the tree language
Ly is D, (X1)-complete. O

We can now generalize this construction to obtain sdbpe (X1)-complete tree languages, for every
integern > 1.

Recall first that an ordinal is strictly smaller than the ordinal™, wheren > 2 is an integer, if and only
if it admits a Cantor Normal Form

a=w"ay, 1+ % ay9+...+w- a1 +ag
wherea,,_1,a,—2,...,ap, are non-negative integers. In that case we shall denotéa,, 1, a,—2,...,a9) =
W a1 w2 ap_o + ... Fw-ag + ap.

Recall also that itv = Ord(ay,—1,an—2,...,a0) andg = Ord(b,—1,bn—2,...,by), thena < g if and
only if there is an integek such tha) < k <n — 1 anda; = b; forn — 1> j > k anda;, < by.

We now define the tree languagsg, for n > 2, as the set of treese T{“g) 1} for which there exist some
integersa,_1, a,_2,...,ag > 0 such that:

1. tjen—1.pg9n—2....a0. 1S in £ and the parity oOrd(a,—1, an—2, ..., ap) is odd,

2. If Ord(bp—1,bn—2,...,bp) < Ord(an—1,an—2,...,ap) then the tree
tbn—1 s by 1S NOLINL.

Proposition 4.2. For each integen > 2, the tree languagé,, is D, (X1)-complete.

Proof. The proof is a simple generalization of the proof of Proposift.]. Notice that we have to use
the closure of the class! under countable (and not only under finite) union. Detaitstare left to the
reader. 0

The tree languages,, can not be accepted by any Biichi tree automaton becausereadanguage
accepted by a (non deterministic) Biichi tree automatom iarealytic set and,,» (X1)-complete sets,
for n > 1, are not in the clask?l. We are going to see that the tree languaggsre accepted by Muller
tree automata.

We now recall the following result proved by Niwinski in [N&], see also for instancg [PP(4, THo90].

Lemma 4.3. The languagel~ = VPath({0, 1}* — (0*.1)*) is aITi-complete set accepted by a deter-
ministic Muller tree automaton.

On the other hand, the tree languagiés a >1-complete set. Thus it is notH?-set otherwise it would
be in the classA}l = X1 N I which is the class of Borel sets by Suslin’s Theorem. Butevere
language which is recognizable bydaterministicMuller tree automaton is BI}-set therefore the tree
languageL can not be accepted by adgterministicMuller tree automaton. However we can now state
the following result.
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Lemma 4.4. The languag€ is aX{-complete set accepted by a non deterministic Biichi tresnzaton,
hence also by a non deterministic Muller tree automaton.

Proof. We recall informally how we can define a non-deterministiacBi'tree automatopd accepting
the languageC. When reading a tree € £, the automatord, using the non determinism, guesses an
infinite branch of the tree. Then the automaton checks, ukied@uchi acceptance condition, that the
sequence of labels of nodes on this branch forms-avord in (0*.1)“, i.e. contains an infinite number
of letters1. O

Lemma 4.5. For each integen > 1, the language’,, is accepted by a (non deterministic) Muller tree
automaton.

Proof. We first construct a non deterministic Muller tree automatraccepting the language; .

Recall that, for each treec L4, there exists a least integer> 0 such that;-.,, € £. This (odd) integer
is definedin a unique way One can now construct, from Muller tree automata and.A™ accepting
the tree languages— and £, a Muller tree automatom; accepting the tree languagy. Using the
non-determinism, the automatoty will guess the (odd) integer > 0 and then, using the behaviour of
A~ and AT, it will check thatt;».. € £ and that, for every integér < n, t;x.,. ¢ L.

We now give the exact construction of the non deterministidid tree automatom; .

LetX = {0,1} and A~ = (K,X, A, qo, F) be a (deterministic) Muller tree automaton accepting the
tree language .

And let At = (K', X, A, ¢{, F') be a (non deterministic) Muller tree automaton acceptiegitbe lan-
guageL. We assume that N K’ = (.

Thenitis easy to see that the tree languégés accepted by the Muller tree automatdn = (K1, 3, Al

a, FL), where

K'=KUK'U {q6>Q%>Qf}1

Al=AUA"U {(Qé7a7Q%7QO)7 (q%’ a, Qf7q(/)), (Qf, a, Qf7Qf), (q%’ a, q(%a q0) | a € {0,1}},

Fl=FuF uig}

For every integer > 1, we can construct in a similar way a Muller tree automatbnpaccepting the
tree language,,.

Recall that for each tree € L, there exists a least ordinal = Ord(a,—1, an—2,...,a0) < w™ such
thatt;en—1.,.j9n—2.,...5a0., IS IN L. This (odd) ordinal is defineoh a unique way

One can now construct, from the Muller tree automdta and .A™ accepting the tree languagés
and £, a Muller tree automatomd,, accepting the tree languagg,. Using the non-determinism, the

automatonA,, will guess the (odd) ordinak = Ord(a,—1,an—2,...,a9) < w™ and then, using the
behaviour ofA~ and A™, it will check thattjan—1.,.jan-2.,...ja0., iS in £ and that for each ordinat =
Ord(b,—1,bn—2,...,b0) < Ord(an—1,an—2,...,a0) the tree languaggs,, , . b, o ..., IS NOLINL.

O

We can now summarize the above results in the following #maor
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Theorem 4.6. For each integen > 1, the languageC,, is a D, (X1)-complete set accepted by a (non
deterministic) Muller tree automaton.

Corollary 4.7. The class of tree languages recognized by Muller tree autoimaot included into the
boolean closure of the class of tree languages recogniz&ditlyi tree automata.

Proof. We know that every tree language recognized by a Biichi temaaton is &1-set. But a tree
language which is a boolean combination3of-sets is in the clas®,, (1) which does not contain all
tree languages recognized by (non deterministic) Mullss ttutomata. O

Remark 4.8. We have given above examplesof, (X1)-complete tree languages accepted by Muller
tree automata. In a similar way it is easy to construct, faheardinala < w*, a D,(X1)-complete
tree language accepted by a Muller tree automaton. Eachabrdi< «w* may be written in the form
a = Ord(ap—1,an—2,...,a9) < w™ for some integen > 1 and whereua,,_1,a,—2, ... ,ag, are non-
negative integers with,,_; # 0.

The tree languagé, is then the set of tregs= T{“’O’l} for which there exist some integers 1,b,_2,...,bg
0 such that:

v

1. Ord(bp—1,bp—2,...,b9) < Ord(ap—1,an—2,...,ap).

2.ty 1 pgbn2 o 1S IN L and the parity ofOrd(by,—1,bp—2,...,bo) is odd iff the parity of
Ord(an—1,an—2,...,ap) is even.

3. If Ord(ep—1,¢n—2,...,¢0) < Ord(bp—1,bp—2,...,by) then the tree
tien—1.p.1%n—2 .01 isnotin..

The tree languagd,, is D, (X1)-complete and it is accepted by a (non deterministic) Mullee au-
tomaton.

The above results show that the topological complexityas tanguages recognized ign deterministic
Muller tree automata is much greater than that of tree laggmi@ccepted bgeterministicMuller tree
automata.

Recall that a Biichi (respectively, Muller) tree automatbrreading trees labelled in the alphabgtis
said to be unambiguous if and only if each ttee 7y admits at most one accepting run.4f

A natural question is whether the tree languaggscould be accepted by unambiguous Muller tree
automata. A first step would be to prove that the tree langyaigeaccepted by an unambiguous Muller
tree automaton. But this is not possible. We have learnedebyopal communication from Damian

Niwinski that the languagé is inherently ambiguous| [Niw9].

We consider now the notion of ambiguity for Biichi tree audtenand we shall prove in particular that a
tree language accepted by an unambiguous Biichi tree atsiommaust be Borel. We shall indicate also
why our methods do not work in the case of Muller automata.



Olivier Finkel, Pierre Simonnet /On Recognizable Tree Leages Beyond the Borel Hierarchy 11

We first recall some notations and a lemma proved in [FS03].

For two finite alphabet® and X, if B C ¥* x X“ anda € ¥“, we denoteB, = {f € X¥ | (o, ) €
B} andPROJyx«(B) = {a € X¥ | B, # 0}.

The cardinal of the continuum will be denoted B ; it is also the cardinal of every sE¥ or T¥, where
3 is an alphabet having at least two letters.

Lemma 4.9. ([FSOB])

Let Y andX be two finite alphabets having at least two letters Briak a Borel subset af“ x X“ such
thatPROJs. (B) is not a Borel subset of“. Then there aré™ w-wordsa € ¥ such that the section
B, has cardinality2®°.

Proof. Let ¥ and X be two finite alphabets having at least two letters Brizk a Borel subset af“ x X«
such thaPROJyw (B) is not Borel.

In a first step we prove that there are uncountably mary>:“ such that the sectioB,, is uncountable.

Recall that by a Theorem of Lusin and Novikov, see [Kéc95eph2g], if for alla € X*, the section
B, of the Borel setB was countable, theRROJx« (B) would be a Borel subset ai“.

Thus there exists at least onec ¥ such thatB,, is uncountable. In fact we have not only omeuch
that B,, is uncountable.

Fora € ¥ we have{a} x B, = BN [{a} x X¥]. But{a} x X“ is a closed hence Borel subset of
¥¢ x X% thus{a} x B, is Borel as intersection of two Borel sets.

If there was only onex € ¥¢ such thatB,, is uncountable, thed’ = {a} x B, would be Borel so
D = B — C would be borel because the class of Borel sets is closed todézan operations.

But all sections ofD would be countable thuBROJx. (D) would be Borel by Lusin and Novikov’s
Theorem. ThePROJsw(B) = {a} U PROJx« (D) would be also Borel as union of two Borel sets,
and this would lead to a contradiction.

In a similar manner we can prove that the et= {a € ¥“ | B, is uncountablg is uncountable,
otherwiseU = {ap,aq,...ay,,...} would be Borel as the countable union of the closed $etg,

i > 0.

For eachn > 0 the set{«a,,} x B,,, would be Borel, and” = U, e, {an} X B,, would be Borel as a
countable union of Borel sets. 3o = B — C would be borel too.

But all sections ofD would be countable thuBROJx. (D) would be Borel by Lusin and Novikov’s
Theorem. The®ROJxw(B) = U UPROJx« (D) would be also Borel as union of two Borel sets, and
this would lead to a contradiction.

So we have proved that the det € ¥ | B,, is uncountablg is uncountable.

On the other hand we know from another Theorem of DescrifBeeTheory that the sdiv € X |
B, is countable} is a IT}-subset ofy*, see [Kecd5, page 123]. Thus its complemént € 3¢ |
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B, is uncountablg is analytic. But by Suslin’s Theorem an analytic subset®fis either countable or

has cardinality2™°, [Kec9%, p. 88]. Therefore the sét € ¥ | B, is uncountablé has cardinality
2%o,

Recall now that we have already seen that, for eaeh%“, the se{a} x B, is Borel. ThusB,, itself is
Borel and by Suslin’s Theore,, is either countable or has cardinalj°. From this we deduce that
{a € ¥¥| B, is uncountablg = {a € ¢ | B,, has cardinalit2™°} has cardinality2™. O

This Lemma was used iff [FJ03] to prove that analytic but noreBeontext-freew-languages have a
maximum degree of ambiguity.

Theorem 4.10. ([FS0O3])
Let L(.A) be a context-free-language accepted by a Buichi pushdown automadtsoch that’.(.A) is an

analytic but non Borel set. Then the setwefvords, which hav@® accepting runs by, has cardinality
280,

Reasoning in a very similar way as in the proof of Theofenm] $hIBS03], we can now state that analytic
but non Borel tree languages accepted by Biichi tree autohaae a maximum degree of ambiguity.

If ¥ is an alphabet having at least two letters, the topologjsately; is homeomorphic to the topolog-
ical spacexv, so we can first state Lemrhal4.9 in the following equivalentfo

Lemma 4.11. Let X and K be two finite alphabets having at least two letters &noke a Borel subset of
T¢ x Ty such thatPROJ7w (B) is not a Borel subset 6f. Then there are™ infinite treest € Ty

such that the sectioB; has cardinality2™.

We can now state the following result.

Theorem 4.12. Let L(A) C Ty be aregular tree language accepted by a Biichi tree autordasoch
that L(A) is an analytic but non Borel set. Then the set of tleesTy which have2™ accepting runs
by A, has cardinality2™.

Proof. Let A = (K, X, A, qo, F') be a Buchi tree automaton accepting a non Borel tree largliad) C
Ty, and letkR C Ty x Ty be defined by :

R ={(t,p) |t € T, andp € T} is an accepting run ofl on the tree }.

The setR can be seen as a tree language over the product alphakek. Then it is easy to see that
R is accepted by deterministicBlichi tree automaton. But every tree language which isgiedeby a
deterministicBuchi tree automaton is Hy-set, see[[Mur@5]. Thus the tree languaés aIT9-subset
of the spacé s, k)~ Which is identified to the topological spag& x T3 . In particular,R is a Borel
subset offyf x T%. But by definition of R it turns out thaROJ 1« (R) = L(A). ThusPROJ7¢ (R) is
not Borel and Lemmp 4.1 implies that there 2fe treest € T¥ such thatR; has cardinality2™. This
means that these trees ha¥e accepting runs by the Biichi tree automagén d
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Remark 4.13. The above proof is no longer valid if we replace “Buchi tregoanaton” by “Muller
tree automaton”. Indeed i(A) C Ty is a regular tree language accepted by a Muller tree autemato
A= (K,%, A, q,F), then the seRR C Ty x T defined by :

R={(t,p) |t € T¥ andp € T} is an accepting run afl on the tree }.

is now accepted by a determinisMuller tree automaton. Thus we can now only say tRas aIli-set,
and we cannot use the fact thiatis Borel, which was crucial in the proof of Theordm 4.12.

In particular, Theoren 4.12 implies the following importaesuilt.

Corollary 4.14. Let L(A) C Ty be a regular tree language accepted by an unambiguous Béehi
automaton. Then the tree languafeA) is a Borel subset dfys.

Remark 4.15. The result given by Corollary 4.14 is weaker than the resuétrgby Theorenj 4.32. This
weaker result can be proved by a simpler argument. We givetihiswproof which is also interesting.

Proof. Let L(A) C Ty be a regular tree language accepted by an unambiguous Béetautomaton
A= (K,%, A, q, F). Let R be defined as in the proof of Theor¢m 4.12 by:

R ={(t,p) |t € Ty andp € T} is an accepting run ofl on the tree}.

The setR is accepted by deterministicBuchi tree automaton so it isId3-subset of the spacks -
Consider now the projectioRROJry : T35 x Tf: — T3 defined byPROJ7« (t, p) =t for all (¢, p) €
Ty x Ty. This projection is a continuous function and itingective on the Borel set? because the
automatonA is unambiguous. By a Theorem of Lusin and Souslin, $ee [KethBorem 15.1 page
89], the injective image of? by the continuous functioRROJ7x is then Borel. Thus the tree language
L(A) = PROJ7¢(R) is a Borel subset df ;. O

Remark 4.16. The above result given by Corollafy 4]14 is of course falgbéncase of Muller automata
because we already know an example of non Borel regular areguhge accepted bydeterministic
hence unambiguoudluller tree automaton. By Lemnja }4.3, the tree langudge= VPath({0,1}* —
(0*.1)¥) is aIIi-complete set accepted by a deterministic Muller tree aatom

5. Game tree languages

Game tree languages are particular recognizable treedgaguvhich are defined by the use of parity
games. So we now recall the definition of these games, aslintedl in [ANOB]ADMNOY].

A parity game is a game with perfect information between twaygrs named Eve and Adam, as in
[ANOF, ADMNO7].

The game is defined by a tupleé = (V3, V4, Move, po, rank). The setsV3 and V4, are disjoint sets of
positions of Eve and Adam, respectively. We dendte= V3 U V4 the set of positions. The relation
Move C V x V is the relation of possible moves. The initial position inlayps pg € V. The ranking
function isrank : V' — w and the number of values taken by this function is finite.

At the beginning of a play there is a token at the initial gositpy where the play starts. The players
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move the token according to the relatibfove, always to a successor of the current position. The move
is done by Eve if the current position is an elemen¥/of otherwise Adam moves the token. This way
the two players form a path in the graphi, Move). If at some moment a player cannot move then she
or he looses. Otherwise the two players construct an infiigith in the graphyg, v1, ve, . . . In this case
Eve wins the play ifim sup,,_, . rank(v,) is even, otherwise Adam wins the play.

Eve (respectively, Adam) wins the gamgif she (respectively, he) has a winning strategy. It is well
known that parity games are determined, i. e., that one opldngers has a winning strategy. Moreover
any position is winning for one of the players and she or hedssitional strategy from this position,

see [GTWOR] for more details.

We now recall the definition of game languagés ,.).

A Mostowski-Rabin index is a pait, ), where. € {0,1} and: < k < w. For such an index, we define
the alphabet, ,.) = {3,V} x {¢,..., K}

For alettera € X, .y we denoter = (a1, az), wherea; € {3,V} andaz € {,...,x}.

For each tree ¢ Tgw) we associate a parity ganigt) = (V3, V&, Move, pg, rank), where

e Va={ve{l,r}|tlv) =3}

o w={ve{l,r}*|t(v) =V}

e Move = {(w,wi) | w € {l,r}* andi € {{,r}},
e po = Ais the root of the tree,

e rank(v) = t(v)e, for eachv € {l,r}*.

The setW, ..y C T§<,, o is the set of infinite binary treeslabelled in the alphabet, .., such that Eve
wins the associated ganig).

The recognizable tree langualg, . is accepted by an alternating parity tree automaton of iridex).
This notion will be useful in the sequel so we recall it nowpeassented in[[ADMN(J7].

Definition 5.1. An alternating parity tree automaton is a tuple= (X, Q3, Qv, qo, 9, rank), where the
set of stateg) is partitioned i3 and@y. The set)5 is the set of existential states and the@etis the
set of universal states. The transition relation S @ x X x {l,r, A} x Q andrank : ) — w is the rank
function. Atreet € Ty, is accepted by the automatghiff Eve has a winning strategy in the parity game
(QaxA{l,r}*, Qv x{l,r}*, (g0, A), Move, ), whereMove = {((p,v), (¢,vd)) | v € dom(t), (p,t(v),
d,q) € §} andQ(q,v) = rank(q).

Notice that it can be assumed without lost of generality that rank(Q) is equal to0 or 1. The pair
(min rank(Q), max rank(Q)) is called the Mostowski-Rabin index of the automaton.
It follows from [Rab69] that any alternating parity tree auaton can be simulated by a non deterministic

Muller automaton, see alsp [GTWO02].

There is a usual partial order on Mostowski-Rabin indidesx) C (¢, ') if either/ < . andx < &’
(e {t,....,x} CH{/,...,&'},ore =0,/ =1,ands +2 < r' (i.e. {t +2,...,6+2} C{/,...,K'}).

The indiceg(1,n) and(0,n — 1) are called dual an@, ) denotes the index dual to, ).
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It is easy to see that each tree langudbg . is accepted by an alternating parity tree automaton of
index (¢, k).

Moreover the set/, ..y is in some sense of the greatest possible topological costypleamong tree
languages accepted by alternating parity tree automatelekit, ). This is expressed by the following
lemma.

Lemma 5.2. ( see[[ADMNO[’] )

If a set of treeq" is recognized by an alternating parity tree automaton airtd «), thenT' <y, W, ,.).

In order to use this result to get a lower bound on the topoldgiomplexity of the game tree languages
Wi..x), We first construct some alternating parity tree automataetong the tree languageésand £~
defined in the preceding section.

Lemma 5.3. The tree languagg€ is accepted by an alternating parity tree automaton of iftleX).

Proof. Recall thatC = FPath(R), whereR = (0*.1)“.
The tree languagé is then accepted by the alternating parity tree automadten (X, @3, Qv, qo, 6, rank),
where

s = {0,1},
Q3=Q ={q,q},
Qv =10,

€ Qandd € {l,r}},

0= {(q717d7 q1)7 (q707d7 qO) | q
= 2. (]

rank(go) = 1 andrank(q;)

Notice that in the above automatehall states are existential.

Lemma 5.4. The tree languag€~ is accepted by an alternating parity tree automaton of ifdex).

Proof. Recall thatL~ = T — £ = VPath({0,1}* — (0*.1)¥).
The tree languagé ™ is then accepted by the alternating parity tree automafor (3, Q%, Q. ¢, 0, rank’),
where

¥ =4{0,1},
L=0,
Qy=Q ={ap a1},

5= (41,40, (,0,d,qb) | € Q' andd € {1,r}),
rank’(gy) = 0 andrank’(q}) = 1.

Notice that in the above automatoti all states are universal.

Remark 5.5. The X{-complete tree language is accepted by an alternating parity tree automaton of
index(1,2) and thelli-complete tree language™ is accepted by an alternating parity tree automaton of
index (0, 1). In fact for every tree languadg accepted by an alternating parity tree automaton of index
(1,2) (respectively|0, 1)) it holds that7 is in the class=! (respectivelyIT}), see [ADMNOY, Theorem
3.6].
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Recall now the definition of th®,,(X1)-complete tree language, .
Ly ={teTy;, |In>0 tpm, € Land min > 0| ., € L} is odd}.
We can now state the following result.

Lemma 5.6. The tree languagg; is accepted by an alternating parity tree automaton of ifdeX).

Proof. Let, as in the proofs of the two previous lemmas= (X, Q3, Qv, qo, J, rank) be an alternating
parity tree automaton of inded, 2) accepting the tree language = JPath(R), and A’ = (3, Q%,
@, q), ¢, rank’) be an alternating parity tree automaton of ingext) accepting the tree language .
We assume tha N Q' = 0, whereQ = Q5 UQy = Qs andQ’ = Q5 U Q, = Q1.
It is then easy to see that the tree langudgeis accepted by the alternating parity tree automaton
Al = (2,04, Q), ¢f, 6%, rank'), where
¥ =40,1},
QY =Q3UQ5U{g3} = QU {ga},
Qy=QvUQLU{gai} = QLU {g5, 41},
st =6uUdU {(qé, a, l7Q3)7 (qé, a,r, q6)7 (QE7CL7T7 QO), (QEU a, )‘7q%)7 (q%, a,r, q6)7 (q%, a, l7q(1]) ’ a €
{0,1}},
rank’(q) = rank(q) for ¢ € Q,
rank’(¢’) = rank’(¢’) for ¢’ € @',
rank!(¢}) = 0, rank!(¢}) = 1.

]

Notice that in the above construction of the alternatingmaton.A' the universal stateg, ¢+ and the
existential stat@gs are used to choose, when reading a treel, the least integen such that;.., € £

and to check that this integer is really the least (and odd)vaith this property.

In a very similar manner, for each integer> 1, we can define an alternating parity tree automadén

of index (0,2) accepting the languagé,. The complete description would be tedious but the idea is
that now the additional universal or existential statesim@® U Q' are used to choose, for a given tree
t € L, the least ordinaly = w™ ' a1 +w" 2 -an_o+...+w-a;+ag such that;en—1.,.j90-2.p...;a0 .1

is in £ and to check that is odd and that for any smaller ordinal= Ord(b,,—1,b,—2,...,by) < «, the
treet,, 1., jbn_o.,. o, 1SNOLINL.

We can then state the following result.

Proposition 5.7. For each integen > 1, the tree languagé€,, is accepted by an alternating parity tree
automaton of index0, 2).

We can now infer from Theoref 4.6, Propositior] 5.7, and Lereiathe following resuit.

Theorem 5.8. For each integen > 1, the D, (X1)-complete tree languagg, is Wadge reducible to
the game tree languad€ g o), i.e. L, <w W(g ). In particular the languag#’ ,) is not in any class
Dy (21) for a < w*.
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On the other hand, Arnold and Niwinski proved in JAN08] tha¢ game tree languages form a hierarchy
with regard to the Wadge reducibility.

Theorem 5.9. ([ANOS])

For all Mostowski-Rabin indiceg, «) and(//, '), it holds that :
(L, H) C (L/, I{/) if and only if W(L,n) <w W(L’,n’)
Then we can state the following result.

Theorem 5.10. For each integer > 1 and each Mostowski-Rabin indéx «) such that0,2) C (:, %)
or(1,x) = (1,3) = (0,2), the D (X1)-complete tree language, is Wadge reducible to the game tree
languageV(, ), i.e. L, <w W(, ). In particular the languag#/(, ,.) is not in any clasd, (1) for

a < wv.

Proof. The result follows directly from Theorerfis b.8 gnd 5.9 in theet0, 2) C (¢, k). What remains is
the case of the indefd, 3) which is the dual of the indef0, 2). Butitis proved in [ANOB, Lemma 1] that

W-——= coincide withW, ., = T¥  — W, ., up to renaming of symbols. On the other hand, we know
(”7'{) (’ ) E(L,n) (7 )

from Theoren{5]8 that for each integer> 1, the D_.+1(21)-complete tree language, . is Wadge
reducible to the game tree languad® o), i.e. Ln+1 <w W2 . This is easily seen to be equivalent

to %71} — En—i—l <w W(072), i.e. ‘?)O,l} — £n+1 <w W(1’3). But L, is Dwn(E})-compIete anctnﬂ
is D +1(21)-complete so it follows from the properties of the differeriderarchy of analytic sets that

L, <w T{“EM} — L1 and sol,, <y W, 3) by transitivity of the relation<yy. O

6. Concluding remarks

We have got some new results on the topological complexityoof Borel recognizable tree languages
with regard to the difference hierarchy of analytic setsparticular, we have showed that the game tree
languagelV (g o) is not in any clasd, (1) for « < w“. The great challenge in the study of the topo-
logical complexity of recognizable tree languages is teeine the Wadge hierarchy of tree languages
accepted byon deterministidviuller or Rabin tree automata. Notice that the casgedérministidMuller

or Rabin tree automata have been solved recently by MuffaktQg].

It would be interesting to locate in a more precise way the ggéarae languages with regard to the
difference hierarchy of analytic sets. We already know gt is notin any clas®,, (=1) fora < wv.

Is there an ordinak such thatiVq o) is in D, (X1}) and then what is the smallest such ordin&l The
same question may be asked for the other game tree langgggs On the other hand, there are some
sets in the clas&] which does not belong to the-algebra generated by the analytic sets, gee [Kec95,
Exercise 37.8]. Could we expect tHaf, ,) or another game tree languagg, . is such an example?
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to a great improvement of our paper.
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