On Recognizable Tree Languages Beyond the Borel Hierarchy - Archive ouverte HAL
Article Dans Une Revue Fundamenta Informaticae Année : 2009

On Recognizable Tree Languages Beyond the Borel Hierarchy

Résumé

We investigate the topological complexity of non Borel recognizable tree languages with regard to the difference hierarchy of analytic sets. We show that, for each integer $n \geq 1$, there is a $D_{\omega^n}({\bf \Sigma}^1_1)$-complete tree language L_n accepted by a (non deterministic) Muller tree automaton. On the other hand, we prove that a tree language accepted by an unambiguous Büchi tree automaton must be Borel. Then we consider the game tree languages $W_{(i,k)}$, for Mostowski-Rabin indices $(i, k)$. We prove that the $D_{\omega^n}({\bf \Sigma}^1_1)$-complete tree languages L_n are Wadge reducible to the game tree language $W_{(i, k)}$ for $k-i \geq 2$. In particular these languages $W_{(i, k)}$ are not in any class $D_{\alpha}({\bf \Sigma}^1_1)$ for $\alpha < \omega^\omega$.
Fichier principal
Vignette du fichier
Non-Borel-FI.pdf (179.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00412638 , version 1 (02-09-2009)

Identifiants

Citer

Olivier Finkel, Pierre Simonnet. On Recognizable Tree Languages Beyond the Borel Hierarchy. Fundamenta Informaticae, 2009, 95 (2-3), pp.287-303. ⟨hal-00412638⟩
167 Consultations
154 Téléchargements

Altmetric

Partager

More