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ABSTRACT: The  paper  presents  different  modeling
approaches that yield a  same bond graph representation
structure.  The  first  one  is  based  on  a  variational
approximation  of  the  Magnetic   Induction  Diffusion
Equation  and  supplies  various  degrees  of  modeling
starting from the simple standard electrical inductor. The
second approach is based on the diffusion representation
and may be simply connected to numerical simulation of
the  Maxwell's  Equations  in  Frequency Domain.  Finally
such approaches should be applied to advanced modeling
of  Integrated  Power  Systems  that  operate  at  high
switching frequency.

1.  INTRODUCTION:

Electrical transformers and inductors are mainly based on
magnetic  cores.  The  design  of  such  systems  depend
mainly on the losses they generate. These losses may be
divided into hysteresis losses and current diffusion losses
(induced  currents),  also  known  as  Eddy's  currents  or
Foucault's  currents.  Only  current  diffusion  losses  are
addressed in this paper.
Current Diffusion [Pérez 1997],  [Morel 2003] occurs in
an electrical  conductor or  magnetic-conductive material.
Under the assumption that the displacement currents are
negligible, Maxwell's Equations combined with, 

J= E   (1)

yields, 

B− ∂
B
∂ t
=0 (2)

where   is  the  electrical  conductivity,  E is  the
electric field, B  is the magnetic induction field, J is
the  current  density  vector  and  is  the  magnetic
permeability.

We have shown [Morel 2003] that an order-2 variational
approximation of equation (2) yields to a bond graph of
the  skin  effect  in  a  rectangular-section  conductor.
Equation  (2)  is  the  same,  but  the  system  is  different
because  here,  the  magnetic  core  has  not  the  role  to
conduct a current: it is only a parasitic effect.

The  classical  solution consists  in solving the Maxwell's
equations  using  numerical  methods  like  finite  element
methods.  An  alternative  method  is  the  Diffusive
Representation  [Montseny  1998].  It  is  a  part  of  the

Pseudo-differential operator theory that may be seen as an
extension of transfer functions and Laplace's transform for
systems of infinite order. Recent studies [Laudebat 2003]
have shown the ability to apply diffusive representation in
the modeling of the skin effect, or of a self- inductance
having a conductive-magnetic core. In the latter cases, the
transfer function is not rational, i.e. it is proportional to
the square root of the frequency. 

In this paper, a variational approximation of the current
diffusion  is  constructed.  Then  it  is  compared  with  the
diffusion  representation.  Both  approaches  yield  a  same
bond graph representation.

2. MODELING CURRENT DIFFUSION IN A
MAGNETIC CORE

2.1 PDE Modeling
The standard modeling approach is a local formulation of
a Partial Differential Equation, PDE. 
The Classical solution of equation  (2) exists for a semi-
infinite space. Practical cases correspond to parallelepiped
volume  as   in  Fig.  1.  The  assumption  of  semi-infinite
space  is  satisfied  if  the  geometrical  domain  are  much
larger than skin depth.
So, assuming a long and thin magnetic core, i.e. h,a >> b
(Fig. 1), the magnetic field does not depend neither on x
nor on y. Therefore, the magnetic field depends only on z
and on time.
Moreover, edges effects are neglected [Laudebat 2003].
The (oxy) and (oxz) planes are two planes of antisymetry
for  the  distribution,  thus  the  magnetic  field  is  in  the
direction of the x-axis. 

Hence, Maxwell's equations in the magnetic core may be
written as

∂2 B
∂ z 2 −

∂ B
∂ t
=0 (3)

Fig. 1  The self inductance geometry
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Applying the Ampere's Theorem on the loop represented
in mixed line in Fig. 1  yields,

F=N I t =∫
0 

h

H dx= h


B 0 (4)

Where  F  is  the  magnetic  potential  difference  of  the
magnetic  core,  N  is  the  number  of  turns  and  I(t)  the
current  flowing  through  the  turns.  Faraday's  Law  on
electromagnetic  induction enables  to  write  the e.m.f.  in
one turn as

= v
N
=

d
dt

 (5)

Where λ is the magnetic flow variable, v is the voltage
drop and f  is the magnetic flow, given by

=a∫
−b
2

b
2

B z dz  (6)

Taking into account equation (3) and (5), the derivation
with respect to time of equation (6) yields

=
d
dt
=a∫

−b
2

b
2 ∂B
∂ t

dz= a

∫
−b
2

b
2 ∂2 B
∂ z 2 dz= a

[∂B
∂ z ]

b
2 
−b
2

 (7)

Equations (3) and (7) define a boundary value problem. A
variational approximation may be applied.

2.2 Variational Approximation
Our  modeling  approach is  based  on  the  variational
approximation of  "Galerkin" [Shawalter 1977].
The  advantage  of  this  numerical  modelling  method,
known as  "meshless",  is  to  avoid  the  meshing  of  the
structure what allows to decrease the simulation cost.
The idea is applied on the Magnetic Induction Diffusion
Equation (2)  what  yields a bond graph model of Eddy's
currents in the magnetic core. 
Indeed, the method consists to build a finite state space
model from the variational equation of relation (3). The
variational  equation  is  obtained  by multiplying the  two
sides  of  equation  (3)  by  a  trial  function  s(z)  then  by
integrating the result over the range [-b/2, b/2] where b is
the  thickness  of  the  magnetic  core.  This  yields  the
following variational equation,

∫
−b /2

b /2 ∂2 B
∂ z 2 s dz−∫

−b /2

b /2 ∂B
∂ t

s dz=0 (8)

The  objective is  to  seek an expression of  the  magnetic
field  B  using  functions  that  verify the  variational
formulation  (8)  for  any  trial  function  s(z).  This  is
equivalent  to verify the differential  equation (3)  against
the  magnetic  field  B  and  thus  describes  the  physical
phenomenon considered here.

Spatial  distribution  of  the  magnetic  field  B  may  be
assumed to be symmetrical with respect to z because of

the symmetry of the geometry. Notice that this assumption
is  no  longer  valid  if  it  exists  several  magnetic  core  or
other  electrical  conductive  elements  in  the  system.
Fortunately,  in  the  later  case  only second  order  effects
occur. Function s is also assumed to be symmetrical with
respect to z, so  (7) implies

[∂B
∂ z

s z ] b /2 
−b /2

=s b
2 [∂B

∂ z ] b /2 
−b /2

=s b
2 a  (9)

so using  (9), (8) may be rewritten as

 d
dt ∫−b /2

b /2

B s dz∫
−b/2

b /2 ∂B
∂ z
∂ s
∂ z

dz=s  b
2

 

a
(10)

Which is  a  variational  equation  of  the  boundary  value
problem (3,7).

In  order  to  resolve  the  problem  (10),  we  apply  a
variational approximation to the magnetic field B which
consists in a projection of the solution of the problem (10)
on a finite-dimension space, i.e,

B t , z =∑
j=0

n

 j t w j  z  (11)

A difficult task is to define the decomposition functions,
wj. A good choice yields an accurate approximation with a
small number of functions.
We  have  chosen   eigen-functions  of  the  steady  state
operator in (3) as

w i  z =cosh  2 iz
b
 0  ≤i≤n (12)

Indeed, the hyperbolic cosine functions answer correctly
to  the  constraints  of  the  spatial  distribution  of  the
magnetic field B:  they are symmetrical with respect to z.
Classically in variational approximation techniques,  the
same base of functions wj are chosen for the trial functions
s(z). Finally, combining equations (10-12) yields, 

2 
b∑j=0

n

 j i j∫
−1 

1 

sinh iusinh  judu

 b
2 ∑j=0

n

̇ j∫
−1 

1 

cosh iucosh  judu=

cosh i 


a

     (13)

Moreover,  equation  (4)  gives the output relation of  the
model,

F=N I t = h


B 0= h
∑j=0 

n

 j cosh 0= h
∑j=0 

n

 j   (14)

Defining,

F i=
h

i (15)



Equation (14) becomes

F=∑
j=0

n

F j (16)

Equation (13) may be rewritten as,

2 
b∑j=0

n

 j M ij
d b

2 ∑j=0

n

̇ j M ij
s=cosh i 


a

(17)

where,

M ij
s=∫

−1 

1 

cosh iucosh  judu (18)

M ij
d=i j∫

−1 

1 

sinh iusinh  judu (19)

defining

s0 =1 ,  sk=
sinh k 

k
k0 (20)

the matrix elements may be written as

M ii
s=1 s2 i , M ij

s=si jsi− j i≠ j (21)

and

M ii
d=i2 −1s2 i , M ij

d=ij si j−si− j i≠ j (22)

Notice that Ms is symmetrical and 

M 0 j
d =0  0≤ j≤n and M i0

d=0 0≤i≤n (23)

The first values of the elements of these matrices are

M s=[1s0 2 s1 2 s2 ...
2 s1 1s2 s1s3 ...
2 s2 s1s3 1s4 ...
... ... ... ...

] (24)

and

M d=[0 0 0 ...
0 s2 −1 2s3−s1 ...
0 2s3−s1 4 s4−1 ...
... ... ... ...] (25)

Equations (14) and (17) define a state space model of the
magnetic core.
Equation (17) may be rewritten as

2 r 0 N
d F

P0 

2 
N s Ḟ=u1 (26)

Where 

r 0 =
a
 b h

(27)

is  a  parameter  that  has  the  physical  dimension  of  a
resistance.

P0 =
ab

h

is  a  parameter  having  the  physical  dimension  of  a
permeance or an inductance.
 Nd  is a matrix of coefficients:

N ij
d=

M ij
d

cosh i 
(28)

Ns is a matrix of coefficients:

N ij
s=

M ij
s

cosh i 
(29)

u1 is the vector of dimension n,

u1 =[1 
1 
...
1] (30)

Finally  F  is  the  state  vector  whose  components  Fi are
defined in equation (16).

F=[F 0 

F 1 

...
F n
] (31)

In  the  case  of  the  self  inductance  (Fig.1),  variational
approximation  yields  the  following  finite  state  space
model:

Ḟ=P−1 .u1−P
−1 . r . F (32)

I t = 1
N∑k=0

n

F k (33)

 
where :

P=
P0

2
N s              

                                                      
r=2∗r 0 N

d

This state space model is analyzed in next section.      



Bond Graphs of the Obtained Models                              

The Simplest Model, n=1

If n=1, equation (26) yields

P0 Ḟ 0 =u1 (34)

Equation  (34)  is  the   equation  of  a  standard  electrical
inductor having a permeance P0 . However, such a model
does not take into account any induced current effect.

A Simple Model with Current Diffusion, n=2
If n=2, equation (17) yields

r⋅FP Ḟ=u1 (35)

where

P=P0 [ 1   s1  

s1 

cosh 1
1s2

2 cosh 1] (36)

and

r=r 0 [0 0 

0 
2 s2 −1 
cosh 1 ] (37)

Equations  (35-37)  are  clearly  represented  by  the  bond
graph in  Fig. 3

 

Fig. 3 Associated bond graph.

A n-Order Model
The n-order model is defined by equation (26). The third
order  model  bond  graph  is  given  in  Fig.  4.  The
generalization to a n-order model requires the use of non-

standard bond graph representations like those in  Fig. 5.
The  junction  1  has  2  one-port  bonds  and  a  multi-port
bond.  To  satisfy  equation  (26),  it  means  that  the  flow
variable is the same in the 2 one-port bonds and in the
multi-port bond.

Fig. 4 Bond Graph of the 3 rd order model.

Fig. 5 Bond Graph of the n-order model.

SABER Simulation Of  The developed Variational
Models: Temporal Analysis

While considering equations (32-33), we analyse the time
behavior  of the developed models  with n=2 and n=3, for
iron and ferrite magnetic cores. 

Using SABER simulator  [Saber  1996],  we  simulate the
obtained  variational  models  in  this  simple  electrical
circuit:

Fig. 6 The electrical circuit of simulation.

Fig. 2 Standard model of the electrical inductor
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The following figures shows the results of the simulations:
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Fig. 7 Simulation of  the current waveform in iron and
ferrite magnetic cores for models with  n=2 and n=3.

Fig. 8 Simulation of  the voltage waveform across an iron
and a ferrite magnetic cores for models with  n=2 and

n=3.

As  it  is  shown in  figures  7  and  8,  Foucault's  currents
phenomena  are  well  described  by  the  developed
variational model. 

The impact of Foucault's currents is visible by comparing
the current waveform in the ferrite magnetic core model
with  the  current  waveform  in  the  iron  magnetic  core
model. The same thing, if we compare the voltage drop
waveform across these two magnetic cores. 

Indeed, the magnetic phenomenon is described by a fast
dynamics of the voltage drop across the magnetic core at
the beginning, due to the appearance of the Eddy currents.
These currents, opposed to the magnetic flow, push the
magnetic  field  outside  the  magnetic  core.  When  the
dynamic phenomena slow down. There is  a progressive
disappearance  of  the  Foucault's  currents  that  allows  a
progressive and slow diffusion of the magnetic induction
inside the core. Thus, a phenomenon of “ long memory ”
appears.  Apparent inductance of  iron is lower than in the
case  of  ferrite  where in  the absence of  Eddy currents,

induction is distributed uniformly  trough the section.

Moreover, it is clear on figures 7 and 8 that if we increase
the  order  of  the  variational  model,  current  and  voltage
drop  waveforms  across  the  iron  magnetic  core  are
improved.

Frequency Analysis:
The  Fig.  9  shows  the  comparison  of  the  normalized
inductance solution of the variational model with n=2 and
the classical solution  given by [Laudebat 2003]

Lr=
L
L0

=
tanh ir

ir

(38)

where “ i ” is the complex operator,

L0 =
N 2 ab

h
=N 2 P0

(39)

is  the  self-inductance  of  the  magnetic  core  at  low-
frequency, and

r=

0

(40)

is the normalized frequency with
             

0 =
4 

b2 
=4 

r 0 

P0

 

It  is  clear  that  the  self-inductance  decreases  when  the
frequency  increases. This is due to the Eddy's current.

Fig. 9 Modeling the magnetic core - normalized
inductance with and without current diffusion modeling.

2.3 Diffusive Representation Model
In  the  case  of  the  self  inductance  (Fig.  1),  diffusive
representation yields the following infinite order. This is
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an exact model [Laudebat 2003].

dk

dt
=
−4 k 2 k

b2 
v K = 0,1,2, ... ∞  (41)

I t = h
N 2 a b

∑
k=0

∞

k (42)

Defining

F k=
h

N ab
k

N ij
d=i2 ij (43)

and

N ij
s=ij (44)

Equation (41) and (42) are equivalent to (32)  and (33).
So, the diffusive representation yields to the same bond
graph  (Fig.  5).  Differences  exist  in  the  matrix  values.
They are due to different assumptions, i. e. equations (41)
and (42) are based on the choice of residue values of the
diffusive  representation  symbol  [Laudebat  2003].  The
main interest of the diffusive representation, is the ability
to  build  a  finite-order  approximated  state  space  model
from a frequency domain representation. The  frequency
domain representation may be  obtained  numerically,  by
classical  FEM simulations. 

3. CONCLUSION

The paper presents different modeling methods that yield
to  the  same  bond  graph  structure  of  the  model  of  the
current  diffusion  in  magnetic  core.  The  first  approach

yields a first order model, the standard electrical inductor
model.  The  second  order  takes  into  account  current
diffusion  (induced  currents).  The  N-order  model
equations  have  the  same  structure  than  the  diffusive
representation  model.  However  diffusive  representation
enables  an  efficient  coupling  with  powerful  numerical
simulators  based  on FEM and should yield an accurate
bond graph model of the current diffusion. The approach
may be extend to any phenomenon based on a diffusion
equation.
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