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1 Introduction

In this short note, we show how the framework introduced in [1] allows to obtain an observer
with finite time convergence for globally Lipchitz upper triangular systems.

2 Finite time observer

we introduce an observer for systems of the form :

ẋ = S x + B u + δ(x, t) , y = x1 , (1)

where x = (x1, . . . , xn) is in R
n and δ : R

n × R+ → R
n is a continuous function globally

Lipchitz in its first argument (uniformly in t).
The domination approach has been used to design observer for systems of the form (1).

This approach has been popularized by high-gain observer [2]. These observers are given as:

˙̂x = S x̂ + Bu + δ(x̂, t) + LL
−1K(x̂1 − y) (2)

where L is the extra high-gain parameter, L = diag (1, L−1, L−2, . . . , L1−n) and K is the
output injection which have to be designed to ensure that the state of the error system:

˙̃x = S x̃ + δ(x̃, t) − δ(x̂ − x̃, t) + LL
−1K(x̃1) (3)

converges to the origin.
The error system (3) has the structure of a chain of integrators disturbed by nonlinear

terms which, assuming a global Lipschitz condition (as in [2]), is linearly bounded. In [2], the
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domination approach has been employed and a linear vector field K in the observer (2) was
introduced to ensure global and asymptotic convergence of the error x̃ toward the origin.

Recently, this approach has been extended in [4] (see also [3]) to a homogeneous vector
field K with negative degree to allow semi-global and finite time estimation.

The homogeneous in the bi-limit vector field K obtained from [1, Section 3] allows us to
get a global observer with finite-time estimation and with an estimation time uniform in the
initial condition:

Corollary 1 (Finite time observer) If for (x, x̃) in R
2n,

|δi(x + x̃, t) − δi(x, t)| ≤ c

i
∑

j=1

|x̃j | (4)

where c is a positive real numbers, then there exist a continuous vector field K : R → R
n and

a real number L∗ > 0 such that for every L in [L∗, +∞), the estimate given by the system (2)
converges to the state of system (1) in finite time uniformly in the initial condition, i.e., there
exists a positive real number T such that for all initial state x0 in R

n, initial estimate x̂0 in
R

n and all locally bounded continuous function u : [0, T ] → R, we get:

x(T ) = x̂(T )

where (x, x̂) : R → R
2n is a C1 functions solution of systems (1) and (2) such that x(0) = x0

and x̂(0) = x̂0.

Proof : To construct the vector field K we employ the homogeneous in the bi-limit framework
and the procedure introduced in [1]. We introduce two real numbers d0 and d∞ (the degree of
the homogeneous in the bi-limit vector field K) such that

− 1 < d0 < 0 < d∞ <
1

n − 1
. (5)

As in [1], we introduce the associated weights vector r0 and r∞ both in R
n
+ defined as

rb,n = 1 , rb,i = rb,i+1 − db = 1 − db (n − i) , (6)

where the letter ”b” stand for ”0” or ”∞”. Following the procedure [1, Section 3], we obtain
a homogeneous in the bi-limit vector field K : R → R

n with associated triples (r0, d0, K0) and
(r∞, d∞, K∞) such that the origin of the systems with state z = (z1, . . . , zn) in R

n :

ż = Sz + K(z1) ,

ż = Sz + K0(z1) ,

ż = Sz + K∞(z1) ,

is globally and asymptotically stable. Hence, we can employ [1, Corollary 2.22] to get a positive
real number cG such that for all continuous function R : R

n × R → R
n, satisfying

Ri(z, t) ≤ cG

(

i
∑

j=1

|zj |
1−d0(n−i−1)
1−d0(n−j) +

i
∑

j=1

|zj |
1−d∞(n−i−1)
1−d∞(n−j)

)

i = 1, . . . , n , (7)
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where R(z, t) = (R1(z, t), . . . , Rn(z, t)), the origin of the system :

ż = Sz + K(z1) + R(z, t) (8)

is globally and asymptotically stable.
Note that since d0 < 0 < d∞, it follows from Young’s inequality that, given a continuous

function R satisfying

Ri(z, t) ≤ cG

i
∑

j=1

|zj | .

then the Ri’s satisfy also the bound (7) and in this case, the origin of system (8) is globally
and asymptotically stable.

We introduce now the scaled coordinates defined as :

ei = L1−i x̃i , i = 1, . . . , n , (9)

where L, the high-gain parameter, is a positive real number which will be selected later. We
can rewrite this change of coordinates in compact form as:

E = Lx̃ , L = diag
(

1, L−1, L−2, . . . , L1−n
)

.

We get along the trajectory of the error system (3) :

Ė = L
[

SE + ∆(L, x̂, x̃, t) + K(e1)
]

,

where
∆(L, x̂, x̃, t) = L−1L[δ(x̂, t) − δ(x̂ − x̃, t)] .

Moreover, due to (4), with L ≥ 1, we get :

|∆i(L, x̂, x̃, t)| ≤ L−ic

i
∑

j=1

|x̃j | ≤ L−1c

i
∑

j=1

|ej|

Consequently with cG defined in (7) and taking L∗ > c
cG

, we get that, for all L in [L∗, +∞),
the origin of the system:

Ė = L
[

SE + ∆(L, x̃, t) + K(e1)
]

,

is globally and asymptotically stable. Hence, the estimate x̂ converges toward the state x.
Moreover, the origin is also globally and asymptotically stable for the homogeneous ap-

proximations:

Ė = L
(

SE + K0(e1)
)

,

Ė = L
(

SE + K∞(e1)
)

,

and with (5), we can apply [1, Corollary 2.24] to obtain the result. 2
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